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Abstract 

The trigonometric Pöschl-Teller (PT) potential describes the diatomic molecular 

vibration. We have obtained the approximate solutions of the radial Schrödinger 

equation (SE) for the rotating trigonometric PT potential using the Nikiforov-Uvarov 

(NU) method. The energy eigenvalues and their corresponding eigenfunctions are 

calculated for arbitrary l -states in closed form. In the low screening region, when the 

screening parameter 0,   the potential reduces to Kratzer potential. Further, some 

numerical results are presented for several diatomic molecules. 
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1. Introduction 

The solution of the fundamental dynamical equations is an interesting phenomenon in 

many fields of physics and chemistry. The exact solutions of the SE for a hydrogen 

atom (Coulombic) and for a harmonic oscillator represent two typical examples in 

quantum mechanics [1-3].  The Mie-type and pseudoharmonic potentials are also two 

exactly solvable potentials [4-5]. Many authors have exactly solved SE with different 

potentials and methods [6-16]. 
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The trigonometric PT potential proposed for the first time by Pöschl and Teller [17] in 

1933 was to describe the diatomic molecular vibration. Chen [18] and Zhang et al. 

[19] have studied the relativistic bound state solutions for the trigonometric PT 

potential and hyperbolical PT (Second PT) potential, respectively. Liu et al. [20] 

studied the trigonometric PT potential within the framework of the Dirac theory. Very 

recently, Hamzavi and Rajabi studied the exact s -wave solution ( 0)l   of the 

Schrödinger equation for the vibrational trigonometric PT potential [21]. This 

potential takes the following form: 
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where the parameters 1V  and 2V  describe the property of the potential well while the 

parameter   is related to the range of this potential [20]. We find out that this 
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which means that ( )V r at 0r r  has a relative minimum for 0.   When 1 2V V V   

then minimum value is 0( ) 4V r V  and 
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trigonometric PT potential (1) for parameter values 1 1
1 25.0 ,  3.0 ,V fm V fm    

10.02 .fm   Here the potential has a minimum value at  0 0.27027 / .r    The curve 

is nodeless in (0, / 2).r   For example, with 10.30 ,fm  0 2.8303 r fm and 

minimum potential 1
0( 2.8303 ) 15.746 .V r fm fm   It is worthy to note that in the 

limiting case when 0,   the trigonometric PT potential can be reduced to the 

Kratzer potential [21,22] 

2

( ) ,e
e

r rV r D
r


   

 
 where er  is the equilibrium intermolecular separation and eD  

is the dissociation energy between diatomic molecules. In our case,  

1 2,  eD V V  and 1/ .er   In the case of 0   reduces to the molecular potential 

which is called the modified Kratzer potential proposed by Simons et al. [23] and 

Molski and Konarski [24]. In the case of ,eD    this potential turns into the Kratzer 

potential, which includes an attractive Coulomb potential and a repulsive inverse 

square potential, introduced by Kratzer in 1920 [25]. 

The aim of the present work is to extend our previous work [26] to the case of 0l   

(rotational case). We introduce a convenient approximation scheme to deal with the 

strong singular centrifugal term. The ansätz of this approximation possesses the same 

form of the potential and is singular as the centrifugal term 2.r  Thus, the Schrödinger 

equation with the trigonometric PT potential is solved approximately for its energy 

eigenvalues and corresponding wave functions with arbitrary rotation-vibration 

( , )n l state [27].   

This work is arranged as follows: in Section 2, the NU method with all the necessary 

formulae used in the calculations is briefly introduced and a shortcut of the method is 

given in Appendix A.  In Section 3 we solve the SE for the given trigonometric PT 
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potential and obtain its energy eigenvalues and the corresponding wave functions. 

Some numerical results are obtained for any arbitrary vibration-rotation quantum 

numbers n  and .l  Finally, the relevant conclusion is given in Section 4. 

 

2. NU method  

The NU method can be used to solve second order differential equations with an 

appropriate coordinate transformation )(rss   [28] 
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where  s  and  s~  are polynomials, at most of second-degree, and  s~  is a first-

degree polynomial. To find a particular solution of Eq. (4), using the separation of 

variables, one can insert the transformation      syss nn    to reduces the above 

equation into the form of the following hypergeometric type 

          0 sysyssys nnn                                                                              (5) 

Furthermore, the function  s  is defined by the logarithmic derivative 
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And the second part function  syn  is in the form of a hypergeometric-type function 

whose solutions are given by Rodrigues relation 
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where nB  is the normalization constant and  s  is the weight function that satisfies 

the condition [28] 
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The function  s  and the parameter , required for this method, are defined as 

follows 

   ks 
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In order to find the value of k , the expression under the square root must be square of 

polynomial. Thus, a new eigenvalue equation is 

 
 


2
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where  

     sss  2~                                                                                                     (11)  

and its derivative must be negative [28]. In this regard, one can also derive the 

parametric generalization version of the NU method [29] as displayed in Appendix A. 

 

3. The solution of radial SE for the trigonometric Pöschl-Teller potential 

To study any quantum physical model characterized by the empirical molecular 

potential given in Eq. (1), we need to solve the following SE given by [1-2] 

2
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where the potential ( )V r  is taken as the trigonometric PT potential (1). Using the 

separation of variables by applying the wave function ,
1( , , ) ( ) ( , )n l lmr R r Y
r

     , 

we obtain the radial SE as 
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where the radial wave function , ( )n lR r  has to satisfy the required boundary 

conditions, namely, , (0) 0n lR   and , ( / 2) 0n lR    on the edges. Since the SE with the 

trigonometric PT potential has no analytical solution for 0l   states, we resort to use 

an appropriate approximation scheme to deal with the centrifugal potential term as 

2
02 20

1 1lim ,  0 / 2
sin ( )

d r
r r

  


 
    

 
                                                             (14) 

where 0 1 12d   is a dimensionless shifting parameter and 1r  . The 

approximation (14) is done on the basis that 3 5 7sin( ) / 3! / 5! / 7! ,z z z z z       and 

in the limit when 0,z   sin( ) .z z  To show the validity and accuracy of our choice 

to the approximation scheme (14), we plot the centrifugal potential term 21 r and its 

approximations: 2 2/ sin ( )r   and  2 2
0 1 sin ( )d r  in Figure 2. As illustrated, the 

three curves coincide together and show how accurate is this replacement. One of us 

has treated this problem in his recent work (see Ref. [30]). The insertion of the 

approximation (14) in Eq. (13) gives 

2
21 2

0 ,2 2 2 2

1( 1) 0,
sin ( ) cos ( ) sin ( )nl n l

V Vd l l d R
dr r r r
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To solve Eq. (15a) via the NU method, we need to change the variables as 

2sin ( )s r  to rewrite Eq. (15a) in a more convenient form amendable to NU 

solution: 

2
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,2 2 2
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where , ,( ) ( )n l n lR s R r  and also we have defined  
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Comparing Eq. (16) and relation (A2), we can easily obtain the coefficients ic  

( 1, 2,3i  ) as follows 

1 2 3
1 , 1, 1.
2

c c c                                                                                           (18a) 

The values of the remaining coefficients ic  ( 4,5,...,13i  ) are found from the relation 

(A5) of Appendix A. In addition, the specific values of the coefficients ic  

( 1, 2,...,13i  ) are listed as 
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By using the relation (A10), we can obtain the energy eigenvalues of the rotating 

trigonometric PT potential as 

2
2 2 2 2
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In the limit when 0,   the energy formula (19) reduces into a constant value: 
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Further, there is no less of generality if 0 0,d   then Eq. (19) becomes 
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2 4nl

mV mVE n l
m


 

  
            


 

                                    (21) 

where 0,1, 2,n     and 0,1, 2,l     are the vibration and rotation quantum numbers, 

respectively. To obtain a numerical energy eigenvalues for the present potential 

model, we take the following set of parameter values; namely, 110m fm , 

1
1 5.0 V fm , 1

2 3.0 V fm  and 1.2,  0.8,  0.4,  0.2,  0.02,  0.002   [20]. As seen 

from Table 1, in the limit when potential range parameter   approaches zero, the 

energy eigenvalues approaches a constant value given by Eq. (20). We  take 0 0d   

and 0 1/12,d   respectively.  In Figure 3, we show the variation of the lowest 

vibration-rotation 1 ,  1 ,  2 ,  2 ,  3  s p s p s and 3p  states with the screening parameter   

for a set of parameter values 110m fm , 1
1 5.0 ,V fm  1

2 3.0 V fm  and 0 0.d   

Further, for the same set of parameters, we draw the energy states versus the vibration 

quantum number n  in Figure 4.  

Next, we need to calculate the wave functions. Using Eq. (18b) together with the 

relations (A11) and (A12) of Appendix A, we obtain the functions  

 2 1 2
2 2 2 2

8 81 12 1 1
2 2( ) (1 ) ,

mV mVl
s s s 

  
                                                                             (22) 
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2 2 2 2
8 81 11 2 1 1 1

4 4(1 ) .
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                                                                                  (23) 

Further, the relation (A13) gives the first part of the desired wave function: 

 
 2 1 2

2 2 2 2
8 81 12 1 , 1

2 2 (1 2 ),
mV mV

l

n ny s P s 
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and employing , ( ) ( ) ( )n l nR s s y s , we finally get the radial wave functions from the 

relation (A14) as 

   2 21 2 1 2
2 2 2 2 2 2 2 2

8 8 8 81 1 1 11 2 1 1 1 2 1 , 1
4 4 2 2

, ( ) (1 ) (1 2 ).
mV mV mV mVl l

n l nR s s s P s   

     
                                           (25) 

Inserting 2sin ( )s r  in the above equation, we get  

     1 /2 /2, /21 /2
, ( ) (sin( )) (cos( )) (cos(2 )),l l

n l nl nR r N r r P r                                    (26a) 

 2 1
2 2

82 1 ,l
mVl


  


  2
2 2

81 mV


 


                                                                           (26b) 

where nlN  is a normalization factor to be calculated from the normalization 

conditions. For example, the ground s -state has the wave function: 

     0 01 /2 /2, /21 /2
0,0 00 0( ) (sin( )) (cos( )) (cos(2 )),R r N r r P r                                  (27a) 

where 1
0 2 2

81 ,mV



 


 

and for 1p -state: 

     1 11 /2 1 /2 /2, /2
0,1 01 0( ) (sin( )) (cos( )) (cos(2 )),R r N r r P r                                   (27a) 

where 1
1 2 2

89 .mV



 


 For the illustration of this radial wave function, i.e., , ( ) /n lR r r , 

of the trigonometric PT potential with various rotation-vibration 

1 ,  1 ,  2 ,  2 ,  3  and 3s p s p s p  states, see the curves in Figure 5. Obviously, the number of 

nodes (in the allowed range) increases with the increasing of the vibration quantum 

number .n  For example, the 1s and 1p states have one node, the 2s and 2 p states have 

two nodes and so forth. That is, the wave functions of the rotating trigonometric 

Pöschl-Teller oscillator potential increase their oscillations with the increasing of the 

vibration quantum number .n  

 4. Final remarks and conclusion 



 10

In this work, we have obtained the approximate bound state solutions of the 

Schrödinger equation with the trigonometric Pöschl-Teller potential for arbitrary l -

state in the framework of a new approximation for the centrifugal term 2.r  We 

employed a shortcut of the NU method in finding the energy eigenvalues and 

corresponding wave functions. Some numerical results are given in Table 1. It is 

found that in the limit when the potential range parameter 0,   the energy levels 

approach to a constant value  2

1 2 .V V  Under limiting case when 0,   the 

trigonometric PT potential can be reduced to the Kratzer potential. We used a set of 

parameter values listed in Table 2 to calculate the energy spectrum of 

2I , LiH, HCl, 2O , 2 H , NO and CO  diatomic molecules as illustrated in Table 3.   
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Appendix A: Parametric Generalization of the NU method  

The NU method is used to solve second order differential equations with an 

appropriate coordinate transformation )(rss   [28] 
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s
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s
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 ,                                                                      (A1) 

where  s  and  s~  are polynomials, at most of second degree, and  s~  is a first-

degree polynomial. To make the application of the NU method simpler and direct 

without need to check the validity of solution. We present a shortcut for the method. 

So, at first we write the general form of the Schrödinger-like equation (B1) in a more 

general form applicable to any potential as follows [29] 

     
 

 
2

1 2
22

3 3

0,
1 1

n n n
c c s As Bs Cs s s

s c s s c s
  

                  
                                     (A2) 

satisfying the wave functions 

( ) ( ) ( ).n ns s y s                                                                                                  (A3) 

Comparing (B2) with its counterpart (B1), we obtain the following identifications: 

  1 2 ,s c c s         31 ,s s c s       2
1 2 3,s s s                                     (A4) 

Following the NU method [28], we obtain the following shortcut procedure [29]:                                               

(i) The relevant constant: 

 4 1
1 1 ,
2

c c   5 2 3
1 2 ,
2

c c c   

2
6 5 ,c c A  7 4 52 ,c c c B   

2
8 4 ,c c C   9 3 7 3 8 6 ,c c c c c c    

10 1 4 82 2 1 1,c c c c     11 1 4 9 3
3

21 2 1,  0,c c c c c
c

       

12 4 8 0,c c c   13 4 3 5 3
3

1 ( ) 0,  0.c c c c c
c

                     (A5) 



 13

(ii) The essential polynomial functions: 

   4 5 9 3 8 8 ,s c c s c c c s c                                                                      (A6) 

 7 3 8 8 92 2 ,k c c c c c                                                                                        (A7) 

     1 4 2 5 9 3 8 82 2 2 ,s c c c c s c c c s c                                                (A8) 

   3 9 3 82 2 0.s c c c c                                                                                 (A9) 

(iii) The energy equation: 

      2 5 9 3 8 3 7 3 8 8 92 1 2 1 1 2 2 0.c n n c n c c c n n c c c c c c                     (A10) 

 (iv) The wave functions: 

    1110
31 ,ccs s c s                                                                                             (A11) 

    1312
3 12 131 ,  0,  0,ccs s c s c c                                                                           (A12) 

   10 11( , )
3 10 111 2 ,  1,  1,c c

n ny s P c s c c                                                                 (A13) 

     13 10 1112 ( , )
3 31 1 2 .c c cc

n n ns N s c s P c s                                                             (A14) 

where ( , ) ( ),  1,  1nP x       , and [ 1,1]x    are Jacobi polynomials with 

( , )
2 1

( 1)(1 2 ) ( ,1 ; 1; ),
!

n
nP s F n n s

n
     

                                                (A15) 

and nN   is a normalization constant. Also, the above wave functions can be 

expressed in terms of the hypergeometric function as 

    1312
3 2 1 10 11 10 31 ( ,1 ; 1; )cc

n ns N s c s F n c c n c c s                                        (A16) 

where 12 130,  0c c   and 3 3[0,1 ],  0.s c c   

Table 1 The bound state energy levels nlE  for the trigonometric PT potential. 

nlE  

110 ,M fm  1
1 5 ,V fm  1

2 3 V fm  [20] state 

( , )n l  
0.002   0.02   0.2   0.4   0.8   1.2   

   
0 0d   case    

15.75661628 15.85264289 16.83082621 17.95616357 20.32991862 22.87051710 1s[21] 

15.76371786 15.92394680 17.57271070 19.50420742 23.68420415 28.29143398 2s[21] 
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15.76371853 15.92401384 17.57973494 19.53372130 23.81346538 28.60696804 2p 

15.77082105 15.99541071 18.33059518 21.11625126 27.2944896 34.28835086 3s[21] 

15.77082171 15.99547790 18.33776218 21.14690619 27.43284957 34.63442822 3p 

15.77082304 15.99561226 18.35209065 21.20811765 27.70768323 35.31564933 3d 

15.77792584 16.06703463 19.10447967 22.79229510 31.16077522 40.86126774 4s[21] 

15.77792650 16.06710195 19.11178941 22.82409108 31.30823378 41.23788840 4p 

15.77792783 16.06723660 19.12640318 22.88757844 31.60107057 41.97876941 4d 

15.77792984 16.06743857 19.14830965 22.98255025 32.03529723 43.06137688 4f 

   
0 1/12d  case     

15.75661628 15.85264289 16.83082621 17.95616357 20.32991862 22.87051710 1s[21] 

15.76371786 15.92394680 17.57271070 19.50420742 23.68420415 28.29143398 2s[21] 

15.76371860 15.92402153 17.58054181 19.53712286 23.82847894 28.64395419 2p 

15.77082105 15.99541071 18.33059518 21.11625126 27.2944896 34.28835086 3s[21] 

15.77082179 15.99548560 18.33858626 21.15044543 27.44896381 34.67512504 3p 

15.77082328 15.99563534 18.35456399 21.21875330 27.75631556 35.43921159 3d 

15.77792584 16.06703463 19.10447967 22.79229510 31.16077522 40.86126774 4s[21] 

15.77792658 16.06710967 19.11263070 22.82776800 31.32544868 41.28229584 4p 

15.77792806 16.06725974 19.12892817 22.89862721 31.65300783 42.11348590 4d 

15.77793030 16.06748485 19.15336297 23.00470171 32.14003977 43.33519178 4f 

   

 

Table 2 The spectroscopic parameters of diatomic molecules in the ground electronic 

state [21,22]. We take 2 0.V   

CO  NO  2O  2I  LiH  HCl  2 H   
10.84514471 8.043782568 5.156658828 1.581791863 2.515283695 4.619030905 4.744750871 

1  ( )eV D eV  
1.1282 1.1508 1.208 2.662 1.5956 1.2746 0.7416 1  ( )er A     

6.860586000 7.468441000 7.997457504 63.45223502 0.8801221 0.98010 0.50391  (amu)  
 

 
Table 3 The rotation-vibration energy spectrum of several diatomic molecules in the 

ground electronic state.  
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CO  NO  2O  2I  LiH  HCl  2 H   
State 

11.20478158 
11.20526816 

8.33502418 
8.33545440 

5.37162722 
5.37199230 

1.60083133 
1.60084002 

2.86602339 
2.86801467 

5.18052615 
5.18330622 

6.22078060 
6.23937571 

1s  
1p  

11.41288704 
11.41337813 

8.50374380 
8.50417835 

5.49641049 
5.49677979 

1.61176149 
1.61177022 

3.07657343 
3.07863655 

5.51563228 
5.51850084 

7.15241392 
7.17235188 

2s  
2p  

11.62290733 
11.62340292 

8.67415399 
8.67459288 
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Figure 1. A draw of the trigonometric PT potential.  
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Figure 2. The centrifugal term 21 r  (green line) and its approximations (14).  
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Figure 3. The variation of the lowest energy states nlE with the screening parameter .  . 
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Figure 4. The variation of the lowest energy states nlE with the vibration quantum number .n   
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Figure 5. The radial wave functions of the trigonometric PT potential for the lowest 

vibration-rotation states. 

 


