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We discuss the evolution of purity in mixed quantum/classical approaches to electronic nonadiabatic dynamics
in the context of the Ehrenfest model. We claim that the evolution of a statistical Ehrenfest system made
up of more than just a single classical trajectory and an initially pure quantum state makes the quantum
pure state become a quantum mixed one. We prove this numerically using a simple statistical Ehrenfest
system, where we show how the evolution of purity depends on time, on the dimension of the quantum
state space D, and on the number of classical trajectories N of the initial distribution. We also prove our
claim in general using a series of mathematical results that allow us to formulate an equivalent version of
the statistical quantum mechanics (suitable for a straightforward extension to the Ehrenfest dynamics (ED))
called geometrical quantum statistical mechanics (GQSM), and in terms of which the whole analysis is very
direct. As a part of this formalism, we extend the concepts of purity and purity change both to the GQSM
and its extension to the ED. The results in this work open new perspectives for studying decoherence with
Ehrenfest dynamics.

I. INTRODUCTION

The Schrödinger equation for a combined system of
electrons and nuclei enables us to predict most of the
chemistry and molecular physics that surrounds us, in-
cluding biophysical processes of great complexity. Unfor-
tunately, this task is not possible in general, and approxi-
mations need to be made; one of the most important and
successful being the classical approximation for a num-
ber of the particles. Mixed quantum-classical dynamical
(MQCD) models are therefore necessary and widely used.

We could say that, typically, the technique used to
build MQCD models is a partial ‘deconstruction’ of the
quantum mechanics (QM) of the total system (electrons
and nuclei) followed by a ‘reconstruction’ that tries to
recover the essential properties of the total Schrödinger
equation lost in the deconstruction process. It is unreal-
istic to expect the reconstructed theory has the same pre-
dictive power as the Schrödinger equation, so the recon-
structed theory will apply with enough accuracy only to a
subset of systems and questions; a subset whose bound-
aries are difficult to predict a priori. In the literature,
there are at least two common levels of deconstruction,
one further away from the total Schrödinger equation for
electrons and nuclei, called Born-Oppenheimer molecu-
lar dynamics (BOMD), where electrons are assumed to
remain in the ground state for all times, and another one
closer to it, called Ehrenfest dynamics (ED), where nu-
clei are still classical (as in BOMD) but the electrons are
allowed to populate excited states1.

In J. C. Tully’s surface hopping methods2, for exam-
ple, the deconstruction goes to BOMD and the recon-

struction proceeds by allowing the system to perform
certain specially designed stochastic jumps between adi-
abatic states.

In the decay of mixing formalism of D. G. Truhlar and
coworkers3, the deconstruction stops at the ED and the
reconstruction is developed by adding decoherence to it.
This has been shown to be more accurate than surface
hopping methods for non-Born-Oppenheimer collisions.

The assumption behind both approaches is that ED
is a fully coherent semiclassical method, and hence pu-
rity preserving. Consequently, as change of purity is nec-
essary for the production of decoherence, many MQCD
models have been reconstructed to try to produce elec-
tronic decoherence. This point of view is held, to our
knowledge, in the whole of the literature. See, for ex-
ample, references 2–11, that range from one of the most
classic in this matter2 to one of the most recent10.

We will prove that this is not true if we allow a statisti-
cal description of both nuclei and electrons (the contrary
would mean that we can determine the initial conditions
of both subsystems with infinite accuracy). We will show
that ED is hence purity non-preserving; a property which
always accompanies decoherence phenomena (see for ex-
ample Section 3.5 in 12). Therefore, prior to the recon-
struction (to the extent possible) of the quantum prop-
erties of the total system, it is advisable to try to narrow
down those aspects of decoherence not included in ED;
without thinking that all of them are excluded a priori.
This is one of the main prospects that this work opens.
Of course, if some important ingredients for a proper de-
scription of decoherence were still missing from ED, they
could be later added in a reconstruction process similar
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to the ones mentioned before, but this time starting from
a, presumably better, purity non-preserving dynamics.

A full study of decoherence is a very complex task
which includes deep quantum theoretic concepts as
the measurement problem and the interpretations of
QM12,13. In this paper we voluntarily restrict ourselves
to a simple property reflecting the decoherence phe-
nomenon. Namely, the change in the ‘degree of mixture’
of the quantum state in a MQCD model, as quantified
by the purity Trρ2. As mentioned, we shall see in the
next sections that ED provides a framework where this
change takes place. The actual relation with the elec-
tronic decoherence in molecular systems requires a much
more involved analysis which will be developed in the
future.

Apart from the incorrect assumption that it is fully co-
herent, ED has also been often criticized on the basis that
it does not yield the Boltzmann equilibrium distribution
for the electrons exactly,14–18. The lack of this property,
which we agree is desirable, is however not enough to rule
out ED for all applications, as we recently argued19,20.

The structure of the paper is as follows: Sections
from II to IV introduce the mathematical formalism and
the relevant definitions, which are then put into practice
in the numerical example in Sec. V. Sec. II reviews the
notion of purity in QM and proves the well known fact
that ED preserves the purity of the quantum subsystem
when we consider the evolution of a single trajectory from
perfectly determined initial conditions. Sec. III presents
a very brief summary of the formulation of geometric QM
(see 21 for a more careful presentation) and it provides
an analogous formulation of a quantum statistical system
within the same framework. In particular, a suitable for-
mulation of the purity of a quantum system is introduced.
Sec. IV presents the main contribution of the paper: first,
we review the geometrical formulation of ED and its as-
sociated statistical equilibrium introduced in 21. Then,
we adapt the tools introduced in the previous section in
order to be able to study the evolution of the purity of
the quantum subsystem in a suitable way, and to show
that ED is purity non-preserving. The use of the geomet-
rical formalism, as we will see in what follows, allows to
perform a very direct analysis of the problem. In Sec. V,
we numerically illustrate the change in purity produced
by ED using a very simple but extremely useful exam-
ple: a statistical system defined by a pure quantum state
and an ensemble of initial conditions of the classical sub-
system. Such a system has been used in the literature
as a natural framework for molecular dynamics (see for
example 8, 9, and 18). We use it as the simplest nontriv-
ial Ehrenfest statistical system where we can show how
the purity of the quantum part of the system evolves in
time depending on the coupling between the classical and
quantum systems, the initial momentum of the classical
particles, the dimension of the quantum state space and
the number of trajectories considered in the initial con-
ditions. In Sec. VI we present our conclusions and our
plans for future works.

II. PURITY

A. Purity preservation in quantum mechanics

Given a Hilbert space H, we shall call density states

to the elements ρ obtained as convex combinations of
rank-one projectors ρ = {ρ1, . . . , ρk}, each element satis-
fying

ρ2j = ρj , ρ+j = ρj , Trρj = 1, j = 1, . . . , k,

with a probability vector, p := (p1, . . . , pk) with
∑

j pj =
1 and pj ≥ 0, ∀j. The expression of a general density
state is then

ρ =
∑

j

pjρj.

The evaluation of some observable A on this state is given
by

〈A〉 =
∑

j

pjTr(ρjA) = Tr(ρA). (2.1)

The state of the quantum system is said to be pure

if the density matrix which represents it is a rank-one
projector, i.e., if the convex combination above contains
only one term. If this property does not hold, the system
is said to be in a mixed state, since, from the physical
point of view, there is a statistical mixture of the different
pure states represented by the density matrices ρj above.

Being a Hermitian operator, the matrix ρ can be diag-
onalized. Its eigenvalues {λ1, . . . , λk} satisfy

0 ≤ λj ≤ 1, ∀j. (2.2)

If the state is pure, there is one eigenvalue equal to one,
the rest being zero. Obviously, the rank of ρ as a projec-
tor on the Hilbert space H coincides with the number of
nonvanishing eigenvalues.

It is an immediate property that a state ρ is pure if
and only if

Trρ2 = 1. (2.3)

The proof requires only Eq. (2.2).
The description of a quantum system in terms of a den-

sity matrix uses von Neumann’s equation to introduce
the dynamics. Then we know that, given the Hamilto-
nian operator H , the evolution of the state ρ is given
by

i~ρ̇(t) = [H(t), ρ(t)], (2.4)

where [·, ·] is the usual commutator of operators.
Using a simple proof which is formally identical to the

one that we shall present in the next section, one can
easily show that this dynamics is purity-preserving, i.e.,
d(Trρ2)/dt = 0.
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B. Purity preservation in non-statistical Ehrenfest dynamics

The Ehrenfest equations19,20 for a system composed of
a set of M classical particles (typically nuclei; described

by the phase space variables R := (~R1, . . . , ~RM ), P :=

(~P1, . . . , ~PM )) and a set of n quantum particles (typically
electrons; described by a wavefunction ψ, defined on the

space parameterized by r := (~r1, . . . , ~rn)) are:

~̇RJ(t) =
~PJ
MJ

, (2.5)

~̇PJ(t) = −〈ψ(t)|∂He

∂ ~RJ
(R(t))|ψ(t)〉, (2.6)

i~
d

dt
|ψ(t)〉 = He(R(t))|ψ(t)〉, (2.7)

where J = 1, . . . ,M and the electronic Hamiltonian op-
erator He is related to the molecular one H and it is
defined as follows:

He(R) := −~
2
∑

j

1

2
∇2
j+

1

4πǫ0

∑

J<K

ZJZK

|~RJ − ~RK |
+

1

4πǫ0

∑

j<k

1

|~rj − ~rk|
− 1

4πǫ0

∑

J,j

ZJ

|~RJ − ~rj |
= H+~

2
∑

J

1

2MJ
∇2
J , (2.8)

where all sums must be understood as running over the
whole natural set for each index, MJ is the mass of the
J-th nucleus in units of the electron mass, and ZJ is the
charge of the J-th nucleus in units of (minus) the electron
charge.

At first sight, given the similarity between Eq. (2.7)
and the Schrödinger equation for an isolated full-
quantum system, one might erroneously think that the
Ehrenfest evolution for the quantum part of the system is
unitary22–24. If this was correct, then it would be trivial
to prove that ED is purity preserving, but this is not the
case. As is well known, for a one to one transformation,
we can define unitarity as the property of preserving the
scalar product, i.e., given two arbitrary vectors ϕ and
φ, we say that U is unitary if 〈Uϕ|Uφ〉 = 〈ϕ|φ〉. One
can easily see that any reversible transformation U that
enjoys this property is necessarily linear:

〈U(ϕ1 + ϕ2)|Uφ〉 = 〈ϕ1 + ϕ2|φ〉 = 〈ϕ1|φ〉+ 〈ϕ2|φ〉
= 〈Uϕ1|Uφ〉+ 〈Uϕ2|Uφ〉 = 〈(Uϕ1 + Uϕ2)|Uφ〉.

As U is reversible, Uφ is an arbitrary vector, and there-
fore, we must have,

U(ϕ1 + ϕ2) = Uϕ1 + Uϕ2.

But, although the quantum part of the the equations of
motion in (2.7) resembles a typical Schrödinger equation,
the coupling with the classical part makes the evolution of
the quantum system nonlinear. Consequently, it cannot
be a unitary transformation as defined above.

Despite this non-unitarity, it is very simple to prove
that, if we consider the evolution of a single trajectory
(R,P, ψ) of an Ehrenfest system, the quantum part is
always in a pure state:

Theorem 1. Let (R,P, ψ) be the initial state of an
Ehrenfest system subject to the dynamics given by eqs.
(2.5)–(2.7). Then, the quantum part of the system is al-
ways in a pure state

Proof. We consider the density matrix ρ = |ψ〉〈ψ| corre-
sponding to the quantum part of the Ehrenfest system.
The evolution of |ψ〉 is given by Eq. (2.7), which induces
a von Neumann-like evolution for the density matrix at
every time t

i~ρ̇(t) = [He(R(t)), ρ(t)],

being He the electronic Hamiltonian in (2.8). Then,

d

dt
Trρ2 =2Tr(ρ̇ρ) = 2Tr([He, ρ]ρ) =

2 (Tr(Heρρ)− Tr(ρHeρ)) = 0,

for all times t. Hence, if Trρ2 = 1 at t = 0, it will remain
so.

The main goal of the rest of the paper is to prove that,
when we consider the case of a statistical ensemble of
Ehrenfest trajectories, this is no longer the case: the evo-
lution of an ensemble whose quantum part is a pure state
at t = 0 will become an ensemble in which the quantum
part is mixed as long as the initial conditions for the nu-
clei are not perfectly determined. Thus, in such a case,
the ED produces a purity change, a necessary condition
for decoherence.

III. GEOMETRIC QUANTUM STATISTICAL MECHANICS

A. Geometric quantum mechanics

The aim of this section is to provide a very brief sum-
mary of the mathematical formalism more thoroughly
introduced in 21 and references therein.

Classical mechanics can be formulated in several math-
ematical frameworks each corresponding to a different
level of abstraction: Newton’s equations, the Hamilto-
nian formalism, the Poisson brackets, etc. Perhaps its
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more abstract and general formulation is geometrical, in
terms of Poisson manifolds. Similarly, QM can also be
formulated in different ways, some of which resemble its
classical counterpart. For example, the observables (self-
adjoint linear operators) are endowed with a Poisson al-
gebra structure (based on the commutators) almost equal
to the one that characterizes the dynamical variables in
classical mechanics. Moreover, Schrödinger equation can
be recast into Hamilton’s equations form by transform-
ing the complex Hilbert space into a real one of double
dimension. The observables are also transformed into dy-
namical functions in this new phase space, in analogy to
the classical one. Finally, a Poisson bracket formulation
has also been established for QM, which permits to clas-
sify both the classical and the quantum dynamics under
the same heading.

This variety of formulations does not emerge from aca-
demic caprice; the succesive abstractions simplify further
developments of the theory, such as the step from micro-
scopic dynamics to statistical dynamics: the derivation
of Liouville’s equation (or von Neumann’s equation in
the quantum case), at the heart of statistical dynamics,
is based on the properties of the Poisson algebra21.

Consider a basis {|ψk〉} for the Hilbert space H. Each
state |ψ〉 ∈ H can be written in that basis with complex
components (or coordinates, in more differential geomet-
ric terms) {zk}:

H ∋ |ψ〉 =
∑

k

zk|ψk〉.

Now, we can just take the original vector space inher-
ent to the Hilbert space, and turn it into a real vector
space (denoted as MQ), by splitting each coordinate into
its real and imaginary parts:

C
n ∼ H ∋ zk = qk + ipk 7→ (qk, pk) ∈ R

2n ≡MQ.

We will use real coordinates (qk, pk), k = 1, . . . , n, to
represent the points of H when thought of as real vector
space elements. From this point of view, the similarities
between the quantum dynamics and the classical one will
be more evident. It is important to notice, though, that
despite the formal similarities these coordinates (qk, pk)
do not represent physical positions and momenta of any
actual system. They simply correspond to the real and
imaginary parts of the complex coordinates used for the
Hilbert space vectors in a given basis.

The scalar product of the Hilbert space is encoded in
three tensors defined on the real vector space MQ. The
interested reader is addressed to 21 for the details. We
just highlight here that two of these tensors correspond
to a metric tensor g and a symplectic one ω which allow
us to write the expression of the Schrödinger equation
as a Hamilton equation, in a form which is completely
analogous to the Hamiltonian formulation of classical me-
chanics. It is precisely this similarity the key ingredient
to successfully combine classical and quantum mechan-
ics in a well-defined framework to describe the Ehrenfest

equations (2.5)–(2.7) as a Hamiltonian system, as we will
summarize later and it can also be seen in 21.

In this formalism, instead of considering the observ-
ables as linear operators (plus the usual requirements,
self-adjointness, boundedness, etc.) on the Hilbert space
H, we shall represent them as functions defined on the
real space MQ. The reason for that is to resemble, as
much as possible, the classical mechanical approach. But
we cannot forget the linearity of the operators, and thus
the functions must be chosen in a very particular way.
The usual choice is inspired in Ehrenfest’s description of
quantum mechanical systems and defines, associated to
any operator A on H, a function of the form:

fA(ψ) :=
1

2
〈ψ,Aψ〉. (3.1)

The operations which are defined on the set of opera-
tors can also be translated into this new language. Thus,
the associative product of operators (the matrix product
when considered in a finite dimensional Hilbert space),
the commutator (which encodes the dynamics) and the
anticommutator can be written in terms of the functions
of the type defined in Eq. (3.1). As an example, we can
write the case of the commutator, which will be used
later: Given two operators A and B, with the corre-
sponding functions fA and fB, the function associated
to the commutator i[A,B] = i(AB−BA) (the imaginary
unit is used to preserve hermiticity) is written as

fi[A,B] = {fA, fB} =
1

2

∑

k

(

∂fA
∂qk

∂fB
∂pk

− ∂fA
∂pk

∂fB
∂qk

)

.

(3.2)
Thus, from the formal point of view, the operation is
completely analogous to the Poisson bracket used in clas-
sical mechanics.

Another important property in the set of operators of
QM is the corresponding spectral theory. In any quantum
system, it is of the utmost importance to be able to find
eigenvalues and eigenvectors. We can summarize these
properties in the following result: If fA is the function
associated to the observable A, then, as a consequence of
Ritz’s theorem25,

• the eigenvectors of the operator A coincide with the
critical points of the function fA, i.e.,

dfA(ψ) = 0 ⇔ ψ is an eigenvector of A.

• the eigenvalue of A at the eigenvector ψ is the value
that the function fA takes at the critical point ψ.

As usual, the dynamics can be implemented in essen-
tially two different forms (but always in a way which is
compatible with the geometric structures introduced so
far): the so-called Schrödinger and Heisenberg pictures21.
In the Heisenberg picture, which is the one we will use in
what follows, the dynamics is introduced by translating
the well-known Heisenberg equation into the language of
functions:

i~ḟA = {fA, fH}, (3.3)
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being fH the function associated to the Hamiltonian op-
erator and A any observable.

B. Geometric quantum statistical mechanics

1. The probability density and the density matrix

A classical result in QM states that, given a quantum
system, the average value of any observable A can always
be computed as the trace of the observable and some
density state ρ, as defined in Section II A:

〈A〉 = Tr(ρA). (3.4)

This result is known as Gleason theorem (see 26 for de-
tails).

Instead of using the density matrix ρ, we can use an
alternative approach which is formally closer to the de-
scription of classical statistical systems and is used, for
instance, in 27. Consider a probability distribution FQ
on MQ and a volume element dµQ, satisfying the prop-
erties:

•
∫

MQ
dµQ(ψ)FQ(ψ) = 1.

• Expected values can be computed as

〈A〉 =
∫

MQ

dµQ(ψ)FQ(ψ)
fA(ψ)

〈ψ|ψ〉 , (3.5)

for all fA of the form (3.1); A being a Hermitian
operator. Notice that we have chosen to integrate
over all the states in MQ and divide by the norm
of the state, as it is done in the final section of 21.
This is equivalent to integrate over the states of
norm one as it was also done in the first sections of
21.

The canonical symplectic form of MQ described in 21
provides a natural candidate for the volume form since
it is also preserved by the quantum evolution (see 21 for
the technical details).

Some simple examples for the distribution FQ can also
be provided:

Example 1. For the case of the pure state ρ = |ψ0〉〈ψ0|
〈ψ0|ψ0〉

,
we can use

FQ(ψ) = δ(ψ − ψ0), (3.6)

to satisfy the above two equalities. Analogously, a mixed

state ρ =
∑

k pk
|ψk〉〈ψk|
〈ψk|ψk〉

(where
∑

k pk = 1 and pk ≥ 0)

can be represented by

FQ(ψ) =
∑

k

pkδ(ψ − ψk). (3.7)

In particular, it is straighforward to prove that, in this
case,

〈A〉 =
∫

MQ

dµQ(ψ)
∑

k

pkδ(ψ − ψk)
fA(ψ)

〈ψ|ψ〉

=
∑

k

pk
fA(ψk)

〈ψk|ψk〉
=
∑

k

pkTr(ρkA) = Tr(ρA),

for ρk = |ψk〉〈ψk|
〈ψk|ψk〉

and ρ =
∑

k pkρk.

The definition of the function FQ contains a number of
ambiguities which are explained in detail in 21. Essen-
tially, we can add to any FQ a term which integrates to
zero and has vanishing second-order momenta. Due to
the structure of the observable functions fA, this modifi-
cation will not change any average value computed as in
Eq. (3.5), nor will it change the normalization condition
for FQ. This defines an equivalence class of distributions
that produce the same average values, and (through the
relationship between distributions and density matrices)
Gleason theorem implies that there is always a distri-
bution in the class in which the fact that we are dealing
with a convex combination of rank-1 projectors is visible.
This is what we used in the example above.

In order to advance in the formulation and illustrate
these facts more precisely, we can consider, for every
|ψ〉 ∈ H, the following function:

f|ψ〉〈ψ|(η) =
1

2
〈η|ψ〉〈ψ|η〉. (3.8)

Now, it is easy to see that the following (averaged, now
ψ-independent) function

fρ(η) =

∫

MQ

dµQ(ψ)FQ(ψ)
f|ψ〉〈ψ|(η)

〈ψ|ψ〉 (3.9)

is the phase-space function associated to a density oper-
ator ρ defined by

ρ =

∫

MQ

dµQ(ψ)FQ(ψ)
|ψ〉〈ψ|
〈ψ|ψ〉 , (3.10)

i.e.,

fρ(η) =
1

2
〈η|ρη〉. (3.11)

With these definitions, we can now prove the following
result:

Theorem 2. Let us consider a quantum system in a
state described by a probability distribution FQ. Then, the
equivalence class of distributions that produce the same
expected values as FQ contains as an element:

FQ ∼ F̃Q =
∑

k

λkδ(ψ − ψk), (3.12)

where {ψk} is the set of critical points of fρ (as defined
in Eqs. (3.9) and (3.11)) and

λk = fρ(ψk).
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Proof. It is immediate if we realize that

〈A〉 =
∫

MQ

dµQ(ψ)FQ(ψ)
fA(ψ)

〈ψ|ψ〉 =

Tr

((

∫

MQ

dµQ(ψ)FQ(ψ)
|ψ〉〈ψ|
〈ψ|ψ〉

)

A

)

= Tr(ρA).

(3.13)

Indeed, the operator ρ appearing in this expression and
defined in Eq. (3.10) can be shown to be a density ma-
trix (i.e., ρ2 = ρ, ρ+ = ρ, and Trρ = 1), and Gleason’s
theorem guarantees it is unique.

We also know that, if we use the spectral decomposi-

tion of ρ, i.e., ρ =
∑

k λkρk, with ρk = |ψk〉〈ψk|
〈ψk|ψk〉

, being ψk
and λk its eigenvectors and eigenvalues, respectively, we
also have that

〈A〉 =
∫

MQ

dµQ(ψ)F̃Q(ψ)
fA(ψ)

〈ψ|ψ〉 (3.14)

=
∑

k

λk
fA(ψk)

〈ψk|ψk〉
=
∑

k

λkTr(ρkA) = Tr(ρA),

as we set out to prove.

Hence, from Gleason theorem, we know that, among
all the equivalent distributions, there is always one FQ
equal to a convex combination of Dirac-delta functions.
Notice that the function FQ provides us with all the infor-
mation encoded in the density matrix ρ. As a probability
density, it allows us to define the average values of the
observables, and in the form fρ, it allows us to read the
spectrum of ρ from the set of critical points.

This result allows us to realize in terms of FQ any quan-
tum system: as the average values coincide with those
obtained from the spectral decomposition of the density
matrix, we can use it to implement any desired model.
We will see a practical example in the next section.

2. Geometrical computation of purity

Finally, we would like to analyze purity in this geomet-
rical context. We saw in Section II that purity preser-
vation is encoded in the behavior of ρ as a projector.
If the evolution of the system preserves the purity of
the density matrix we say that the evolution is purity-

preserving, while in the other case, we call it purity

non-preserving.
Our first task is to express in this geometrical language

the concept of purity. Consider the following expression
for any fρ(ψ):

〈ρ〉 :=
∫

MQ

dµQ(ψ)FQ(ψ)
fρ(ψ)

〈ψ|ψ〉 . (3.15)

Then, 〈ρ〉 = 1 if the state is pure and 〈ρ〉 < 1 if the state
is mixed. This is so because, trivially,

〈ρ〉 = Tr(ρ.ρ) = Trρ2.

Let us now mention how this change in the purity of
the state can be detected in the measurement of aver-
age values of observables. Recall that a change in the
purity as above produces a transformation at the level
of the states such that a pure state corresponding to a
distribution of the form FQ(ψ) = δ(ψ − ψ0) becomes a
distribution of the form FQ(ψ) =

∑

j pkδ(ψ−ψk), where
there is more than one value of pj different from zero.
Then, it is immediate to prove that the average value of
a generic observable A will be different between one case
and the other.

IV. PURITY CHANGE IN EHRENFEST STATISTICS

A. The definitions

In this section, we will now extend the previous con-
struction to the Ehrenfest case, by combining it with the
approach introduced in 21.

First, let the physical states of our Ehrenfest system
correspond to the points in the Cartesian product

M =MC ×MQ,

where MC is the phase space of the classical system. The
physical observables will be now functions defined on that
manifold. To define statistical averages of observables
depending on classical and quantum degrees of freedom
(i.e., functions as fA(ξ, ψ)) we consider

〈A〉 =
∫

MC×MQ

dµQC(ξ, ψ)FQC(ξ, ψ)
fA(ξ, ψ)

〈ψ|ψ〉 , (4.1)

where ξ = (R,P ) ∈ MC represents the classical degrees
of freedom, ψ = ψ(q, p) ∈ MQ the quantum ones, and
dµQC = dµQdµC is the volume on the state space mani-
fold M .

We can now ask what properties we must require from
FQC in order for Eq. (4.1) to correctly define the statis-
tical mechanics for the Ehrenfest dynamics (ED). Anal-
ogously to what happened in the quantum case, the con-
ditions are as follows:

• The expected value of any constant observable
should be equal to that constant, which implies that
the integral on the whole set of states is equal to
one:

∫

MC×MQ

dµQC(ξ, ψ)FQC (ξ, ψ) = 1. (4.2)

• The average, for any purely quantum observable fA
of the form in (3.1), associated to a positive definite
Hermitian operator A, should be positive. This im-
plies the usual requirement of positive probability
density in standard classical statistical mechanics.
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In 21, it was proved that the ED defined on the mani-
foldM is Hamiltonian with respect to the Poisson bracket

{·, ·}QC = {·, ·}C +
i

~
{·, ·}Q, (4.3)

where {·, ·}C represents the usual Poisson bracket of the
classical degrees of freedom, and {·, ·}Q represents the
Poisson bracket defined by Eq. (3.2).

Being Hamiltonian, we know that we can define an
invariant measure on the space of states M . We shall
denote such a measure by dµQC . Thus, the dynamics
defined on the microstates is straightforwardly translated
into the probability density FQC as a Liouville equation:

ḞQC = {fH , FQC}QC , (4.4)

where fH is the Hamiltonian function of the Ehrenfest
system:

fH(R,P ; q, p) :=
∑

J

~PJ
2

2MJ
+

〈ψ(q, p)|Ĥe(R)|ψ(q, p)〉
〈ψ(q, p)|ψ(q, p)〉 .

(4.5)
Analogously, the evolution of any function fA(ξ, ψ) is
given by

ḟA(ξ, ψ) = {fA(ξ, ψ), fH(ξ, ψ)}QC . (4.6)

Again, this property provides us with a natural can-
didate for the volume element dµQC (and, for analogous
reasons, also for dµC) arising from the symplectic form
which gives its Hamiltonian structure to the Liouville
equation in this context. As it happens in the pure quan-
tum case, this volume form is preserved by the dynamics
(see 21).

With this in mind, we can consider the analogue of the
objects introduced in the previous section. Hence, given
an Ehrenfest system in a state described by a probability
density FQC(ξ, η), where ξ = (R,P ) and η = η(q, p), we
can consider the definition of the operator

ρ(ξ) :=

∫

MQ

dµQ(ψ)FQC(ξ, ψ)
|ψ〉〈ψ|
〈ψ|ψ〉 , (4.7)

which still depends on the classical variables ξ and, there-
fore, it can be interpreted as having turned the phase-
space representation of the quantum part into the more
familiar one based on density matrices. Also, since we
have not integrated over ξ, this object still represents in
a certain way a probability density in the classical part
of the space.

As for any ξ-dependent operator (see 21), we can define
the associated phase-space function:

fρ(ξ, η) :=

∫

MQ

dµQ(ψ)FQC(ξ, ψ)
〈η|ψ〉〈ψ|η〉

〈ψ|ψ〉 . (4.8)

It is also possible to integrate again the object in
Eq. (4.7), and define:

ρ =

∫

MC

dµ(ξ)ρ(ξ), (4.9)

which is a purely quantum object encoding the averaged
information of the complete system. Notice that, as it
is usually done and in order to lighten the notation, we
will often use the same symbol for different objects (as
in ρ(ξ) and ρ), understanding that it is the explicit indi-
cation of the variables on which they depend what dis-
tinguishes them notationally. Also, for simplicity, we use
the same symbols for operators in the full-quantum case
in sec. III B, and for the ones in the quantum-classical
scheme in this section.

We can now formulate the dynamics in terms of this
operator. After a brief computation, we obtain:

d

dt
ρ = i~−1

∫

MQ×MC

dµQC(ξ, ψ)FQC(ξ, ψ)

[

He(ξ),
|ψ〉〈ψ|
〈ψ|ψ〉

]

,

(4.10)
where He(ξ) is the very electronic Hamiltonian defined
at the beginning of the paper. In ED, considered statisti-
cally, this equation represents the analogue for the mixed
case of von Neumann’s equation.

Example 2. If we consider a single (‘pure’) state of the
classical system ξ0 and a pure state of the quantum sys-
tem |ψ0〉, i.e.,

FQC(ξ, ψ) = δ(ξ − ξ0)δ(ψ − ψ0),

we obtain

fρ(ξ, η) = δ(ξ − ξ0)
|〈ψ0, η〉|2
〈ψ0|ψ0〉

.

Analogously, the associated operator in Eq. (4.7) reads

ρ(ξ) = δ(ξ − ξ0)
|ψ0〉〈ψ0|
〈ψ0|ψ0〉

,

and the one in Eq. (4.9) is

ρ =
|ψ0〉〈ψ0|
〈ψ0|ψ0〉

,

as expected.

We can also consider the two marginal distributions:

• The distribution in MQ obtained by integrating out
the classical degrees of freedom:

FQ(ψ) =

∫

MC

dµC(ξ)FQC (ξ, ψ), (4.11)

• and the corresponding classical version in MC :

FC(ξ) =

∫

MQ

dµQ(ψ)FQC(ξ, ψ). (4.12)

Obviously both functions are distribution functions on
the corresponding manifolds with analogous properties to
FQC , and they could be used to compute expected values
of functions depending only on ψ or ξ, respectively.
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Example 3. It is immediate to check that the definitions
make sense for distributions of the form

FQC(ξ, ψ) = δ(ξ − ξ0)
∑

k

pkδ(ψ − ψk), (4.13)

i.e., for ‘pure’ classical part and a quantum-mixed one
canonically expressed with deltas.

In this case, the marginal distributions are of the form

FQ(ψ) =
∑

k

pkδ(ψ − ψk), FC(ξ) = δ(ξ − ξ0). (4.14)

Also notice that, in terms of the quantum marginal dis-
tribution FQ, we can write the density matrix in Eq. (4.9)
as

ρ =

∫

MQ

dµQ(ψ)FQ(ψ)
|ψ〉〈ψ|
〈ψ|ψ〉 . (4.15)

Once we have recovered the needed ingredients, we can
discuss the quantum purity of a system governed by ED:

Definition 1. We say that a quantum-classical system
is quantum-pure if and only if

Trρ2 = 〈ρ〉 =
∫

MQ

dµQ(ψ)FQ(ψ)
fρ(ψ)

〈ψ|ψ〉 = 1, (4.16)

being ρ the one defined in eqs. (4.9) and (4.15).
In case that the state of a system does not satisfy the

condition above, we say that it is quantum-mixed.

For the sake of completeness, and in order to better
connect with the purely quantum case we discussed in
sec. III B, we can consider now the function obtained from
fρ in Eq. (4.8) averaging directly over MC , i.e.,

fρ(η) =

∫

MC

dµC(ξ)fρ(ξ, η)

=

∫

MC×MQ

dµQC(ξ, ψ)FQC(ξ, ψ)
〈η|ψ〉〈ψ|η〉

〈ψ|ψ〉

=

∫

MQ

dµQ(ψ)FQ(ψ)
〈η|ψ〉〈ψ|η〉

〈ψ|ψ〉 . (4.17)

This function plays the role of the function in (3.9) in
the pure case. Indeed, we have that

fρ(η) = 〈η|
(

∫

MC×MQ

dµQCFQC(ξ, ψ)
|ψ〉〈ψ|
〈ψ|ψ〉

)

|η〉

= 〈η|
(

∫

MQ

dµQFQ(ψ)
|ψ〉〈ψ|
〈ψ|ψ〉

)

|η〉 = 〈η|ρη〉,

(4.18)

and hence it corresponds to the quantum expected value
of the operator ρ in eqs. (4.9) and (4.15), whose full-
quantum analogue is the one in (3.10) in sec. III B.

B. The application: transferring uncertainty between the
classical and quantum parts

Consider the following initial distribution evolving un-
der ED:

FQC(0) = δ(ξ − ξ0)δ(ψ − ψ0).

This system is completely deterministic and, therefore,
the Liouville equation will produce exactly, as a solution,
the integral curves of ED (ξ(t), ψ(t)). Thus we can write:

FQC(t) = FQC(ξ(t), ψ(t)) = δ(ξ − ξ(t))δ(ψ − ψ(t)).

Consider now a slightly more complex system, consi-
tuted by a distribution of N equally probable classical
states, and a pure quantum state at t = 0:

FQC(0) =

(

1

N

N
∑

k=1

δ(ξ − ξk0 )

)

δ(ψ − ψ0). (4.19)

We can also write the marginal distributions as we did
in the previous section:

FC(0) =
1

N

N
∑

k=1

δ(ξ − ξk0 ) ; FQ(0) = δ(ψ − ψ0). (4.20)

The evolution of such a system becomes

FQC(t) =
1

N

N
∑

k=1

δ(ξ − Φ∗
ξ(ξ

k
0 , ψ0; t))δ(ψ − Φ∗

ψ(ξ
k
0 , ψ0; t)),

(4.21)
where (Φ∗

ξ(ξ
k
0 , ψ0; t),Φ

∗
ψ(ξ

k
0 , ψ0; t)) represents the Ehren-

fest trajectory having (ξk0 , ψ0) as initial condition.
The evolved marginal distribution in the quantum

manifold is now:

FQ(t) =
1

N

N
∑

k=1

δ(ψ − Φ∗
ψ(ξ

k
0 , ψ0; t)), (4.22)

and then, using Eq. (4.16), we have:

fρ(t) =
1

N

N
∑

k=1

|〈η|Φ∗
ψ(ξ

k
0 , ψ0; t)〉|2

〈Φ∗
ψ(ξ

k
0 , ψ0; t)|Φ∗

ψ(ξ
k
0 , ψ0; t)〉

, (4.23)

where, of course,

fρ(0) = |〈η|ψ0)〉|2. (4.24)

The associated density matrix at time t reads:

ρ(t) =
1

N

N
∑

k=1

|Φ∗
ψ(ξ

k
0 , ψ0; t)〉〈Φ∗

ψ(ξ
k
0 , ψ0; t)|

〈Φ∗
ψ(ξ

k
0 , ψ0; t)|Φ∗

ψ(ξ
k
0 , ψ0; t)〉

, (4.25)

and at time t = 0:

ρ(0) =
|ψ0〉〈ψ0|
〈ψ0|ψ0〉

. (4.26)
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Now, the purity at time t = 0 is

〈ρ(0)〉 =
∫

MQ

dµQFQ(0)fρ(0) = 1, (4.27)

but at a general time t,

〈ρ(t)〉 =
∫

MQ

dµQFQ(t)fρ(t) =

1

N

N
∑

k,j=1

〈Φ∗
ψ(ξ

k
0 , ψ0; t)|Φ∗

ψ(ξ
j
0, ψ0; t)〉2

‖Φ∗
ψ(ξ

k
0 , ψ0; t)‖2‖Φ∗

ψ(ξ
j
0, ψ0; t)‖2

. (4.28)

Hence, the purity of the system seems to evolve in time,
in general in an involved way. We can compute, though,
its time derivatives, in order to get an idea about its ini-
tial evolution. After some calculations which we detail
in appendix B, one can see that, for the initial state con-
sidered in this section, we have

d

dt
〈ρ(t)〉

∣

∣

∣

t=0
= 0, (4.29)

and

d2

dt2
〈ρ(t)〉

∣

∣

∣

t=0
= ~

2〈ψ0|(He(ξ
1
0)−He(ξ

2
0))|ψ0〉2 (4.30)

− ~
2〈ψ0|(He(ξ

1
0)−He(ξ

2
0))

2|ψ0〉,

which is negative definite unless the expectation value of
He(ξ

1
0) − He(ξ

2
0) at |ψ0〉 vanishes. This means that the

purity evolves from its initial value, and it does so by
decreasing, which is entirely expected if we realized that
we started from a state in which the purity is maximal.

Thus, we can see that the evolution has made a
quantum-pure system become a quantum-mixed one, and
we can claim that:

Theorem 3. The statistical Ehrenfest evolution is purity
non-preserving.

This is the main result of our paper: even though the
ED of a single-trajectory state does preserve purity, when
we consider a statistical state the behavior changes. In
the case above (and as we will see numerically in the
next section), we show how it is possible to transfer un-
certainty from the classical domain into the quantum one.
Analogously, it is straightforward to see that an analo-
gous process happens when we consider a single classical
state coupled to an ensemble of quantum states.

V. NUMERICAL EXAMPLE ON A SIMPLE EHRENFEST
SYSTEM

To illustrate the concepts introduced in the previous
section and to see the purity change in a complex nu-
merical case, let us consider a situation with an equally
probable initial distribution as in Eq. (4.19) of classical
particles with N = 5 and a quantum part constituted
by a 10-level system28. Such a system has been used in

the literature as a natural framework for molecular dy-
namics (see for instance 8, 9, and 18). We consider a
Hamiltonian function for the quantum-classical system
of the following form:

fH = J + 〈ψ|A+ ǫJ cos θB|ψ〉, (5.1)

where (θ, J) are canonically conjugated classical variables
and A and B are Hermitian matrices acting on the quan-
tum vector space C10. The classical part is written in
action-angle coordinates to simplify the analysis.

The dynamics of the system is obtained from the solu-
tions of theN different trajectories with initial conditions
defined by each one of elements of the initial classical dis-
tribution {θ1(0), θ2(0), θ3(0), θ4(0), θ5(0)}. The resulting
distribution takes thus the form given by Eq. (4.21). As
it can be found in the Supplementary Material, for all
the trajectories presented below the initial conditions for
the classical subsystem are chosen as

θ1(0) = 0.9766548288669266

θ2(0) = 0.5013694871260747

θ3(0) = 0.9052199783160014

θ4(0) = 0.5068075140327187

θ5(0) = 0.9543157645144570

The points were fixed as five random points in the inter-
val [0, 1]. Choosing different initial conditions leads to
equivalent results.

The quantum initial condition is chosen to be, for all
five trajectories,

ψ0 = (1, 0, . . . , 0).

The evolution defines thus a equiprobable dis-
tribution of N quantum-classical single trajectories
(Φ∗

ξ(ξk, ψ0; t),Φ
∗
ψ(ξk, ψ0; t)) ∈ MC ×MQ. For each tra-

jectory, the equations of motion are of Ehrenfest type
and they are given by eqs. (2.5)–(2.7), with He = A +
ǫJ cos θB.

These dynamical equations exhibit two different
regimes:

• For ǫ = 0 or J(0) = 0, the classical and the quan-
tum subsystems evolve uncoupled. The purity of
the quantum subsystem is always equal to one.

• For non-zero coupling constants and classical mo-
menta, the behavior of the system depends sharply
on the initial conditions: the evolution from differ-
ent initial conditions for the classical subsystems
is very different. The purity tends then to evolve
to the purity corresponding to a set of five ran-
dom projectors on 1-dimensional subspaces of the
Hilbert space.

The evolution of the purity of the resulting system is
obtained from Eq. (4.28) after integrating the dynamics
numerically. Some interesting observations can be ex-
tracted from the results:
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• In fig. 1 we represent the evolution of the purity for
a fixed value of the coupling constant ǫ and increas-
ing value for the initial condition of the classical
momentum J0. We see how this makes the sys-
tem change its originally integrable behavior and
become more and more chaotic.

0 5000 10 000 15 000 20 000
time

0.2

0.4

0.6

0.8

1.0
Purity

FIG. 1. Evolution of the purity for ǫ = 0.1 and J0 = 0 (dashed
green line), J0 = 0.3 (red line), J0 = 1 (blue line) and J0 = 1.5

(brown line).We also depict the reference (black line) of the
level of purity of a distribution of N = 5 random projectors
on C

10.

• Instead, we can consider a fixed value of the ini-
tial classical momentum and increase the value of
the coupling. It can be remarked that the system
reaches the level of purity of the set of random pro-
jectors much faster than in the previous case, (see
fig. 2).

0 5000 10 000 15 000 20 000
time

0.2

0.4

0.6

0.8

1.0
Purity

FIG. 2. Evolution of the purity for J0 = 0.8 and ǫ = 0 (dashed
green line), ǫ = 0.1 (blue line), and ǫ = 0.2 (red line). Again,
the reference (black line) represents the level of purity of a
distribution of N = 5 random projectors on C

10.

The interesting behaviour of the purity shown for some
values of the parameters in figs. 1 (brown line) and 2 (red
line), in which its value rapidly decreases to a given low
one and fluctuates around it after that, can be explained
as a consequence of the dynamics mentioned before. If
the system exhibits sensitive dependence on the initial

conditions, after a small lapse of time, the different tra-
jectories become decorrelated from one another in the
Hilbert space. Therefore, the density matrix becomes the
normalized sum of N rank one projectors chosen at ran-
dom. In this situation, it can be shown (see appendix A)
that the purity is distributed around an expected value

E[Tr(ρ2)] =
N +D − 1

ND
, (5.2)

which is represented by the black straight lines in the
figures, with fluctuations of size

σ :=
(

E[Tr(ρ2)2]− E[Tr(ρ2)]2
)1/2

=

√
2

ND

(

(N − 1)(D − 1)

N(D + 1)

)1/2

, (5.3)

where N is the total number of trajectories used and D is
the dimension of the quantum Hilbert space. Notice that
if D is very large, the expected value for the purity tends
to its minimal value 1/N and the fluctuations tend to
zero. Remember that the degree of mixture of a quantum
system ranges from the pure state case (i.e., purity equals
to one), for which the density operator is a projector
on a one dimensional subspace of the Hilbert space and
the maximal mixture case (thus minimum purity) which
corresponds to a density operator which is proportional
to the identity matrix. As it must have trace equal to
one, the proportionality factor is equal to the inverse of
the dimension of the Hilbert space.

Figs. 1 and 2 show also the effect of the coupling be-
tween the classical and the quantum subsystems, as well
as the effect of the momentum (or equivalently, the en-
ergy) of the classical particles on the evolution of purity.
The greater the strength of the coupling and the energy
of the classical particle, the faster the system reaches its
asymptotic behavior. Although clearly the coupling has
a stronger effect. Thus, analogously to what happens
in the case of molecular dynamics, where the velocity
of the classical nuclei induces the coupling between all
the eigenstates of the electronic Hamiltonian, we see here
that it also has the effect of mixing the quantum part if
the Ehrenfest system is treated statistically.

From our analysis and example, we can then conclude
that statistical Ehrenfest dynamics provides a framework
in which the evolution affects the quantum dynamics in
at least one way decoherence does. Changing the de-
gree of mixture of the quantum state is certainly one
of the most relevant effects of electronic decoherence on
molecular systems, although further work is required to
analyze whether or not other decoherence effects can be
explained by our construction. We shall address these
issues in future works.

VI. CONCLUSIONS AND FUTURE WORK

An appropriate description of the electronic decoher-
ence in molecular systems is on the wishlist of every
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quantum-classical dynamics scheme. In which amount
each theoretical model includes the sought effects is a
complicated question whose answer will depend both on
the model and on the intended application. Loosely
speaking, we could expect the different models to range
from ‘no electronic decoherence at all’ (e.g., BOMD) to
‘a perfect description of quantum electronic decoherence’
(say, full quantum dynamics of electrons and nuclei), with
most of them lying somewhere in between the two ex-
tremes. In the literature, Ehrenfest dynamics (ED) has
been consistently reported to lie not in a middle point,
but in the ‘no decoherence at all’ side of the spectrum,
since it does not even allow (when considered for pure
states) the change of purity. The reasons that are typi-
cally given to justify this classification range from naively
taking the false ‘appeareance of unitarity’ of the elec-
tronic equations in ED for an actual mathematical prop-
erty, to the correct realization that an Ehrenfest sys-
tem whose initial conditions are exactly given by one
nuclear trajectory and a pure electronic state remains
one-trajectory and pure for all future (and past) times.
However, if we are willing to accept the possibility that
the electrons evolve into a mixed state, i.e., a statisti-
cally uncertain electronic state, then, to perform a coher-
ent analysis, we should also allow the initial conditions
of the nuclei to be described statistically. When this is
properly done, using the specially convenient geometric
formalism in this work, one can observe that a system
starting from uncertain nuclear initial conditions and a
pure electronic state evolves into a situation in which
the electronic state is no longer pure but mixed, i.e., ED
is capable of transferring uncertainty between the nuclei
and the electrons, which, in general, makes the evolution
purity non-preserving, with an interesting dependence of
the effect on the number of trajectoriesN and the dimen-
sion of the Hilbert space D, as well as on the coupling
and the velocity (or energy) of the classical system. This
realization destroys the strongest argument behind the
classification of Ehrenfest as a ‘no decoherence at all’
quantum-classical evolution, and moves it to the ‘some
decoherence’ realm (which is where most non-adiabatic
models, except for the incredibly expensive, perfect full
quantum dynamics, actually lie). ‘How much’ decoher-
ence Ehrenfest contains, as related to interesting prac-
tical applications or to other mixed quantum-classical
schemes29,30, is a complex and important question that
we shall explore in future works. What has been proved
here is that the answer cannot and will not be ‘nothing
at all’.
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Appendix A: Purity of a sum of random projectors of rank one

In this appendix we derive the expected value of the
purity and its fluctuations when the density matrix is
obtained from the sum of decorrelated, random, rank-
one projectors.

The purity for a density matrix of the form

ρ =
1

N

N
∑

j=1

|ψj〉〈ψj |
〈ψj |ψj〉

is

Tr(ρ2) =
1

N2



N + 2
∑

j<k

χjk



 ,

where we have defined

χjk :=
|〈ψj |ψk〉|2

〈ψj |ψj〉〈ψk|ψk〉
.

Next, we will determine the probability density for χ12

when ψ1 and ψ2 are two decorrelated random vectors.
Given the global U(N) symmetry of the problem we

can take the first vector to be

ψ1 = (a, 0, 0, 0, 0), a ∈ R,

and the second chosen at random. If we denote

ψ2 = (q1 + ip1, q2 + ip2, . . . , qN + ipN),

we get

χ := χ12 =
(q21 + p21)

r2
,

where r2 :=
∑

j(q
2
j + p2j).

We also need the adequate probability measure in MQ

that distributes the random vector ψ2. It can be defined
by

dπQ = f(r2)dµQ,

where f is a positive function chosen so that
∫

MQ

dπQ = 1.

As we shall see, the actual form of f is not relevant for
the distribution of the purity.

It will be convenient to write the probability measure
in MQ = R2 × R2D−2 in the following way:

dπQ = f(z2 +R2)zdzdθR2D−3dRdΩ2D−3,
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where (z, θ) represents polar coordinates in the plane
(q1, p1), R is the radial coordinate in R2D−2 (i.e., R2 :=
∑

j>1(q
2
j+p

2
j)), while the volume element dΩ2D−3 stands

for the angular coordinates in R2D−2. In these coordi-
nates r =

√
z2 +R2 and χ = z2/r2.

The next step is to perform the change of variables
from (R, z) to (r, χ). Taking into account that the Jaco-
bian is

J =
r

2
√

χ(1− χ)
,

one obtains

dπQ =
1

2
f(r2)(1 − χ)D−2dχr2D−1drdθdΩ2D−3,

and marginalizing out all variables except χ we find the
needed measure:

dπχ = (D − 1)(1− χ)D−2dχ.

Once we have determined the probability distribution
for χ we can compute the expected value for the purity.
Using the expression at the beginning of this appendix,

E[Tr(ρ2)] =
1

N2



N + 2
∑

j<k

E[χij ]





=
1

N

(

1 + (N − 1)E[χ]
)

, (A1)

where we have used that all random variables χij are
identically distributed.

Finally, given that

E[χ] =

∫ 1

0

χdπχ =
1

D
,

we obtain the sought result:

E[Tr(ρ2)] =
N +D − 1

ND
.

As for the fluctuation, one has

σ2 =
4

N4

∑

j<k

(E[χ2
jk]− E[χjk]

2)

=
2(N − 1)

N3
(E[χ2]− E[χ]2)

=
2(N − 1)

N3

(D − 1)

D2(D + 1)
, (A2)

where we have used that

E[χ2] =
2

D(D + 1)
.

Appendix B: Derivatives of the purity

In sec. IVB, we explained how an initial uncertainty
in the classical part of the state of an Ehrenfest system
produces a change in the purity at t = 0, even if the ini-
tial state is quantum-pure. In this appendix, we present
in more detail the calculations that led us to that con-
clusion.

First of all, we need the first time-derivative of the
purity. We know that the evolution of the ρ(t) is given
by Eq. (4.10). Then, the evolution of the purity can be
written as:

d

dt
〈ρ(t)〉 = 2Tr

(

ρ̇(t)ρ(t)
)

=

∫

dµdµ′FF ′Tr
(

i~−1[Pψ, He] · Pψ′

)

= i~−1

∫

dµdµ′FF ′Tr
(

[Pψ, Pψ′ ] ·He

)

,(B1)

where the integral is taken over (MQ × MC)
2, and we

have denoted

dµ := dµQC(ξ, ψ), (B2a)

dµ′ := dµQC(ξ
′, ψ′), (B2b)

F := FQC(ξ, ψ), (B2c)

F ′ := FQC(ξ
′, ψ′), (B2d)

He := He(ξ), (B2e)

H ′
e := He(ξ

′), (B2f)

Pψ :=
|ψ〉〈ψ|
〈ψ|ψ〉 , (B2g)

Pψ′ :=
|ψ′〉〈ψ′|
〈ψ′|ψ′〉 . (B2h)

In the last step, we also used that

Tr
(

[Pψ , He] · Pψ′

)

= Tr
(

Pψ ·He · Pψ′ −He · Pψ · Pψ′

)

= Tr
(

He · Pψ′ · Pψ −He · Pψ · Pψ′

)

= Tr
(

He · [Pψ , Pψ′ ]
)

= Tr
(

[Pψ, Pψ′ ] ·He

)

.

Also, as it is common in statistical dynamics, we can
assign the time-evolution of the state to the probability
distribution FQC and see the objects ξ, ξ′ and |ψ〉, |ψ′〉
just as the initial conditions, or we can alternatively think
that FQC is the static distribution of initial conditions
and consider that the time-evolving objects are ξ, ξ′ and
|ψ〉, |ψ′〉. Either dynamical image is valid, and the two
of them produce, of course, the same result, but we have
performed the calculation thinking in the second way,
which looked to us slightly more direct.

Now, in our example, Pψ(t = 0) = Pψ′(t = 0) = Pψ0
.

Then, we see that the commutator [Pψ, Pψ′ ] vanishes.
Thus, we can conclude that:

d

dt
〈ρ(t)〉

∣

∣

∣

t=0
= 0. (B3)



13

Using again Eq. (2.5)-(2.7), we can also compute the
second derivative of the density matrix,

ρ̈(t) =

∫

dµF
(

i~−1
([

{He, fH}C , Pψ
])

− ~
−2
([

He,
[

He, Pψ]
]))

, (B4)

where we have used the same notation in eqs. (B2), and

the integral is this time extended to MQ ×MC . With
this expression, we can compute the second derivative of
the purity:

d2

dt2
〈ρ(t)〉 = Tr

(

ρ(t)ρ̈(t) + (ρ̇(t))2
)

. (B5)

Now, using eqs. (4.10), (B1) and (B4) we can calculate
a more explicit form for this second derivatives in terms
of the objects associated to the geometric formalism

d2

dt2
〈ρ(t)〉 =

∫

dµdµ′FF ′
[

i~−1Tr
(

[

{He, fH}, Pψ
]

· Pψ′

)

− ~
−2Tr

(

[

He, [He, Pψ ]
]

· Pψ′

)

− ~
−2Tr

(

[

He, Pψ
]

·
[

H ′
e, Pψ′

]

)]

=

∫

dµdµ′FF ′
[

i~−1Tr
(

[

{He, fH}, Pψ
]

· Pψ′

)

+ ~
−2Tr

(

[

He, Pψ
]

·
[

He, Pψ′

]

)

− ~
−2Tr

(

[

He, Pψ
]

·
[

H ′
e, Pψ′

]

)]

=

∫

dµdµ′FF ′
[

i~−1Tr
(

[

{He, fH}, Pψ
]

· Pψ′

)

+ ~
−2Tr

(

[

He, Pψ
]

·
[

(He −H ′
e), Pψ′

]

)]

, (B6)

where we used that

Tr
(

[

He, [He, Pψ ]
]

· Pψ′

)

= Tr
(

[

He, Pψ
]

·
[

He, Pψ′

]

)

.

Using this expression, it is finally straightforward to
compute the second derivative at t = 0 for the distribu-
tion FQC given by Eq. (4.21):

d2

dt2
〈ρ(t)〉

∣

∣

∣

t=0
= −~−2

2
Tr
(

[

He(ξ
1
0)−He(ξ

2
0), Pψ0

]2
)

= −~
−2〈ψ0|

(

He(ξ
1
0)−He(ξ

2
0)
)2|ψ0〉+~

−2〈ψ0|
(

He(ξ
1
0)−He(ξ

2
0)
)

|ψ0〉2.
(B7)

1ED results from a straightforward application of the classical
limit to a portion of the particles of a full quantum system. In
reference 31 we have summarised ED and, for completeness, we
have recalled that it collapses into BOMD if we assume the non-
adiabatic couplings are negligible. Sec. 2 of 31 also clarifies some
misleading notation used in the literature on ED.

2J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
3C. Zhu, A. W. Jasper, and D. G. Truhlar, J. Chem. Theor.
Comp. 1, 527 (2005).

4D. G. Truhlar, “Decoherence in combined quantum mechanical
and classical mechanical methods for dynamics as illustrated
for non–Born–Oppenheimer trajectories,” in Quantum Dynam-

ics of Complex Molecular Systems, edited by D. A. Micha and I.
Burghardt (Springer, Berlin, 2007) pp. 227–243.

5O. V. Prezhdo, J. Chem. Phys. 111, 8366 (1999).
6J. E. Subotnik, J. Chem. Phys. 132, 134112 (2010).
7A. P. Horsfield, D. R. Bowler, H. Ness, C. G. Sánchez, T. N.
Todorov, and A. J. Fisher, Rep. prog. Phys. 69, 1195 (2006).

8J. C. Tully, “Nonadiabatic dynamics,” in Modern Methods for

Multidimensional Dynamics Computations in Chemistry, edited
by D. Thompson (World Scientific, Singapore, 1990) p. 34.

9J. C. Tully, “Mixed quantum-classical dynamics: Mean-field and
surface-hopping,” in Classical and Quantum Dynamics in Con-

densed Phase Simulation, edited by B. G. Berne, G. Ciccotti,
and D. F. Coker (World Scientific, Singapore, 1998) pp. 489–515.

10B. R. Landry and J. E. Subotnik, J. Chem. Phys. 135, 191191
(2011).

11M. J. Bedard–Hearn, R. E. Larsen, and B. J. Schwartz, J. Chem.
Phys. 123, 234106 (2005).

12M. Schlosshauer, Decoherence and the Quantum-to-Classical

Transition (Springer, 2007).

13W. H. Zurek, Rev. Mod. Phys. 75, 716 (2003).
14F. Mauri, R. Car, and E. Tossati, Europhys. Lett. 24, 431 (1993).
15P. V. Parandekar and J. C. Tully, J. Chem. Theor. Comp. 2, 229

(2006).
16P. V. Parandekar and J. C. Tully, J. Chem. Phys. 122, 094102

(2005).
17J. R. Schmidt, P. V. Parandekar, and J. C. Tully, J. Chem. Phys.

129, 044104 (2008).
18A. Bastida, C. Cruz, J. Zúñiga, A. Requena, and B. Miguel, J.

Chem. Phys. 126, 014503 (2007).
19J. L. Alonso, A. Castro, P. Echenique, V. Polo, V. Rubio, and

D. Zueco, N. J. Phys. 12, 083064 (2010).
20J. Alonso, A. Castro, P. Echenique, and A. Rubio, in Funda-

mentals of Time-Dependent Density Functional Theory, edited
by M. Margues et al. (Lecture Notes in Physics 837, Springer,
2012).

21J. L. Alonso, A. Castro, J. Clemente-Gallardo, J. C. Cuchí,
P. Echenique, and F. Falceto, J. Phys. A: Math. Theor. 44,
396004 (2011).

22D. Marx and J. Hutter, “Modern methods and algorithms of
quantum chemistry,” (Jülich. John von Neumann Institute for
Computing, 2000) Chap. Ab initio molecular dynamics: Theory
and implementation, pp. 329–477.

23J. Teilhaber, Phys. Rev. B 46, 12990 (1992).
24R. K. Kalia, P. Vashishta, L. H. Yang, F. W. Dech, and

J. Rowlan, Intl. J. Supercomp. Appl. 4, 22 (1990).
25C. Cohen–Tannoudji, F. Laloë, and B. B. Diu, Quantum Me-

chanics (Hermann, Paris, 1977).
26A. M. Gleason, J. of Mathematics and Mechanics 6, 885 (1957).
27H. P. Breuer and F. Petruccione, The theory of open quantum

systems (Oxford University Press, 2002).



14

28The Mathematica notebook containing all the programs used in
this section can be found as supplementary material.

29E. R. Bittner and P. J. Rossky, J. Chem. Phys 107 (1997).

30E. R. Bittner and P. J. Rossky, The Journal of Chemical Physics
103, 8130 (1995).

31X. Andrade, A. Castro, D. Zueco, J. L. Alonso, P. Echenique,
F. Falceto, and A. Rubio, J. Chem. Theor. Comp. 5, 728 (2009).


