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Abstract

The trigonometric Poschl-Teller (PT) potential describes the diatomic molecular
vibration. We have obtained the approximate solutions of the radial Schrodinger
equation (SE) for the rotating trigonometric PT potential using the Nikiforov-Uvarov
(NU) method. The energy eigenvalues and their corresponding eigenfunctions are
calculated for arbitrary /-states in closed form. In the low screening region, when the

screening parameter a — 0, the potential reduces to Kratzer potential. Further, some

numerical results are presented for several diatomic molecules.
Keywords: Schrodinger equation; trigonometric Poschl-Teller (PT) potential; Kratzer
potential; Nikiforov-Uvarov method

PACS: 03.65.-w; 04.20.Jb; 03.65.Fd; 02.30.Gp; 03.65.Ge

1. Introduction

The solution of the fundamental dynamical equations is an interesting phenomenon in
many fields of physics and chemistry. The exact solutions of the SE for a hydrogen
atom (Coulombic) and for a harmonic oscillator represent two typical examples in
quantum mechanics [1-3]. The Mie-type and pseudoharmonic potentials are also two
exactly solvable potentials [4-5]. Many authors have exactly solved SE with different

potentials and methods [6-16].



The trigonometric PT potential proposed for the first time by Poschl and Teller [17] in
1933 was to describe the diatomic molecular vibration. Chen [18] and Zhang et al.
[19] have studied the relativistic bound state solutions for the trigonometric PT
potential and hyperbolical PT (Second PT) potential, respectively. Liu et al. [20]
studied the trigonometric PT potential within the framework of the Dirac theory. Very
recently, Hamzavi and Rajabi studied the exact s -wave solution (/=0) of the
Schrodinger equation for the vibrational trigonometric PT potential [21]. This
potential takes the following form:

V(r)= 2V] + 1/2 , V>0, V,>0 (1)
sin“(ar) cos (ar)

where the parameters V', and V', describe the property of the potential well while the

parameter « is related to the range of this potential [20]. We find out that this
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value becomes at 7, =4Le (0,00) for a>0. The second derivative which determines
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the force constants at » =7, 1s given by
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which means that V' (r)at r=r, has a relative minimum for « >0. When V, =V, =V
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r

then minimum value is V() =4V and

r=n



trigonometric PT potential (1) for parameter values V,=5.0 fin™', V, =3.0 fin"',
a =0.02 fm™". Here the potential has a minimum value at 7, =0.270277 / a. The curve
is nodeless in are(0,7/2). For example, with o =0.30fm"', , =2.8303 finand

minimum potential ¥ (r, =2.8303 fin) =15.746 fin'. It is worthy to note that in the

limiting case when a — 0, the trigonometric PT potential can be reduced to the

Kratzer potential [21,22]

2
V(r) =De(r;rej +n, where r, is the equilibrium intermolecular separation and D,

is the dissociation energy between diatomic molecules. In our case,
D,=V;, n=V,and r,=1/a. In the case of n=0 reduces to the molecular potential
which is called the modified Kratzer potential proposed by Simons ef al. [23] and
Molski and Konarski [24]. In the case of n=-D,, this potential turns into the Kratzer
potential, which includes an attractive Coulomb potential and a repulsive inverse
square potential, introduced by Kratzer in 1920 [25].

The aim of the present work is to extend our previous work [26] to the case of /#0
(rotational case). We introduce a convenient approximation scheme to deal with the

strong singular centrifugal term. The ansétz of this approximation possesses the same

form of the potential and is singular as the centrifugal term 2. Thus, the Schrodinger
equation with the trigonometric PT potential is solved approximately for its energy
eigenvalues and corresponding wave functions with arbitrary rotation-vibration
(n,1) state [27].

This work is arranged as follows: in Section 2, the NU method with all the necessary
formulae used in the calculations is briefly introduced and a shortcut of the method is

given in Appendix A. In Section 3 we solve the SE for the given trigonometric PT



potential and obtain its energy eigenvalues and the corresponding wave functions.
Some numerical results are obtained for any arbitrary vibration-rotation quantum

numbers # and /. Finally, the relevant conclusion is given in Section 4.

2. NU method
The NU method can be used to solve second order differential equations with an

appropriate coordinate transformation s = s(r) [28]

O T T P ) B @

where o(s) and &(s) are polynomials, at most of second-degree, and 7 (s) is a first-
degree polynomial. To find a particular solution of Eq. (4), using the separation of
variables, one can insert the transformation v, (s)=¢(s)y, (s) to reduces the above
equation into the form of the following hypergeometric type

a(s)yy(s)+z(s)y,(s)+ A, (s)=0 (5)

Furthermore, the function ¢(s) is defined by the logarithmic derivative

¢'(s) _ 7ls) ©

And the second part function y, (s) is in the form of a hypergeometric-type function

whose solutions are given by Rodrigues relation

)=yl (0] g

where B, is the normalization constant and p(s) is the weight function that satisfies

the condition [28]

)=o) w(s)=o(s)p(s) 8)



The function 7(s) and the parameter A, required for this method, are defined as

follows

ﬂ(s)zo-’_?i\/(o-rz_?] —G+ko (9a)

A=k+n'(s) (9b)
In order to find the value of &, the expression under the square root must be square of

polynomial. Thus, a new eigenvalue equation is

A=A, :—nr’—@o" (10)
where
T(s):F(s)+ 27T(S) (11)

and its derivative must be negative [28]. In this regard, one can also derive the

parametric generalization version of the NU method [29] as displayed in Appendix A.

3. The solution of radial SE for the trigonometric Poschl-Teller potential
To study any quantum physical model characterized by the empirical molecular

potential given in Eq. (1), we need to solve the following SE given by [1-2]

P2
(E-FV(F)]WnJ,m (V,@,Q)) = Enll//n,l,m (F’Q’Q))’ (12)
where the potential V' (r) is taken as the trigonometric PT potential (1). Using the
separation of variables by applying the wave ﬁJnctiony/(r,B,(p):anJ(r)Y,m 0,9),
r

we obtain the radial SE as

{dz +2m(En1 % v, ]_l(z+1)}RnJ(r):0’ >0 (13)

a2\ sin’(ar)  cos’(ar) r




where the radial wave function R, ,(r) has to satisfy the required boundary
conditions, namely, R,,(0)=0 and R ,(7/2)=0 on the edges. Since the SE with the

trigonometric PT potential has no analytical solution for / # 0 states, we resort to use

an appropriate approximation scheme to deal with the centrifugal potential term as

Lzzlimoc2 do++ , O<ar<m/2 (14)
sin” (ar)

rr a0
where d,=1/12 is a dimensionless shifting parameter and ar<1. The
approximation (14) is done on the basis that sin(z)=z—z"/3%z’/5!~z" /7+---, and
in the limit when z — 0, sin(z) = z. To show the validity and accuracy of our choice
to the approximation scheme (14), we plot the centrifugal potential term 1/ r* and its
approximations: a’/sin’*(ar) and o’ (do +1/ sinz(ar))in Figure 2. As illustrated, the

three curves coincide together and show how accurate is this replacement. One of us
has treated this problem in his recent work (see Ref. [30]). The insertion of the

approximation (14) in Eq. (13) gives

2 ' ' 1
d—2+8n1— - 2I/] - 1/2 —l(l+1)0(2 dO +T Rnl :0, (153)
dr sin“(ar) cos”(ar) sin”(ar) ’
r 2 r 2
gz%, v = ’;_:J/‘ and ¥, = ’Zsz. (15b)

To solve Eq. (15a) via the NU method, we need to change the variables as

s =sin’(ar) to rewrite Eq. (15a) in a more convenient form amendable to NU

solution:
2 ! N
d*R 5 2 dR
n’;(s)—‘r 2 n,/(s)+ . 1 2|:—ASZ+BS_Cj|Rn[(S):0’ (16)
ds s(l—s) ds  s’(1-s) ’

where R, ,(s)= R, ,(r) and also we have defined



1

A::4a2(gd—za4:na2¢q, (17a)

Bz4z(g+zhwg+nbnyﬁa—%ﬂ, (17b)
(04

C=4L2(V,’ +1(1+1)a2). (17¢)
(04

Comparing Eq. (16) and relation (A2), we can easily obtain the coefficients c,
(i =1,2,3) as follows

1
C]ZE, c,=1,¢,=1 (18a)

The values of the remaining coefficients ¢, (i =4,5,...,13) are found from the relation
(AS) of Appendix A. In addition, the specific values of the coefficients ¢,

(i =1,2,...,13) are listed as

1 1 1 £
C4:Z, 05:—5, 06:Z|:1+?—l(l+l)do},
1 2 1 P 1 , 4V
(e :—Z[(2l+l) +?(8+V] —V2 )—Z(Z-i'l)do}, Cq :Eli(zl-i_l) +a—2]jl,
1 4V, 1 2, 4V 1 4V,
C9:£[1+ o ] o =)+ g gl

! !

1 4 1 4
Gr = 1+4/(20+1)" + 0? andc]3=Z 1+ 1+o?

(18b)

By using the relation (A10), we can obtain the energy eigenvalues of the rotating

trigonometric PT potential as

2 .2 2 .2 2
Em:ha l(l+1)d0+2ha n+l+l \/(21+1)2+8TV;‘ +\/1+8Z1V;2 ) (19)
2m m 2 4 o o

In the limit when a — 0, the energy formula (19) reduces into a constant value:



limE (\/7]+\/72)2 (20)

a—0

Further, there is no less of generality if d, =0, then Eq. (19) becomes

Em:zhz { (\/(21 e+ 2, \/ S’WH @1)
ha

where n=0,1,2,--- and /=0,1,2,--- are the vibration and rotation quantum numbers,

respectively. To obtain a numerical energy eigenvalues for the present potential
model, we take the following set of parameter values; namely,m =10 fin',
V,=50fm", V,=3.0fm" and a=12, 0.8, 0.4, 0.2, 0.02, 0.002 [20]. As seen
from Table 1, in the limit when potential range parameter o approaches zero, the
energy eigenvalues approaches a constant value given by Eq. (20). We take d, =0
and d,=1/12, respectively. In Figure 3, we show the variation of the lowest
vibration-rotation 1s, 1p, 2s, 2p, 3s and 3p states with the screening parameter o
for a set of parameter values m=10 fin™', V;=5.0fm”', V,=3.0fim"" and d,=0.

Further, for the same set of parameters, we draw the energy states versus the vibration
quantum number » in Figure 4.
Next, we need to calculate the wave functions. Using Eq. (18b) together with the

relations (A11) and (A12) of Appendix A, we obtain the functions

1 (21+]) 8mV ]Ssz

p(s)=s’ < (1-s)?V 7 (22)

Altl: (i)' qu(l— )l[l mJ (23)

#(s)=s

Further, the relation (A13) gives the first part of the desired wave function:

> 8mV, 1 [ 8ml,
yn(S)=P[2J(21 e ZJH*“ZJ(l—zs), (24)

n



and employingR, ,(s) =¢(s)y,(s), we finally get the radial wave functions from the

relation (A14) as

2 8ml;

. S;[H ity 22 }(1 _S);[]+ Rz ]P[;J(2,+])z+§¢a@ %J“i'?f? J 12 o5)

n

Inserting s = sin’(ar) in the above equation, we get

R,,(r)= N, (sin(ar)"™” (cos(ar)) " P2 (cos(2ar)), (26a)

2 8mVl 8mV;
m=\/(21+1) ta 0T /1+h2a; (26b)

where N, i1s a normalization factor to be calculated from the normalization

conditions. For example, the ground s -state has the wave function:

Ry (r) = Ny (sin(ar) ™) (cos(ar)) ) B> (cos(2ar)), (27a)

&mV,
where 1, = /1+%,
o

and for 1p -state:

Ry, () = Ny, (sin(er) ™™ (cos(ar)" ) B> (cos(2ar)), (27a)
where 7, =,[9+ izanl . For the illustration of this radial wave function, i.e., R, ,(r)/r,
[04

of the trigonometric PT  potential with  various rotation-vibration
Is, 1p, 2s, 2p, 3s and 3p states, see the curves in Figure 5. Obviously, the number of
nodes (in the allowed range) increases with the increasing of the vibration quantum
number n. For example, the 1sand 1p states have one node, the 2sand 2p states have
two nodes and so forth. That is, the wave functions of the rotating trigonometric
Poschl-Teller oscillator potential increase their oscillations with the increasing of the
vibration quantum number 7.

4. Final remarks and conclusion



In this work, we have obtained the approximate bound state solutions of the

Schrodinger equation with the trigonometric Poschl-Teller potential for arbitrary /-

state in the framework of a new approximation for the centrifugal term 2. We
employed a shortcut of the NU method in finding the energy eigenvalues and
corresponding wave functions. Some numerical results are given in Table 1. It is

found that in the limit when the potential range parameter o — 0, the energy levels

2
approach to a constant value (\/7] +\/72 ) . Under limiting case when o — 0, the

trigonometric PT potential can be reduced to the Kratzer potential. We used a set of
parameter values listed in Table 2 to calculate the energy spectrum of

I,, LiH, HCI, O,, H,, NO and CO diatomic molecules as illustrated in Table 3.
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Appendix A: Parametric Generalization of the NU method
The NU method is used to solve second order differential equations with an

appropriate coordinate transformation s = s(») [28]

Vi e =0, a1

where cr(s) and E(S) are polynomials, at most of second degree, and 7 (s) is a first-
degree polynomial. To make the application of the NU method simpler and direct
without need to check the validity of solution. We present a shortcut for the method.
So, at first we write the general form of the Schrodinger-like equation (B1) in a more
general form applicable to any potential as follows [29]

wé’(@{ﬁ]%@){w}% (s)=0. (A2)

s? (1 —c3s)2

satisfying the wave functions

v, (5)=o(s)y,(s). (A3)
Comparing (B2) with its counterpart (B1), we obtain the following identifications:
f(s):cl —C,S, O'(s):s(l—c3s), 6'(s):—§]s2+§2s—§3, (A4)

Following the NU method [28], we obtain the following shortcut procedure [29]:

(1) The relevant constant:

1 1
Cy 25(1—01), 05:5(02_203)’
co=ci+ A, ¢, =2¢c,c5— B,
¢ =c; +C, Co :c3(c7+c3c8)+c6,
2
cm:cl+2c4+2\/c:—l>——l, c]]:I—c]—2c4+—\/g>—l, ¢, #0,
G
1
cp, :c4+\/c_8>—0, c]3:—c4+—(\/g—cs)>0, ¢, #0. (AS)
G
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(i1) The essential polynomial functions:

7T(S =c,+cgs — [(\/cj+c3\/7) \/7} (A6)

k =—(c;+2c,y)—24Jccy s (A7)
‘L'(s):c]+2c4—(c2—2c5)s—2[(\/c:+c3\/c:)s—\/c:} (A8)
7'(s)=—2¢; = 2(\ley +efes )<0. (A9)
(ii1) The energy equation:
—(2n+1)cq +(2n+1)( Gy +c3\/g)+n(n—l)c3 +c; + 2050 +24cgey =0. (A10)

(iv) The wave functions:

p(s)=s®(l-c,s)", (A11)
¢(s)=s"(1-cys)", ¢, >0, ¢;; >0, (A12)
v, (s)= P (1-2¢;5), ¢ >—1, ¢, >—1, (A13)
Vo (8)=N s (1=cys ) P (1-2c55). (A14)

where P“"(x), u>-1, v>-1,and x €[~1,1] are Jacobi polynomials with

PP (1-25) = JF(-n0+a+p+n0+1s), (A15)

(a+1),
!

and N,  1is a normalization constant. Also, the above wave functions can be
expressed in terms of the hypergeometric function as

Voo (8)=N 59 (1=c5s ) * L F(=n,1+¢,y ¢y, +n50, + 15¢58) (A16)
where ¢, >0, ¢; >0 and s €[0,1/¢;], ¢, #0.

Table 1 The bound state energy levels £, for the trigonometric PT potential.

Enl
state _ -1 _ -1 _ -1
M =10fm ,V]—Sfm ,V2—3fm [20]

(n,0)

a=1.2 a=0.8 a=04 a=02 a=002 «a=0.002

d, =0 case

15[2]] 22.87051710 20.32991862 17.95616357 16.83082621 15.85264289 1575661628
25[2]] 28.29143398 23.68420415 19.50420742 17.57271070 15.92394680 15.76371786
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2p
3s[21]
3p
3d
4s[21]
4p
4d

4f

1s[21]
2s[21]
2p
3s[21]
3p
3d
4s[21]
4p
4d

4f

28.60696804

23.81346538

34.28835086 27.2944896
34.63442822 27.43284957
35.31564933 27.70768323

40.86126774

41.23788840

41.97876941

43.06137688

22.87051710

31.16077522

31.30823378

31.60107057

32.03529723

20.32991862

28.29143398 23.68420415
28.64395419 23.82847894
34.28835086 27.2944896
34.67512504 27.44896381
35.43921159 27.75631556

40.86126774

41.28229584

42.11348590

43.33519178

31.16077522

31.32544868

31.65300783

32.14003977

19.53372130

21.11625126

21.14690619

21.20811765

22.79229510

22.82409108

22.88757844

22.98255025

d, =1/12 case

17.95616357

19.50420742

19.53712286

21.11625126

21.15044543

21.21875330

22.79229510

22.82776800

22.89862721

23.00470171

17.57973494

18.33059518

18.33776218

18.35209065

19.10447967

19.11178941

19.12640318

19.14830965

16.83082621

17.57271070

17.58054181

18.33059518

18.33858626

18.35456399

19.10447967

19.11263070

19.12892817

19.15336297

15.92401384

15.99541071

15.99547790

15.99561226

16.06703463

16.06710195

16.06723660

16.06743857

15.85264289

15.92394680

15.92402153

15.99541071

15.99548560

15.99563534

16.06703463

16.06710967

16.06725974

16.06748485

15.76371853

15.77082105

15.77082171

15.77082304

15.77792584

15.77792650

15.77792783

15.77792984

15.75661628

15.76371786

15.76371860

15.77082105

15.77082179

15.77082328

15.77792584

15.77792658

15.77792806

15.77793030

Table 2 The spectroscopic parameters of diatomic molecules in the ground electronic

state [21,22]. We take V, =0.

H, HCI LiH I, 0, NO CO
V] :De (eV) 4.744750871 | 4.619030905 | 2.515283695 | 1.581791863 | 5.156658828 | 8.043782568 | 10.84514471
OC_] =7 (Ao) 0.7416 1.2746 1.5956 2.662 1.208 1.1508 1.1282
u (amu) 0.50391 0.98010 0.8801221 63.45223502 | 7.997457504 | 7.468441000 | 6.860586000

Table 3 The rotation-vibration energy spectrum of several diatomic molecules in the

ground electronic state.
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H, HCI LiH 1, 0, NO CO
State
1s .22078060 | 5.18052615 | 2.86602339 .60083133 .37162722 .33502418 | 11.20478158
lp .23937571 | 5.18330622 | 2.86801467 .60084002 .37199230 .33545440 | 11.205268106
s .15241392 | 5.51563228 | 3.07657343 .61176149 .49641049 .50374380 | 11.41288704
2p .17235188 | 5.51850084 | 3.07863655 .61177022 .49677979 .50417835 | 11.41337813
3s .14902770 | 5.860123972 | 3.29458574 .62272884 .622620654 .67415399 | 11.62290733
3p .17030851 | 5.860419678 | 3.29672069 .62273759 .62300005 .67459288 | 11.62340292
1400 . . .
-1
1200 F a =0.02 fm -
———V,=5.0 fm™, V,=3.0 fm!
1000 | .
e 800 1
£
£ 600
|— I~ -
>
400}
200} .
0 1 T 1
0 1 3 4 5
r (fm)

Figure 1. A draw of the trigonometric PT potential.

15




30 ' ' ' '
25l a =0.002
1 — = —V(r)=a.?/ sin®(o. 7)
lu — — —V()=a 24 +a2/sin2(a r
201 | ’
} V(=1
_ u
< 151 l‘
“l
10 |
\
\
50\
0 e I
0 1 2 3 4

Figure 2. The centrifugal term l/ r (green line) and its approximations (14).
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0.3

m=10.0 fm"'
1857 V =5.0fm",V =30fm" -
1s-state
18 1p-state 4
— — — 2s-state
— — — 2p-state
LEAC] R [ 3s-state _ B
3p-state _ - -
171 =7 i
16,5} - -
16F ~ ﬂ,////f//’//////lffjfi
15.5 1 1 1 1
0.05 0.1 0.15 0.2 0.25
o (fm7)

Figure 3. The variation of the lowest energy states E,,
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; with the screening parameter «. .
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Figure 4. The variation of the lowest energy states £,; with the vibration quantum number 7.
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Figure 5. The radial wave functions of the trigonometric PT potential for the lowest

vibration-rotation states.
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