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COLLAPSING AND ESSENTIAL COVERINGS

TAKAO YAMAGUCHI

Abstract. In the present paper, we consider the family of all
compact Alexandrov spaces with curvature bound below having
a definite upper diameter bound of a fixed dimension. We intro-
duce the notion of essential coverings by contractible metric balls,
and provide a uniform bound on the numbers of contractible met-
ric balls forming essential coverings of the spaces in the family.
In particular, this gives another view for Gromov’s Betti number
theorem.

1. Introduction

It is an important problem to find the relation between curvature
and topology of Riemannian manifolds. In the study of the finiteness
of compact Riemannian manifolds with uniformly bounded curvature,
originated by Cheeger [3] and Weinstein [16], it was a crucial idea to
cover a manifold in a certain class by convex metric balls whose number
is uniformly bounded depending only on the class. The minimal num-
ber of such metric balls covering a manifold represents the complexity
of the manifold. For a certain class of compact Riemannian manifolds
with a lower curvature bound, Grove, Petersen and Wu [9] used con-
tractible balls in place of convex balls to get a topological finiteness
of the manifolds in the class. Those are results in the non-collapsing
cases.

In the present paper, we consider the collapsing case for compact
Alexandrov spaces M with curvature bounded below. The Perelman
stability theorem [14] shows that a small metric ball around a given
point of M is homeomorphic to the tangent cone, and hence con-
tractible.

If M is collapsed, the sizes of contractible metric balls must be very
small, and therefore the minimal number of contractible metric balls
covering M becomes large. In other words, it is not efficient to cover the
wholeM by contractible metric balls. In the present paper, to overcome
this difficulty, we introduce the notion of an essential covering of M in
place of a usual covering.

To illustrate the notion of essential covering, let us take a flat torus
T 2
ǫ = S1(1)×S1(ǫ) for a small ǫ > 0, where S1(ǫ) is the circle of length
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ǫ. The torus T 2
ǫ can be covered by two thin metric balls Bα, α ∈ {1, 2}.

Each ball Bα is isotopic to a much smaller concentric metric ball B̂α

of radius, say 2ǫ. If one tries to cover Bα by contractible metric balls,
we need too many, about [1/ǫ]-pieces of such balls. In stead, we take

a covering of B̂α. It is possible to cover B̂α by two contractible metric
balls {Bαβ}

2
β=1. Thus we have a collection of four contractible metric

balls {Bαβ}, which is an essential covering of T 2
ǫ . Although it is not

a usual covering of T 2
ǫ , deforming and enlarging Bαβ by isotopies, we

obtain a covering {B̃αβ} of T 2
ǫ by contractible open subsets B̃αβ . In

that sense, the essential covering seems to contain an essential property
of T 2

ǫ .
In the general collapsing case with a lower curvature bound, it is be-

lieved that a collapsed space has a certain fiber structure in a general-
ized sense such that the fibers shrink to points (see [15], [17]). Although
it is not established yet, a fiber which is not visible yet may shrink to
a point with different scales in different directions, in general. This
suggests that we have to repeat the above process of taking a smaller
concentric metric ball and of covering it by much smaller metric balls
at most n-times, n = dimM , to finally reach contractible metric balls
(see Examples 4.2 and 4.3). In this way, we come to the notion of an
essential covering of M with depth ≤ n.

As illustrated above, an essential covering is not a usual covering of
M , but it contains an essential feature on the complexity of the space
M . Actually by deforming and enlarging the balls in the essential
covering by isotopies of M in a systematic way, we obtain a real open
covering of M .

We define the geometric invariant τn(M) as the minimal number of
contractible metric balls forming essential coverings of M with depth ≤
n. See Section 4 for a more refined formulation of τn(M). In particular,
if M is a Riemannian manifold, we can replace contractible metric balls
by metric balls homeomorphic to an n-disk in the definition of τn(M).

For a positive integer n and D > 0, we denote by A(n,D) the isome-
try classes of n-dimensional compact Alexandrov spaces with curvature
≥ −1 and diameter ≤ D. In this paper, we shall prove

Theorem 1.1. For given n and D, there is a positive integer N(n,D)
such that τn(M) ≤ N(n,D) for all M in A(n,D).

This gives a new geometric restriction on the spaces in A(n,D) even
in the case of Riemannian manifolds. A more detailed information on
the essential covering of M is given in Theorem 4.4.

The minimal number cell(M) of open cells needed to cover a compact
manifold M is an interesting topological invariant. It is known however
that cell(M) ≤ dimM + 1 (see [4]). This suggests that to have better
understanding of the complexity of a compact Riemannian manifold or
a compact Alexandrov space concerning the minimal number of some
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basic subsets needed to cover it, we have to consider a metric invariant
rather than a topological invariant. This is the reason why we mainly
consider coverings by metric balls.

Working with concentric coverings, Theorem 1.1 yields the following
uniform bound on the total Betti number:

Corollary 1.2 ([5],[13]). For given n and D, there is a positive integer
C(n,D) such that if M is in A(n,D), then

n
∑

i=0

bi(M ;F ) ≤ C(n,D),

where F is any field.

In the original work [5], Gromov developed the critical point theory
for distance functions to obtain an explicit bound on the total Betti
numbers for Riemannian manifolds. The argument in [13] is a natural
extension of that in [5] to Alexandrov spaces. Unfortunately our bound
is not explicit. However our approach provides a conceptually clear
view of what the essence of Corollary 1.2 is like.

For the proof of Theorem 1.1, we use the convergence and collaps-
ing methods. If a space M in A(n,D) does not collapse, the stability
theorem immediately yields the consequence. If M collapses to a lower
dimensional space, we use the rescaling method, which was used in [15]
and [17] in some special cases. We first generalize those results to the
general case. Using this rescaling method, we can grasp the proper
size of a collapsed “fiber” although it is not visible. This enables us
to have a covering {Bα1

} of M such that each ball Bα1
is, under some

rescaling of metric with the fiber size, close to a complete noncompact
Alexandrov space Y1 of nonnegative curvature with dimY1 > dimX
for the pointed Gromov-Hausdorff topology. If the “fiber” uniformly
shrinks to a point, the new convergence Bα1

→ Y1 does not collapse.
In the other collapsing case of dimY1 < n, we again grasp the size of
a new “fiber” in the collapsing Bα1

→ Y1 with the help of the rescal-
ing method. From this, we see that a much smaller concentric subball
B̂α1

of Bα1
, which is isotopic to Bα1

, can be covered by small metric
balls {Bα1α2

}α2
whose number is uniformly bounded such that each

Bα1α2
is, under some rescaling with the size of a new “fiber”, close

to a complete noncompact Alexandrov space Y2 of nonnegative curva-
ture with dimY2 > dimY1 for the pointed Gromov-Hausdorff topology.
Repeating this process at most n− dimX times and using the stabil-
ity theorem, we finally get an essential covering of M by contractible
metric balls, as required.

Corollary 1.2 follows almost directly from Theorem 1.1 and the topo-
logical lemma of [5]. Actually we formulate and prove a more general
result for every subset of an n-dimensional complete Alexandrov space
in terms of δ-content (see Theorem 5.2).
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2. Preliminaries

We refer to Burago, Gromov and Perelman [2] for the basic materials
on Alexandrov spaces with curvature bounded below.

Let M be an Alexandrov space with curvature bounded below, say
≥ κ. For two points x and y in M , a minimal geodesic joining x to y
is denoted by xy for simplicity. For any geodesic triangle ∆xyz in M
with vertices x, y and z, we denote by ∆̃xyz a comparison triangle in
the κ-plane M2

κ , the simply connected complete surface with constant
curvature κ. The angle between the geodesics xy and yz in M is
denoted by ∠xyz, and the corresponding angle of ∆̃xyz by ∠̃xyz. It
holds that

∠xyz ≥ ∠̃xyz.

Let Σp = Σp(M) denote the space of directions at p ∈ M . Let Kp =
Kp(M) be the tangent cone at p with vertex op, the Euclidean cone over
Σp. For a closed set A ⊂ M and p ∈ M −A, we denote by A′ = A′

p the
subset of Σp consisting of all the directions of minimal geodesics from
p to A.

From now on, we assume that M is finite-dimensional. It is known
that Σp (resp. Kp) is a (n−1)-dimensional compact (resp. n-dimensional
complete noncompact) Alexandrov space with curvature ≥ 1 (resp.
curvature ≥ 0), where n = dimM .

It is well-known that as r → 0, (1
r
M, p) converges to (Kp, op) with

respect to the pointed Gromov-Hausdorff topology, where 1
r
M denotes

the rescaling of the original distance of M multiplied by 1
r
.

We denote by Ap(n) the isometry classes of n-dimensional complete
pointed Alexandrov spaces (M, p) with curvature ≥ −1.

The following results play crucial roles in this paper.

Theorem 2.1 ([7],[8]). A(n,D) (resp. Ap(n)) is relatively compact
with respect to the Gromov-Hausdorff distance (resp. the pointed Gromov-
Hausdorff topology).

Consider the distance function dp(x) = d(p, x) from a point p ∈ M .

A point q 6= p is a critical point of dp if ∠̃pqx ≤ π/2 for all x ∈ M .
For 0 < r < R, A(p; r, R) denotes the closed annulus B̄(p, R) −

B(p, r), where B(p, r) is the open metric ball around p of radius r.

Lemma 2.2 ([10],[5],[14]). If dp has no critical points on A(p; r, R),
then A(p; r, R) is homeomorphic to ∂B(p, r)× [0, 1].

Theorem 2.3 ([14], cf. [11]). Let an infinite sequence (Mi, pi) in Ap(n)
converge to a space (M, p) in Ap(n) with respect to the pointed Gromov-
Hausdorff topology. Take an r > 0 such that there are no critical points
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of dp on B(p, r)− {p}. Then B(pi, r) is homeomorphic to both B(p, r)
and Kp for large i.

3. Rescaling metrics

Let a sequence (Mi, pi) in Ap(n) converge to a pointed Alexandrov
space (X, p) with curvature ≥ −1 with respect to the pointed Gromov-
Hausdorff topology. It is a fundamental problem to find topological
relation between B(pi, r) and B(p, r) for a small but fixed positive
number r and large i.

In the case when dimX = n, take r > 0 so that the distance function
dp has no critical points on B(p, r) − {p}. Then Theorem 2.3 shows
that B(pi, r) is homeomorphic to B(p, r) for large i.

In this section, from now on, we consider the collapsing case when
1 ≤ dimX ≤ n − 1. Since we are concerned with the topology of a
neighborhood of pi, we may assume

Assumption 3.1. B(p̃i, r) is not homeomorphic to an n-disk for any
p̃i with d(pi, p̃i) → 0 and for any sufficiently large i.

The following is a generalization of the Key lemma 3.6 in [15] and
Theorem 4.1 in [17].

Theorem 3.2. Under Assumption 3.1, there exist p̂i ∈ B(pi, r) and a
sequences δi → 0 such that

(1) d(p̂i, pi) → 0;
(2) dp̂i has no critical points on A(p̂i;Rδi, r) for every R ≥ 1 and

large i compared to R. In particular, B(p̂i, r) is homeomorphic
to B(p̂i, Rδi);

(3) for any limit (Y, y0) of (
1
δi
Mi, p̂i), we have dim Y ≥ dimX + 1.

The essential idea of the proof of Theorem 3.2 is the same as in [15].

In [15] however, we had to suppose that the function f̂ : Kp → R

constructed there takes a strict local maximum at the vertex op of Kp.
Since this does not hold in general, we must modify the construction.
Some simplification of the proof is also made here.

For positive numbers θ and ǫ with ǫ ≪ θ ≤ π/100, take a positive
number r = r(p, θ, ǫ) such that

(1) ∠xpy − ∠̃xpy < ǫ for every x, y ∈ ∂B(p, 2r);
(2) {y′p}y∈∂B(p,2r) is ǫ-dense in Σp.

Note that the above (2) implies that there are no critical points of
dp on B(p, r) − {p}. Let {xα}α be a θr-discrete maximal system in
∂B(p, r). For a small positive number ǫ, take an ǫr-discrete maximal
system {xαβ}β, 1 ≤ β ≤ Nα, in B(xα, θr) ∩ ∂B(p, r). Let ξαβ ∈ Σp

be the direction of geodesic pxαβ . Note that {ξαβ}β is ǫ/2-discrete. A
5



standard covering argument implies that

(3.1) Nα ≥ const

(

θ

ǫ

)dimX−1

.

We consider the following functions fα and f on M :

fα(x) =
1

Nα

Nα
∑

β=1

d(xαβ , x), f(x) = min
α

fα(x).

A similar construction was made in [12] to define a strictly concave
function on a neighborhood of a given point of an Alexandrov space.
The effectiveness of the use of those functions was suggested to the
author by Vitali Kapovitch.

Lemma 3.3. For every x ∈ B(p, r/2), we have f(x) ≤ r − d(p, x)/2.
In particular, the restriction of f to B(p, r/2) has a strict maximum at
p.

Proof. Take y ∈ ∂B(p, r) and xα with ∠xpy < ǫ and d(y, xα) < θr. It
follows that ∠xpxαβ < 5θ. Let γ : [0, d] → X be a minimal geodesic
joining p to x. By the curvature assumption with trigonometry, we
see that ∠xγ(t)xαβ < π/4. The first variation formula then implies
that d(xαβ, x) ≤ r − d(p, x)/2, and therefore f(x) ≤ fα(x) ≤ r −
d(p, x)/2. �

Proof of Theorem 3.2. Take a µi-approximation

φi : B(p, 1/µi) → B(pi, 1/µi),

with φi(p) = pi, where µi → 0 as i → ∞. Let xi
αβ := φi(xαβ), and

define the functions f i
α and f i on Mi by

f i
α(x) =

1

Nα

Nα
∑

β=1

d(xi
αβ , x), f i(x) = min

α
f i
α(x).

Note that f i
α ◦ φi → fα and f i ◦ φi → f . By Lemma 3.3, there is a

point p̂i ∈ B(pi, r/2) such that

(1) (pi, p̂i) → 0;
(2) the restriction of f i to B(pi, r/3) takes a maximum at p̂i.

Consider the distance function dp̂i. By Assumption 3.1, there is a
critical point of dp̂i inB(p̂i, r). Let δi be the maximum distance between
p̂i and the critical point set of dp̂i within B(p̂i, r). Note that δi → 0.
Let q̂i be a critical point of dp̂i within B(p̂i, r) realizing δi. We may
assume that ( 1

δi
Mi, p̂i) converges to a complete noncompact pointed

Alexandrov space (Y, y0) with nonnegative curvature. Let z0 ∈ Y be

the limit of q̂i under this convergence. We denote by d̂ = 1
δi
d the

distance of 1
δi
Mi. Consider the function

hi
αβ(x) := d̂(xi

αβ , x)− d̂(xi
αβ, p̂i),

6



which is 1-Lipschitz, and bounded on every bounded set. Therefore
passing to a subsequence, we may assume that hαβ converges to a 1-
Lipschitz function hαβ on Y .

Let

hα =
1

Nα

Nα
∑

β=1

hαβ , h = min
α

hα,

hi
α =

1

Nα

Nα
∑

β=1

hi
αβ , hi = min

α
hi
α.

Since hi = [f i − f i(p̂i)]/δi, h takes a maximum at y0. Let xαβ(∞)
denote the the element of the ideal boundary Y (∞) of Y defined by the
limit ray, say γαβ, from y0 of the geodesic p̂ix

i
αβ under the convergence

( 1
δi
Mi, p̂i) → (Y, y0). Let vαβ ∈ Σy0 and v ∈ Σy0 denote the direction

of γαβ and yz respectively. Since z0 is a critical point of dy0, we have

∠̃y0z0xαβ(∞) ≤ π/2. Since Y has nonnegative curvature, it follows

that ∠(v, vαβ) ≥ ∠̃z0y0xαβ(∞) ≥ π/2, for every α and β. Choosing α
with h′

y0
(v) = (hα)

′
y0
(v), we obtain

0 ≥ h′
y0
(v) =

1

Nα

Nα
∑

β=1

− cos∠(v, vαβ),

and therefore ∠(v, vαβ) = π/2. Since

∠(vαβ , vαβ′) = lim
t→0

∠̃γαβ(t)y0γαβ′(t)

≥ ∠̃xαβpxαβ′

≥ ǫ/2,

for every 1 ≤ β 6= β ′ ≤ Nα, {vαβ}
Nα

β=1 is ǫ/2-discrete in ∂B(v, π/2) ⊂
Σy0 . Since Σy0 has curvature ≥ 1, there is an expanding map from
∂B(v, π/2) to the unit sphere SdimY−2(1). It follows that

(3.2) Nα ≤ const ǫ−(dimY−2).

Since this holds for any sufficiently small ǫ, from (3.1) and (3.2) we can
conclude dim Y ≥ dimX + 1. This completes the proof of Theorem
3.2. �

4. Isotopy covering systems and essential coverings

Let M be a compact n-dimensional Alexandrov space with curvature
bounded below. For an open metric ball B of M , we denote by λB the
concentric ball of radius λr. We call a concentric ball B̂ ⊂ B an isotopic
subball of B if there is a homeomorphism M → M sending B̂ onto B

7



and leaving the outside of a neighborhood of B̄ fixed. For instance,
this is the case when dp has no critical points on B̄ − B̂ (Lemma2.2).

Consider the following system B = {Bα1···αk
} consisting of open met-

ric balls Bα1···αk
of M , where the indices α1, . . . , αk range over

1 ≤ α1 ≤ N1, 1 ≤ α2 ≤ N2(α1),

1 ≤ αk ≤Nk(α1 · · ·αk−1),

and 1 ≤ k ≤ ℓ for some ℓ depending on the choice of the indices
α1, α2, . . .. Note that the range of αk also depends on α1 · · ·αk−1. Let
A be the set of all multi-indices α = α1 · · ·αk such that Bα1···αk

∈ B.
For each α = α1 · · ·αk ∈ A, put |α| := k and call it the length of α.

Let X be a subset of M . We call B an isotopy covering system of X
if it satisfies the following:

(1) {Bα1
}N1

α1=1 covers X ;
(2) Bα1···αk−1

⊃ Bα1···αk
;

(3) {Bα1···αk
}
Nk(α1···αk−1)
αk=1 is a covering of an isotopic subball B̂α1···αk−1

of Bα1···αk−1
;

(4) there is a uniform bound d such that |α| ≤ d for all α ∈ A.

We call N1 the first degree of the system B, and Nk(α1 · · ·αk−1) the
k-th degree of B with respect to α1 · · ·αk−1.

Let Â be the set of all maximal multi-indices α1 · · ·αℓ in A in the
sense that there are no αℓ+1 with Bα1···αℓαℓ+1

∈ B. Then U := {Bα}α∈Â
is called an essential covering of B. In other words, U is the collection
of the metric balls lying on the bottom of the system B.

We show that the essential covering U = {Bα}α∈Â produces a cov-

ering Ũ = {B̃α}α∈Â of X such that B̃α is homeomorphic (actually
isotopic) to Bα. Let hα1···αk−1

: M → M be a homeomorphism sending

B̂α1···αk−1
onto Bα1···αk−1

and leaving the outside of a neighborhood of

B̄α1···αk−1
fixed. For each α = α1 · · ·αℓ ∈ Â, consider the open set

B̃α := hα1
◦ hα1α2

◦ · · · ◦ hα1···αℓ−1
(Bα).

For each 1 ≤ α1 ≤ N1, let A(α1) be the set of all multi-indices α ∈ A
of the forms α = α1 · · ·αk whose leading term is equal to α1 and k ≥ 2.
From construction, we have

Bα1
⊂

⋃

α∈A(α1)

B̃α

and therefore Ũ = {B̃α}α∈Â provides a covering of X .
We call

d0 := max
α∈Â

|α|

the depth of both B and U . Note that if d0 = 1, then B = U is a usual
covering of X .
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Let C(n) be the set of all isometry classes of the Euclidean cone
over (n − 1)-dimensional compact Alexandrov spaces with curvature
≥ 1. We say that B and U are modeled on C(n) if each Bα in U is
homeomorphic to a space in C(n).

For any positive integer d, we denote by τd(X) the minimal number
of metric balls forming an essential covering U of X with depth ≤ d
modeled on C(n). Note that τd1(B) ≥ τd2(B) if d1 ≤ d2.

For open metric ball B of M having a proper isotopic subball, we
set

τ ∗d (B) = min
B̂

τd(B̂),

where B̂ runs over all isotopic subballs of B. If B itself is homeomorphic
to a space in C(n), we define

τ0(B) = τ ∗0 (B) = 1.

From definition, we immediately have

Lemma 4.1. Suppose that X is covered by metric balls {Bα1
}N1

α1=1 hav-
ing proper isotopic subballs. Then we have

τd+1(X) ≤

N1
∑

α1=1

τ ∗d (Bα1
).

Example 4.2. For a positive number ǫ, let us consider the flat torus

T n
ǫ = S1(1)× S1(ǫ)× S1(ǫ2)× · · · × S1(ǫn−1).

An obvious observation similar to that in the introduction shows τn(T
n) ≤

2n. Note that limǫ→0 τd(T
n
ǫ ) = ∞ for every 1 ≤ d ≤ n− 1.

Example 4.3. Let N be an n-dimensional simply connected Lie group,
and n its Lie algebra. Take a triangular basis x1, . . . , xn of n in the sense
that [xi, x] ∈ ni−1 for every x ∈ ℓ, where ni−1 is spanned by x1, . . . , xi−1.

For ǫ > 0, put ǫi := ǫn
n−i

, and define the inner product on n by

||x||2ǫ = ǫ21a
2
1 + · · ·+ ǫ2na

2
n,

for x =
∑

aixi. We equip N the corresponding left invariant metric gǫ.
For a given uniform discrete subgroup Γ of N , consider the quotient
Mǫ := (Γ\N, gǫ). Note that the sectional curvature of Mǫ is uniformly
bounded and δ1ǫ := diam(Mǫ) → 0 as ǫ → 0 (see [6]). Now under the
rescaling of metric 1

δ1ǫ
Mǫ collapses to a circle. We then have a fibration

Γ1\N1 → Mǫ → S1,

with a nilmanifold Γ1\N1 as fiber. Thus Mǫ can be covered by two
thin metric balls Bα1

, α1 ∈ {1, 2}, each of which is homeomorphic to
Γ1\N1 × [0, 1]. Let δ2ǫ := diam(Γ1\N1). Under the rescaling of metric
1
δ1ǫ
Bα1

collapses to S1 × R. Now an isotopic subball B̂α1
of Bα1

has a

fibration
Γ2\N2 → B̂α1

→ S1 × [0, 1],
9



with a nilmanifold Γ2\N2 as fiber. Thus B̂α1
can be covered by two

metric balls Bα1α2
, α2 ∈ {1, 2}, each of which is homeomorphic to

Γ2\N2 × [0, 1]2. Repeating this, we finally have τn(Mǫ) ≤ 2n. Note
that limǫ→0 τd(Mǫ) = ∞ for every 1 ≤ d ≤ n− 1.

Let A(n) denote the set of all isometry classes of n-dimensional com-
plete Alexandrov spaces with curvature ≥ −1. Theorem 1.1 is an im-
mediate consequence of the following

Theorem 4.4. For given n and D > 0, there are constants Cn and
Cn(D) such that for every metric ball B of radius ≤ D in M ∈ A(n),
there is an isotopy covering system B = {Bα1···αk

} of B with depth ≤ n
modeled on C(n) such that

(1) the first degree ≤ Cn(D);
(2) any other higher degree ≤ Cn.

In particular τn(B) ≤ Cn(D)(Cn)
n−1.

We first prove the local version of Theorem 4.4.

Lemma 4.5. There is a positive number Cn satisfying the following:
For a given infinite sequence (Mi, pi) in Ap(n) with inf diam(Mi) > 0,
there is a subsequence (Mj, pj) for which we have a positive number
r > 0 and p̂j ∈ Mj with d(pj , p̂j) → 0 such that τ ∗n−1(B(p̂j, r)) ≤ Cn.

Proof. We prove it by contradiction. If the conclusion does not hold,
we would have an infinite sequence (Mi, pi) in Ap(n) such that for every
r > 0 and every p̂i ∈ Mi with d(pi, p̂i) → 0, we have τ ∗n−1(B(p̂j, r)) →
∞ for any subsequence {j} of {i}. By Theorem 2.1, we have a subse-
quence {j} such that (Mj , pj) converges to a pointed space (X, p). Set
k = dimX .

We claim that τ ∗n−k(B(p̂j, r)) ≤ C for some r > 0 and constant C
independent of j, where p̂j is a point of Mj with d(pj, p̂j) → 0. Since
this is a contradiction, this will complete the proof.

We prove the claim by the reverse induction on k. If k = n, then
Theorem 2.3 shows that there is an r > 0 such that B(pj, r) is homeo-
morphic to Kp, yielding τ ∗0 (B(pj, r)) = 1. Therefore together with the
diameter assumption, we only have to investigate the case 1 ≤ dimX ≤
n− 1. Suppose the claim holds for dimX = k + 1, . . . , n, and consider
the case of dimX = k. Take r = rp > 0, p̂j and δj → 0 as in Theorem
3.2. Namely passing to a subsequence, we may assume that ( 1

δj
Mj , p̂j)

converges to a pointed complete noncompact nonnegatively curved
space (Y, y0) with dimY ≥ dimX+1 such that B(p̂j, Rδj) is an isotopic
subball of B(p̂j, r) for every R ≥ 1 and large j compared to R. Apply-
ing the induction hypothesis to the convergence ( 1

δj
Mj, p̂j) → (Y, y0),

we have the following: For each z ∈ B(y0, 2), there are zj ∈ ( 1
δj
Mj , p̂j)

and rz > 0 such that τ ∗n−k−1(B(zj , rz;
1
δj
Mj)) ≤ C for some constant

10



C independent of j. By compactness, there are finitely many points
zα ∈ B(y0, 2) and zjα ∈ Mj converging to zα together with rα > 0 such
that

⋃

B(zα, rα/2) ⊃ B(y0, 2), τ ∗n−k−1(B(zjα, rα;
1

δj
Mj)) ≤ Cα.

Note that ∪B(zjα, rα;
1
δj
Mj) ⊃ B(p̂j, 2;

1
δj
Mj) for large i. Thus we can

conclude

τ ∗n−k(B(p̂j, r)) ≤ τn−k(B(p̂j , 2δj))

≤
∑

α

τ ∗n−k−1(B(ẑjα, rα))

≤
∑

Cα < ∞.

�

Proof of Theorem 4.4. The proof is by contradiction. If the conclusion
does not hold, we would have an infinite sequence of metric balls Bi

of spaces Mi ∈ A(n) such that for every essential covering system
Bi of Bi with depth ≤ n modeled on C(n), either lim inf N i

1 = ∞ or
lim inf N i

k > Cn, where N i
1, N

i
k are the degrees of Bi, and Cn is the

positive constant given in Lemma 4.5. Let pi be the center of Bi.
By Theorem 2.1, we may assume that (Mi, pi) converges to a pointed
complete Alexandrov space (X, p) with curvature ≥ −1 with respect
to the pointed Gromov-Hausdorff topology. We may also assume that
Bi converges to a metric ball B around p under this convergence. If
X is a point, we rescale the metric of Mi so that the new diameter
is equal to 1. Thus we may assume that 1 ≤ dimX ≤ n. Applying
Lemma 4.5 to the convergence Bi → B, we obtain finitely many points
{xα}

N
α=1 of B and positive numbers rα with B ⊂ ∪B(xα, rα/2) such

that for a subsequence {j} of {i}, we get pjα ∈ Mj converging to xα

with τ ∗n−1(B(pjα, rα)) ≤ Cn for every 1 ≤ α ≤ N . Together with the
covering {B(pjα, rα)}α of Mj , this enables us to obtain an essential
covering system Bj of Bj with depth ≤ n modeled on C(n) such that

N j
1 ≤ N and N j

k ≤ Cn. This is a contradiction. �

Remark 4.6. Let M(n) denote the subfamily of A(n) consisting of
Riemannian manifolds. By Theorem 4.4, each metric ball of radius ≤ D
in M ∈ M(n) has an essential covering with depth ≤ n modeled on
C(n) whose number is uniformly bounded. In this case, one can easily
check from the proof that each metric ball in the essential covering is
homeomorphic to an n-disk. Namely, for M(n), we can take the single
n-dimensional Euclidean space Rn as the model family in stead of C(n).

Remark 4.7. Let δ > 0 be given. Under the situation of Theorem 4.4,
if we restrict ourselves to metric balls of radii < δ, we can construct an

11



isotopy covering system B = {Bα1···αk
} of B with depth ≤ n modeled

on C(n) such that

(1) the radius of Bα1
is less than δ for every 1 ≤ α1 ≤ N1;

(2) the first degreeN1 ≤ Cn(D, δ) for some uniform constant Cn(D, δ);
(3) any other higher degree ≤ Cn.

In particular τn(B) ≤ Cn(D, δ)(Cn)
n−1.

Parhaps Examples 4.2 and 4.3 will be ones of maximal case.

Conjecture 4.8. Let M be an n-dimensional compact Alexandrov
space with nonnegative curvature. Then τn(M) ≤ 2n.

5. Betti numbers

In this section, we apply Theorem 4.4 to prove Corollary 1.2. We
consider homology groups with any coefficient field F . Let β( ) denote
the total Betti number for simplicity.

We make use of the following machinery in [5], whose proof is based
on Leray’s spectral sequence.

Lemma 5.1 (Topological lemma ([5])). Let Bi
α, 1 ≤ α ≤ N , 0 ≤ i ≤

n+ 1, be open subsets of an n-dimensional space M , with

B0
α ⊂ B1

α ⊂ · · ·Bn+1
α ,

and set Ai := ∪N
i=1B

i
α. Let I+ denote the set of all multi-indices

(α1, . . . , αm) with 1 ≤ α1 < . . . < αm ≤ N and with non-empty inter-
section ∩m

j=1B
n+1
αj

. For each µ = (α1, . . . , αm) ∈ I+, let f
i
µ : H∗(B

i
α1

∩

· · · ∩ Bi
αm

) → H∗(B
i+1
α1

∩ · · · ∩ Bi+1
αm

) be the inclusion homomorphism.
Then the rank of the inclusion homomorphism H∗(A

0) → H∗(A
n+1) is

bounded above by the sum
∑

0≤i≤n,µ∈I+

rank f i
µ

For any subset X ⊂ M and δ ≥ 0, let Uδ(X) := {x | d(x,X) ≤
δ}. We define δ-content, denoted by δ-cont(X) of X as the rank of
the inclusion homomorphism H∗(X) → H∗(Uδ(X)). Observe that 0-
cont(X) = β(X) may be infinite. However we have

Theorem 5.2. For given n, D > 0 and δ > 0, there is a positive
integer C(n,D, δ) such that if X is a subset of diameter ≤ D in an n-
dimensional complete Alexandrov space M with curvature ≥ −1, then

δ-cont(X) ≤ C(n,D, δ).

Corollary 1.2 is a direct consequence of Theorem 5.2. Although it
is not explicitly stated in [5] or [1], Theorem 5.2 also follows from the
methods there. Below we give the proof of Theorem 5.2 based on
Theorem 4.4.

12



For a subset X of diameter less than D in a space M ∈ A(n), let B
an open metric D-ball in M containing X . For δ > 0, take an isotopy
covering system B = {Bα1···αk

} of B with depth ≤ n modeled on C(n)
satisfying the conclusion of Theorem 4.4 and Remark 4.7 such that the
radii of Bα1

are less than 10−(n+2)δ for all 1 ≤ α1 ≤ N1. To apply
Lemma 5.1, we let λi := 10i for 0 ≤ i ≤ n + 1, and put

Bi
α1···αk

:= λiBα1···αk
.

In view of the conclusion (2) of Theorem 3.2, we may assume that

(1) Bn+1
α1···αk

⊂ Bα1···αk−1
;

(2) Bi
α1···αk

is an isotopic subball of Bi+1
α1···αk

,

for each 1 ≤ αk ≤ Nk(α1 · · ·αk−1) and 0 ≤ i ≤ n+ 1.
Let U = {Bα}α∈Â be the essential covering of B associated with B.

Lemma 5.3. For every α = α1 · · ·αℓ ∈ Â and every 1 ≤ k ≤ ℓ we
have

β(Bα1···αk
) ≤ Cn.

Proof. We prove it by the reverse induction on k. The case k = ℓ is clear
since Bα1···αℓ

is contractible. Suppose the conclusion β(Bα1···αk+1
) ≤ Cn

for all 1 ≤ αk+1 ≤ Nk+1. Let B̂α1···αk
be the isotopic subball of Bα1···αk

such that

B̂α1···αk
⊂

Nk+1
⋃

αk+1=1

Bα1···αk+1
.

Since (α1, . . . , αk) is fixed, we put

B̂ := B̂α1···αk
, B := Bα1···αk

,

Bα := Bα1···αkα, Bi
α := λiBα,

for each 1 ≤ α ≤ Nk+1. Let Ai =
⋃Nk+1

α=1 Bi
α. From the inclusions

B̂ ⊂ A0 ⊂ An+1 ⊂ B, we have β(B̂) = β(B) ≤ rank of [H∗(A
0) →

H∗(A
n+1)]. Let I+ denote the set of multi-indices of intersection for

the covering {Bn+1
α }α. For each µ = (γ1, . . . , γm) ∈ I+, let Bγs have

minimal radius among {Bγj}
m
j=1. Let f i

µ : H∗(B
i
γ1

∩ · · · ∩ Bi
γm
)) →

H∗(B
i+1
γ1

∩ · · · ∩ Bi+1
γm

) be the inclusion homomorphism. From the in-
clusions

Bi
γ1
∩ · · · ∩ Bi

γm
⊂ Bi

γs
⊂

1

2
Bi+1

γs
⊂ Bi+1

γ1
∩ · · · ∩ Bi+1

γm
,

we have

rank(f i
µ) ≤ rank of [H∗(B

i
γs
) → H∗(

1

2
Bi+1

γs
)]

= β(Bγs)

≤ Cn.

Lemma 5.1 then shows β(B) ≤ (n+ 1)2CnCn. �
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Proof of Theorem 5.2. Without loss of generality, we may assume that

{Bα1
}
N(X)
α1=1 is a covering of X for some N(X) with N(X) ≤ N1. By

Lemma 5.3, we have in particular β(Bα1
) = β(Bi

α1
) ≤ Cn for all 1 ≤

α1 ≤ N(X) and 0 ≤ i ≤ n + 1. Therefore applying Lemma 5.1 to the

concentric coverings {Bi
α1
}
N(X)
α1=1 of X together with

X ⊂

N(X)
⋃

α1=1

Bα1
⊂

N(X)
⋃

α1=1

Bn+1
α1

⊂ Uδ(X),

we have
δ-cont(X) ≤ (n + 1)2Cn(D,δ)Cn.

This completes the proof of Theorem 5.2. �

For a subset X of a metric space, we define the homological injectivity
radius of X , denoted by hom.inj(X), as the supremum of δ ≥ 0 such
that the inclusion homomorphism H∗(X) → H∗(Uδ(X)) is injective for
any coefficient field.

The following is an immediate consequence of Theorem 5.2.

Corollary 5.4. For a space M in A(n), let Xi be a sequence of subsets
of M with lim β(Xi) = ∞. Then one of the following must occur:

(1) lim inf hom.inj(Xi) = 0;
(2) lim sup diam(Xi) = ∞.
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