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Percolation threshold determines the optimal population density for public cooperation
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While worldwide census data provide statistical evidence that firmly link the population density with several
indicators of social welfare, the precise mechanisms underlying these observations are largely unknown. Here
we study the impact of population density on the evolution ofpublic cooperation in structured populations, and
find that the optimal density is uniquely related to the percolation threshold of the host graph irrespective of its
topological details. We explain our observations by showing that spatial reciprocity peaks in the vicinity of the
percolation threshold, when the emergence of a giant cooperative cluster is hindered neither by vacancy nor by
invading defectors, thus discovering an intuitive yet universal law that links the population density with social
prosperity.

PACS numbers: 87.23.Ge, 89.75.Fb

When performing his seminal experiments on the behav-
ior of rats under crowded conditions, ethologist John B. Cal-
houn found that too high population densities may induce a
variety of destructive conditions, ranging from infant canni-
balism over excessive aggression to increased mortality atall
ages [1]. These observations became known as the “behav-
ioral sink”, and it was later confirmed that similar, although
not quite as savage and somewhat more subtle, effects of over-
crowding can be observed not just by rodents, but also by pri-
mates [2] and humans [3]. Although there is some disagree-
ment amongst sociologists as to how much population density
actually affects human behavior [4, 5] and what are its impli-
cations for welfare participation [6], fact is that World maps,
depicting increasing population density over a certain point on
one side and decreasing social welfare indexes on the other,as
well as freely available census data, dispel all doubts concern-
ing their relatedness.

Cooperation in sizable groups is a particularly interesting
social phenomenon [7], as it is arguably crucial for the re-
markable evolutionary success of the human species. While
the origins of human cooperation are most frequently at-
tributed to between-group conflicts [8] and alloparental care
[9], mechanisms such as kin and group selection, as well as
direct, indirect and spatial reciprocity, are known to facili-
tate its evolution [10]. The public goods game captures suc-
cinctly the essential social dilemma related to the evolution
of cooperation in groups [11]. Players must decide simulta-
neously whether they wish to contribute to the common pool
or not. All individual contributions, for simplicity assumed
being equal to one, are then multiplied by a factorr > 1 to
take into account synergetic effects of cooperation, and the re-
sulting amount is divided equally among all group members
irrespective of their strategy. Clearly, individuals are tempted
to defect, while the group as a whole is best off if everybody
cooperates. Failure to harvest the benefits of a collective in-
vestment and mindless exploitation of public goods are in fact
the key causes for the “tragedy of the commons” [12].

During the past decade, physics-inspired studies have led
to significant advancements in our understanding of the evo-
lution of cooperation, especially related to games on graphs
[13] and coevolutionary games [14]. Inspired by the semi-
nal paper on spatial reciprocity [15], for example, scale-free
networks have proven optimal for the evolution of coopera-
tion [16], while the dynamical organization of cooperationon
complex networks has provided vital insights as to why this
is the case [17]. Most recently, evolutionary games have also
been studied in growing populations [18, 19], as well as on
emergent hierarchical structures [20]. Of direct relevance for
the present study are the early works on disordered environ-
ments in spatial games [21, 22], which gave rise to studies
clarifying the role of mobility in different evolutionary set-
tings [23–25]. It is within the latter works that the impact of
population density has been investigated before, primarily in
relation to optimization possibilities the empty sites give to
success-driven individuals, as determined by means of pair-
wise interactions with other players.

Playing in a group with other players yields many-body in-
teractions, and their consequences cannot always be under-
stood based on pairwise interactions. Motivated by this pos-
sibility, we here depart from games governed by pairwise in-
teractions and focus on the spatial public goods game [26].
We investigate the impact of population density on the evolu-
tion of public cooperation by using a square lattice of sizeL2,
where only a fractionρ of all the nodes is occupied by play-
ers while the other nodes are left empty. The random dilution
of the lattice is performed only once at the start of the game,
and initially every playerx is designated either as cooperator
(sx = C = 1) or defector (sx = D = 0) with equal proba-
bility. Monte Carlo simulations are carried out comprisingthe
following elementary steps.

A randomly selected playerx acquires its payoffP g
x by

playing the public goods games with its existing interaction
partners as a member of ag ∈ G = 1 . . . 5 group whereby its
overall payoff is thusPx =

∑
g P

g
x . Next, playerx chooses
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FIG. 1: The peculiar dependence of the fraction of cooperators fC
on the normalized synergy factorr/G for different population den-
sitiesρ (see legend), as obtained for the square lattice. While de-
creasing the population density below1 facilitates the evolution of
public cooperation, there exists a lower bound toρ below which, for
sufficiently high values ofr, the effect is reversed. This indicates
that the population density crucially affects the evolution of public
cooperation, but it does so in a non-trivial way.

one of its nearest neighbors at random, and the chosen co-
playery also acquires its payoffPy in the same way. Finally,
playerx enforces its strategysx onto playery with a prob-
ability w(sx → sy) = 1/{1 + exp[(Py − Px)/K]}, where
K = 0.5 quantifies the uncertainty by strategy adoptions. If
playerx has no nearest neighbors the whole procedure starts
anew without attempting a strategy change. Each Monte Carlo
step (MCS) gives a chance for every player to enforce its strat-
egy onto one of the neighbors (if they exist, which at suffi-
ciently smallρ will not be the case) once on average. The av-
erage density of cooperatorsfC = ρ−1L−2

∑
x sx was deter-

mined in the stationary state after sufficiently long relaxation
times. Depending on the actual conditions the linear system
size was varied fromL = 200 to 1200 and the relaxation time
was varied from104 to 106 MCS to ensure proper accuracy.

To begin with, it is motivating to examine the evolution of
cooperation in dependence on the synergy factorr for differ-
ent population densitiesρ. In Fig. 1, theρ = 1 curve recov-
ers the well-known result [26] of cooperator extinction and
dominance belowRC1 = r/G = 0.75 and aboveRC2 =
r/G = 1.1, respectively. Asρ decreases below one, initially
bothRC1 (the extinction threshold) andRC2 (the dominance
threshold) decrease, thus indicating that smaller populations
densities favorably affect the evolution of public cooperation.
Below ρ = 0.6, however, the positive effect begins to deteri-
orate, at least partially so. WhileRC1 keeps decreasing,RC2

becomes altogether unattainable,i.e. cooperators become un-
able to dominate even at very large values ofr. These results
indicate thatρ plays a key role in games governed by group
interactions, invigorating on one hand the previous results ob-
tained for pairwise interactions [21] as well as the common
perception of the importance of population density for social
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FIG. 2: Fraction of cooperatorsfC in dependence on the population
densityρ for different values orr/G (see legend), as obtained for the
square lattice. Inset depicts the corresponding growth of the fraction
of active linksal (occupied nearest neighbor sites) asρ increases.
Cooperators go extinct atr = RC1 = 0.75 if ρ = 1. The optimal
population density where cooperators can dominate even at smaller
r is slightly above the percolation threshold, which isπ = 0.59.

welfare, while on the other inviting a more detailed study as
to why this is the case.

Results presented in Fig. 2 provide a clearer view of the im-
pact ofρ onfC . In theρ → 0 limit the majority of players has
no neighbors at all (see inset), and hencefC simply mirrors
back the initial state. Asρ increases, the few existing links be-
tween players enable defectors to exploit cooperators without
having to fear the consequences of spatial reciprocity. Note
that forρ < 0.2 many players, as well as large portions of the
lattice as a whole, will still be disconnected, hence prohibiting
cooperators to form compact clusters and utilizing this (spatial
reciprocity) to protect themselves against invading defectors.
Because of the random initial state, the first strike of defec-
tors will always be successful, regardless of the value ofr.
But further invasions are subsequently hindered by the lackof
connections between players utilizing different strategies, and
hence at low values ofρ the decay offC is universal for all
values ofr. Forρ > 0.2, however, the outcome of the game
becomes dependent on the synergy factor. For low values ofr
(r/G = 0.6) thefC trend simply continues downward asρ in-
creases, which indicates that new cooperative players simply
serve as easy targets for defectors. At higher values ofr co-
operators are able to utilize the enhanced interconnectedness
between them to form compact clusters, while at the same
time benefiting from the dilution that prohibits defectors to
exploit them with the same efficiency as on a fully populated
lattice. Accordingly,fC peaks at an intermediate (optimal)
value ofρ = ρo ≈ 0.62, which is a bit higher but close to the
percolation threshold of the square lattice equallingπ = 0.59
[27]. Upon further increasingρ, the average number of empty
sites decays, and accordingly the effective size of groups rises.
Since larger groups in general require larger synergy factors
to maintain cooperation,fC remains high at higherρ only if
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FIG. 3: The optimal population density on the square latticede-
creases if strategy imitations are allowed not just betweennearest
neighbors but also between all the players that are involvedin an in-
stance of the public goods game (compare with figure 2). This is
because the extension of the imitation range effectively reduces the
percolation threshold. Presented is the fraction of cooperatorsfC in
dependence on the population densityρ for different values orr/G
(see legend). Note that such an extension changes the behavior irrel-
evantly atρ = 1, whereRC1 = 0.77.

the value ofr is sufficiently large, yet starts falling ifr is too
small. Thus, the larger the value ofr the higher the value ofρ
wherefC starts decaying. From this we argue that a popula-
tion density close to the percolation threshold offers a delicate
optimum for the successful evolution of cooperation, where
the players are connected enough to transfer the more advan-
tageous mutually beneficial strategy, while simultaneously the
lattice is diluted enough to annul free-riders.

With the aim of closing in on the relevance of the percola-
tion threshold of the interaction graph for the optimal evolu-
tion of public cooperation, we alter the public goods game by
allowing strategy transfers not just between nearest neighbors,
but also between the players that are involved in all theG = 5
groups. This effectively decreases the percolation threshold
as it increases the range of each individual player, while at
the same time negligibly affecting the outcome of the game at
ρ = 1. For ρ < 1, however, and in particular in theρ → 0
limit, the interaction graph will be significantly different from
the one that is utilized in the standard version of the public
goods game. Indeed, due to the significantly lower percola-
tion threshold, the initial decay offC as the population den-
sity exceeds zero is altogether missing, as can be observed
by comparing results presented in Figs. 2 and 3. More to the
point, results in Fig. 3 support the conclusion that the pop-
ulation density close to the percolation threshold is decisive
for a successful evolution of public cooperation. Note that
for r/G = 0.5 the cooperation density peaks at an interme-
diate value ofρ, which in agreement with a lower percolation
threshold of the considered lattice occurs at a likewise lower
ρ = ρo. For the same reason the downfall offC for higher
values ofr/G asρ → 1 is somewhat delayed if compared to
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FIG. 4: Fraction of cooperatorsfC in dependence on the population
densityρ for different values orr/G (see legend), as obtained for
the triangular lattice. Cooperators go extinct atr = RC1 = 0.65
if ρ = 1. Like on the square lattice (see Fig. 2), on the triangular
lattice toofC is independent ofr at small values ofρ, although the
deviations occur sooner (at lowerρ) because of the lower percolation
threshold. The optimal population density where cooperators can
dominate even at smallerr is ρo ≈ 0.55, which is slightly above the
percolation threshold (π = 0.5).

the traditional version of the game.
As another evidence supporting the main message of this

work, we show in Fig. 4 the same analysis as above for the
triangular lattice, whereby as in Fig. 2 strategy imitationis
allowed only between nearest neighbors. The triangular lattice
has the percolation threshold equal toπ = 0.5 [27], while the
critical r/G for cooperation extinction on a fully populated
lattice isRC1 = 0.65. As Fig. 4 illustrates, cooperators can
survive or even dominate at smallerr values. Notably, the
smallestρ value where this can happen is slightly above the
percolation threshold. At the same time, the independence of
fC on r at small values ofρ, as well as the delayed onset of
decay of cooperator density for high values ofr whenρ > π,
validate the general features that can be understood clearly in
terms of the interplay between the evolutionary dynamics and
the properties of the interactions graph in both theρ → 0 and
ρ → 1 limit.

To understand these results, however, it is necessary to link
the evolutionary process itself with percolation. Indeed,there
exist compelling evidence that link the extinction of coopera-
tors in the public goods game to the directed percolation uni-
versality class [28, 29]. But to understand why exactly it is
that cooperators are able to percolate optimally even at mod-
est values ofr in the vicinity of the percolation threshold, it
is instructive to examine characteristic snapshots of strategy
distributions at different values ofρ, as presented in Fig. 5.
While cooperation and defection are always depicted green
and black respectively, the shade of green varies depending
on which cluster the different cooperators belong to. At low
values ofρ there are different shades of green inferable, in-
dicating that while there are clusters of cooperators in exis-
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FIG. 5: Specially prepared snapshots of strategy distributions evi-
dence that only in the proximity of the percolation threshold (panel
b) cooperators (green) are able to fully percolate. At lowerpopula-
tion densities (panel a) this is prohibited by empty sites (white), while
at higher population densities (panel c) percolation is prohibited by
defectors (black). Different shades of green (there are only four for
clarity) are used for cooperators who belong to different cooperative
clusters,i.e. cooperators who cannot reach each other by means of
nearest-neighbor interactions. Note that the latter is thenatural reach
of imitation on the square lattice used. Population densities are (a)
ρ = 0.4, (b) ρ = 0.71 and (c)ρ = 0.95, while r/G = 0.8.

tence, these cannot communicate with each other effectively.
Remarkably, at high values ofρ the situation is very similar,
but for an entirely different reason. While at low values ofρ
empty sites (white) disallow cooperators to grow large com-
pact clusters and to communicate with each other, at high val-
ues ofρ the defectors are the ones who break up large clusters
into isolation and thus diminish the effectiveness of spatial
reciprocity between their members. Both ways are equally ef-
fective in maintaining a lower level of cooperation, which in
panels (a) and (c) is the same. In the vicinity of the percola-
tion threshold, however, there are just enough communication
pathways between cooperators to enable their complete per-
colation (a single giant cooperative domain), yet not as many
to sustain the presence of free-riders who could effectively
exploit larger groups. Accordingly, spatial reciprocity can be
taken full advantage off and cooperation thrives. More pre-
cisely, the global density of players should be slightly higher
thanπ so that the cooperators who represent only a subset of
the whole population can percolate. With this insight, we are
thus able to foretell the optimal population density for a given
matrix simply by determining its percolation threshold.

Summarizing, we have shown that the percolation thresh-
old of an interaction graph constitutes the optimal popula-
tion density for the evolution of public cooperation. We have
demonstrated this by presenting outcomes of the public goods
game on the square lattice with and without an extended im-
itation range, as well as on the triangular lattice. We have
attributed our results to the optimization of spatial reciprocity
[15], the act by means of which connected cooperators share
both the production and the benefits of acquired goods. If the
population density is below the percolation threshold, vacant
sites impede this process by cutting short the communication
paths between cooperators. Significantly above it, however,
the higher group “crowdedness” enables an effective invasion
of defectors, which again disrupts reciprocity amongst coop-
erators by splitting them up into isolated clusters. Presented

results offer a new understanding of the impact of population
density on social prosperity through the concept of percola-
tion, thus fusing together physics and social science in a mu-
tually rewarding way.
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