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ON THE OPERAD STRUCTURE OF ADMISSIBLE G-COVERS

DAN PETERSEN

Abstract. We describe the modular operad structure on the moduli spaces
of pointed stable curves equipped with an admissible G-cover. To do this
we are forced to introduce the notion of an operad colored not by a set
but by the objects of a category. This construction interpolates in a sense
between ‘framed’ and ‘colored’ versions of operads; we hope that it will be of
independent interest. An algebra over this operad is the same thing as a G-
equivariant CohFT, as defined by Jarvis, Kaufmann and Kimura. We prove
that the (orbifold) Gromov–Witten invariants of global quotients [X/G] give
examples of G-CohFTs.

1. Introduction

The notion of a cohomological field theory (CohFT) was introduced by Kont-
sevich and Manin [KM94] as a simpler algebro-geometric relative of the notion
of a (1 + 1)-dimensional topological conformal field theory, where holomorphic
holes have been replaced with marked points (so one gets a theory modeled
on gluing of compact Riemann surfaces along markings) and singular chains
on moduli space have been replaced by homology. One can give a succinct
definition of a CohFT in the language of modular operads [GK98]: a CohFT
is nothing but an algebra over the modular operad H•(Mg,n,Z). The main
examples of CohFTs are the Gromov–Witten invariants of smooth projective
varieties [BM96, Beh97, BF97].

Jarvis, Kaufmann and Kimura [JKK05] defined a generalization called a G-
CohFT, where G is a finite group. Here one glues instead marked Riemann
surfaces C equipped with a branched covering P → C which forms a G-torsor
away from the markings. The gluing rules need to be slightly modified: firstly
because one needs a marked point on P over each marked point on C in order
that the gluing is independent of choices, secondly because one needs to impose
the condition that the monodromies around the respective markings should be
inverse to each other. In algebraic language, going from CohFTs to G-CohFTs

corresponds to going from Mg,n to spaces M
G

g,n of admissible G-covers. One
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expects the main source of G-CohFTs to be the Gromov–Witten invariants of a
global quotient [X/G] (in the sense of orbifolds or stacks) of a smooth projective
variety by a finite group [CR02, AGV08]. Similar ideas can be found in a letter
from Kontsevich to Borisov from 1996, published in [Abr08].

Analogous constructions have existed for a longer time in the physics literature,
arising from Chern–Simons theory with a finite gauge group, see e.g. [DW90,
Fre94]. Also closely related is Turaev’s notion of a homotopy quantum field
theory [Tur10], which is a TQFT where all spaces and cobordisms are equipped
with a map up to homotopy to a fixed target space X. Taking X a K(G, 1)
shows the similarity with G-CohFTs.

The definition of a G-CohFT in [JKK05] is unsatisfactory in one minor respect.
A G-CohFT is defined by a list of axioms, but just as for ordinary CohFTs
one would expect it to be possible to bundle together these axioms by stating
that a G-CohFT is an algebra over a certain operad. And it is clear from the
definition that a G-CohFT is an algebra over something, it is just not clear in

what sense the spaces M
G

g,n form an operad.

We claim that the correct definition is that {M
G

g,n} forms a modular operad
colored by a category. The category in question is the action groupoid of G
acting on itself by conjugation, the so-called loop groupoid of the group G.
Moreover, this groupoid carries an involution given by “changing orientation of
the loop”, which corresponds to inversion in the group, and the gluing rules
need to be modified in order to accommodate this involution.

Let us finally give a brief outline of the article. Section 2 describes the moduli
spaces of admissible covers and their stratifications from an operadic point of
view. Section 3 contains a formal definition of a colored modular operad where
the colors form a category (with duality). We have not seen this defined in the
literature. Although it is quite easy to define what this should mean for an
ordinary operad, it is a bit subtle to come up with the ‘right’ definition when
one considers structures defined by more general graphs than trees (that is,
cyclic, wheeled, modular, etc., versions of operads).

After this we explain in Section 4 how the work of Jarvis, Kaufmann and Kimura
fits into this framework. We prove a result left open in their article, that the
Gromov–Witten invariants of a global quotient [X/G] endow the ring H•(X,G)
of Fantechi and Göttsche with the structure of a G-CohFT.

In a sequel to this paper, we will extend the formalism of symmetric functions to
this setting, and prove an analogue of Getzler and Kapranov’s formula [GK98]
for the effect of the ‘free modular operad’ functor on the level of symmetric
functions.
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2. Background

Consider first the topological version of the story: let G be a (finite) group,
and consider a variant of 2-dimensional TQFT modeled on sewing of compact
oriented surfaces with boundary, equipped with a G-bundle. Then there is a
basic compatibility condition needed in the definition of the sewing: for each
boundary component, we get a G-bundle on S1, and to glue surfaces we need
an isomorphism between these G-bundles.

In the algebraic version, there is no analogue of gluing surfaces with boundary,
and one is forced to work with punctured or marked surfaces. Since the G-cover
will not in general extend across the punctures, one is moreover forced to work
with ramified covers instead.

Definition 2.1. Let G be a finite group, and C an n-pointed nodal curve. An
admissible G-cover is a covering π : P → C and a G-action on P , such that:

(1) the quotient P/G is identified with C via π;
(2) the map π is a G-torsor away from the nodes and markings;
(3) if x ∈ P is a node, then the stabilizer Gx acts on the tangent spaces of

the two branches at x by characters which are inverses of each other.

Condition (3) is the algebraic analogue of the sewing condition in the topological
setting. Suppose we are given two Riemann surfaces C and C ′ with marked
points y and y′. Let C be the nodal surface obtained by gluing y and y′. Let
P → C\{y} and P ′ → C ′\{y′} be G-torsors. These extend uniquely to ramified
covers of C and C ′, and by choosing points x, x′ in the fibers over y and y′ they
can be glued together to a covering P → C whenever the isotropy groups Gx

and Gx′ coincide. But in general the resulting covering will not be smoothable,
in the sense that there is no family of G-covers Pt → Ct of smooth curves,
such that the limit as t → 0 of this family is P → C. Clearly, the topological
obstruction to such a smoothing is that the monodromies of P → C \ {y} and
P ′ → C ′ \ {y′}, computed with respect to x and x′, are inverse to each other
in G. This final condition is equivalent to condition (3), which however makes
sense over an arbitrary base field. Nevertheless, we shall stick to the language
of Riemann surfaces in this article.

Though the notion of an admissible cover predates their work (admissible covers
traditionally arise when one tries to compactify moduli spaces of unramified
covers, cf. [Bea77, HM82]), Definition 2.1 was first written down in this form in
[ACV03]. (They call coverings satisfying (3) balanced. We omit this adjective,
as there will be no need for unbalanced coverings.) They also construct a
moduli space for such covers. This theory arises from Abramovich, Vistoli and
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their coauthors’ work on defining Gromov-Witten invariants of stacks: it is the
special case of stable maps where the target space is the stack BG.

Definition 2.2. We denote byM
G

g,n the moduli stack parametrizing admissible
G-covers P → C where C is a stable n-pointed curve of genus g, together with
a choice of a point xi ∈ P over every marked point yi ∈ C.

That we include liftings xi of the points yi is crucial in order for there to be a
natural operad structure.

2.1. The operadic structure. The spacesM
G

g,n admit a kind of stratification

by topological type, analogous to that ofMg,n. To an admissible cover P → C
we associate a stable graph, namely the dual graph of C. The choice of a
point in the fiber over each marking on C produces extra structure on this
graph: by considering the monodromy of the covering over each marked point,
we find that the legs of the graph are decorated by elements of G. Condition

(3) above implies that the spaces M
G

g,n have partially defined analogues of the

gluing maps forMg,n: one can glue together two legs precisely when they have
mutually inverse decorations. So it would seem that they form a kind of colored
operad where there is an involution on the collection of colors.

However, there is further structure present: the wreath product G ≀ Sn acts on

M
G

g,n, where Sn acts by permuting the markings and each copy of G acts by
changing the choice of the lifted point xi ∈ P . Changing the point xi to g · xi
has the effect of changing the monodromy by conjugation with g. Hence G acts
both on the spaces involved and on the set of colors (by conjugation), and the
gluing maps are equivariant for this G-action.

Moreover, since there are no distinguished points in P in the fibers over the
nodes of C, we see that gluing two points together also involves simultane-
ously forgetting the choices of liftings over the two markings, i.e. quotienting
by a diagonal action of G acting on both markings that are being glued to-
gether. It is instructive to compare this to the framed little disks operad, which
parametrizes little disks equipped with a marked point on their boundaries, and
gluing involves forgetting about this marked point.

We claim that the correct formalism for describing all this data — the presence
of a coloring, the fact that gluing means simultaneously quotienting by the
action of a group acting “on the legs”, and compatibility with the action of the

group on the set of colors — is the following: the spaces M
G

g,n form a colored
operad where the colors are the objects of the action groupoid [G/G] in which
G acts on its underlying set by conjugation. Finally there is the condition of
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inverse monodromy, which is now most easily described as an involution of this
groupoid.

2.2. The loop groupoid. The appearance of the groupoid [G/G] is not a
coincidence. For one thing, it turns out that an algebra over a C-colored operad
needs in particular to be a representation of C. Moreover, a representation of
[G/G] is exactly the same as a module over the Drinfel’d (quantum) double of
the group G. This module structure is well known in Dijkgraaf–Witten theory,
cf. [DPR90, Fre94]. Although we will not use anything from this subsection in
the rest of the paper, it seems worth giving some context.

Definition 2.3. Let G be a group. We denote by LG the action groupoid of
G acting on its underlying set by conjugation, and call this the loop groupoid
of G.

Remark 2.4. The groupoid LG can equivalently (and more generally) be
described as the functor category Fun(Z, G), where Z and G are considered as
1-object categories. Since |Z| ≃ S1, where | ∗ | denotes geometric realization,
this explains the terminology.

Remark 2.5. One can show that for any two groupoids G and H, there is a
homotopy equivalence

|Fun(H,G)| ≃ map(|H|, |G|),

see for instance [Str00]. In particular, |LG| is the space LBG of free loops
on the classifying space BG. Another way to think about this is that LG
is isomorphic to the groupoid of C-points of the inertia stack of BG, cf. e.g.
[Abr08, Section 5]. The relationship between these viewpoints is that the inertia
stack I(X ) is in general defined as the fiber product X ×X×X X . On the other
hand, LX is given by the homotopy pullback X ×h

X×X X, for any space X.

In any case, this leads to a geometrically appealing situation. We are trying
to combinatorially model gluing of surfaces equipped with G-torsors. In the
topological setting, we needed for any two boundary circles an isomorphism
between the respective G-bundles, which are (up to homotopy) points of LBG.
Now we replace surfaces with their dual graphs, and find that we must decorate
legs by LG, which is a combinatorial model of LBG.

The involution on LG is now defined by the obvious action of {±1} = AutZ on
Fun(Z, G). Topologically, inverting the generator of Z corresponds to changing
orientation of the circle, in agreement with the geometric picture.

Definition 2.6. Let C be a groupoid and k a field. We define the groupoid
algebra k[C] to be the k-algebra which is spanned as a vector space by the
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morphisms in C, and whose product is defined on generators by

f ∗ g =

{
f ◦ g if this composition makes sense,

0 otherwise.

This is extended bilinearly.

Just as for finite groups, k[C] is naturally a Hopf algebra. If G is a finite group,
then k[LG] is exactly the Drinfel’d double of the usual group algebra k[G].

3. Operads colored by categories

In this section we give the general definition of an operad-like structure colored
by a category. By an operad-like structure we mean e.g. a cyclic or modular
operad, a (wheeled) PROP, a properad, a dioperad, etc.

We begin by giving a direct definition of an ordinary operad colored by a cat-
egory. For more general operad-like structures one needs some more careful
combinatorics. In order to give a suitably general definition we define a cate-
gory of graphs colored by some fixed category and construct the “free operad”
functor combinatorially in terms of sums over such graphs. This functor is
naturally a monad and one can then define an operad as an algebra over it. A
pedagogical introduction to this point of view on operads and related structures
can be found in [Mar08].

An extra subtlety in the case of undirected graphs is that the colors should no
longer just form a category, but they must be a category with duality, i.e. a
category C with an isomorphism C ∼= Cop satisfying certain conditions. This is
analogous to how any vector space can be an algebra over an operad, but only
a vector space with an inner product can be an algebra over a cyclic operad.

3.1. The case of ordinary operads.

Definition 3.1. Suppose a finite group G acts on a category C. We define the
semidirect product C ⋊ G to be the category with the same objects as C, and
whose morphisms x → y are pairs (φ, g) where g ∈ G and φ ∈ HomC(x, yg).
The composition is defined by

(φ, g) ◦ (ψ, h) = ((φh) ◦ ψ, g · h).

Definition 3.2. The wreath product C ≀ Sn of a category with the symmetric
group on n letters is the semidirect product Cn⋊Sn with the obvious Sn-action.
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For the remainder of this section, we fix a cocomplete symmetric monoidal
category E , and a small category C. We shall consider operads colored by C
taking values in E .

Definition 3.3. A CS-module is a sequence V (n), n ≥ 0, of functors

V (n) : Cop × (C ≀ Sn)→ E .

Definition 3.4. The tensor product of two CS-modules is defined by

(V ⊗W )(n) =
∐

k+l=n

IndC≀Sn
C≀Sk×C≀Sl

V (k)⊗W (l).

By induction we mean here the left Kan extension along C ≀Sk×C ≀Sl →֒ C ≀Sn,
which is the usual induction functor when C is a group.

Definition 3.5. The plethysm of two CS-modules is defined by the coend

(V ◦W )(n) =
∐

k≥0

V (k)⊗C≀Sk W
⊗k(n)

def
=

∐

k≥0

∫ C≀Sk

V (k)⊗W⊗k(n)

where W⊗k(n) is considered as a Cop ≀ Sk-module by virtue of the fact that a
k-fold tensor product of a representation of Cop is a representation of Cop ≀ Sk,
using the symmetric monoidal structure on E .

Proposition 3.6. The category of CS-modules is monoidal with plethysm as
product.

Proof. Let e be the CS-module concentrated in degree one, where it is given by
the composition

Cop × C
Hom(−,−)
−→ Set

φ
→ E ,

where φ(X) =
∐

x∈X 1, with 1 the monoidal identity in E . In other words, we
are forming the copower Hom(−,−) ⊙ 1. Then e is both a left and right unit
for plethysm, as one verifies using the canonical isomorphism (the “co-Yoneda
lemma”)

F (x) =

∫ C

HomC(−, x)⊙ F (−)

for any functor F defined on a category C. Associativity is immediate from the
fact that coproducts and coends can be freely commuted past each other, both
being colimits. �

Example 3.7. If C = G is a group and E = R-Mod, then e(1) is given by the
group ring R[G], considered as a left and right G-module.

Definition 3.8. A C-operad is a monoid in the monoidal category of CS-
modules.
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Example 3.9. Let C = X be a set, thought of as a discrete category. An
X-operad is the same thing as an operad colored by the set X.

Example 3.10. Let C = G be a group. A natural example here is the framed
little disks operad of [Get94], for G = SO(N), which we claim can be thought
of as a colored operad which has only one color, but where this color has a
nontrivial automorphism group.

Let DN be the closed unit disk in RN . Let fDN(n) be the topological space
parametrizing maps

n∐

i=1

DN →֒ DN

where each factor is a composition of rotations, translations and positive di-
lations, and the images are disjoint. Then {fDN(n)} is an SO(N)-operad in
Spaces, with edge contractions defined by composing embeddings with each
other. In particular the space fDN(n) has an action of

SO(N)op × (SO(N)n ⋊ Sn).

We define this action by letting the first factor act by rotating the entire disk,
and the second factor act by rotations and permutations of the individual em-
bedded disks. The gluing maps are SO(N)-equivariant as required, in the sense
that any gluing map is invariant under the simultaneous action of SO(N) on
the input and output legs that are being glued together.

More generally, any semidirect product operad P ⋊G in the sense of [SW03] is
an example of a G-operad in our sense. The notion of a G-operad is, however,
more general. (Note that there is an unfortunate clash of notation: [SW03]
use the word G-operad to mean an operad in the category of spaces with a
G-action.)

Remark 3.11. The preceding example also demonstrates that one should re-
ally be working throughout in an enriched setting, although we have not done
so for readability’s sake. Indeed, we do not want to think of SO(N) as just a
group, but a topological group, and we want its actions on spaces to be con-
tinuous. One should therefore consider categories enriched over some closed
symmetric monoidal category V (in the preceding example, V = Spaces): E is
a V-cocomplete symmetric monoidal V-category, C is a small V-category, and
we are given a V-functor from Cop × C ≀ Sn to E . All coends, copowers, Kan
extensions, etc. need to be replaced with their V-analogues. We leave the details
to the reader.

Remark 3.12. The author does not know a natural example of an operad
colored by a category where that category is not in fact a groupoid. Such an
example would perhaps be interesting.
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3.2. Categories with duality.

Definition 3.13. A category with duality is a category C equipped with a
contravariant functor ∨ : C → C, and a natural isomorphism

η : idC → ∨ ◦ ∨,

such that the composition

∨
η∨
−→ ∨ ◦ ∨ ◦ ∨

∨η
−→ ∨

is the identity.

Remark 3.14. To make sense of the last equation in the preceding definition,
recall that if ǫ : F → G is a natural transformation, and H is a contravari-
ant functor, then the horizontal composition has reversed direction: one has
Hǫ : HG→ HF .

We write x∨ rather than ∨(x), where x is either an object or a morphism in C.
An equivalent, more symmetric, definition is the following:

Definition 3.15. A category with duality is a category C equipped with a
functor ∨ : C → Cop, such that ∨ and ∨op are quasi-inverses, and the resulting
counit and unit ∨op∨ → idC and idCop → ∨∨op are opposites of each other.

Example 3.16. The category of finitely generated projective modules over a
ring A becomes a category with duality if we define M∨ = Hom(M,A). More
generally, any compact closed category is a category with duality.

Example 3.17. Any groupoid is a category with duality, with ∨ the identity
on objects and g∨ = g−1 on morphisms.

Example 3.18. A discrete category with duality is a set with an involution.

Definition 3.19. A pairing between two objects x and y of a category with
duality is a morphism φ : x→ y∨. (Equivalently, it is a morphism y → x∨.)

Definition 3.20. A pairing between x and itself is said to be symmetric if
φ∨ ◦ ηx = φ.

Example 3.21. In the category of finitely generated projective A-modules, a
pairing between M and N is a map M ⊗N → A, and a symmetric pairing is a
symmetric bilinear form.

If C and D are categories with duality, then so is the functor category [C,D]: if
F : C → D is a functor, its dual is defined as ∨D ◦ F ◦ ∨C.

Definition 3.22. A weak symmetric functor C → D is a functor F in [C,D]
with a symmetric pairing.
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Explicitly, this means we have a functor F : C → D and a natural transformation

ρ : F ◦ ∨C → ∨D ◦ F

such that the diagram

F ◦ ∨C
ρ ✲ ∨D ◦ F

∨D ◦ ∨D ◦ F ◦ ∨C

ηD
❄

ρ
✲ ∨D ◦ F ◦ ∨C ◦ ∨C

ηC
✻

commutes. If ρ is an isomorphism, then F is strong symmetric.

Example 3.23. A weak symmetric functor from the one-object one-morphism
category into C is an object of C with a symmetric pairing.

Example 3.24. The category fdHilb is naturally a category with duality, with
∨ the identity on objects and T∨ the adjoint of T . Let G be a group, considered
as a category with duality as in Example 3.17. A (weak or strong) symmetric
functor G→ fdHilb is a unitary representation of G.

Example 3.25. If F is weak symmetric, then a pairing between x and y induces
a pairing between F (x) and F (y).

3.3. Graphs. We shall follow the definitions and conventions of [GK98] regard-
ing graphs, which we recall for the reader’s convenience. A graph Γ is a finite
set F of flags, a finite set V of vertices, a function h : F → V , and an involution
τ on F . The fixed points of τ are called legs and the orbits of length two are
called edges.

A morphism of graphs f : Γ → Γ′ consists of two functions f∗ : V → V ′ and
f ∗ : F ′ → F such that f ∗ is bijective on legs, injective on edges, and for which

F \ f ∗(F ′)
h✲

hτ
✲ V

f∗✲ V ′

is a coequalizer. Informally, f is a composition of automorphisms and edge
contractions.

A graph with one vertex and no edges is called a corolla. For every v ∈ V we
denote by γ(v) the corolla with flag set h−1(v).

A dual graph is a graph with a genus function g : V → {0, 1, 2, . . .}. We denote
by n(Γ) the number of legs of a graph Γ. For a vertex v, we use the shorthand
n(v) = n(γ(v)). A morphism of dual graphs is a morphism f : Γ → Γ′ of the
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underlying graphs such that for all v′ ∈ V ′ we have

2g(v′)− 2 + n(v′) =
∑

f∗(v)=v′

(2g(v)− 2 + n(v)).

If Γ is a dual graph, then we declare its genus g(Γ) to be the unique integer
satisfying

2g(Γ)− 2 + n(Γ) =
∑

v∈V

(2g(v)− 2 + n(v)).

A simple lemma shows that if f : Γ → Γ′ is a morphism of dual graphs, then
g(Γ) = g(Γ′). A dual graph is called stable if for each vertex v the inequality

2g(v)− 2 + n(v) > 0

is satisfied.

Remark 3.26. The idea of a dual graph is best thought of topologically as
follows. We imagine that a vertex of genus g with n adjacent legs describes a
compact oriented surface of genus g with n boundary circles. Then the number
2g − 2 + n is just the negative of the Euler characteristic of the surface. If we
think of an edge contraction as an operation which glues together the corre-
sponding boundary components, then the formulas in the definition of a dual
graph express that Euler characteristic should be additive over gluing of circles.

Now fix a category with duality C.

Definition 3.27. A C-graph is a graph Γ with the following extra data: for
every flag x we are given an object Ax of C, and for an edge connecting the flags
x and y we are given a pairing between Ax and Ay.

Definition 3.28. A morphism of C-graphs is a morphism Γ→ Γ′ of underlying
graphs, together with a morphism qx : Af∗(x) → Ax for every flag x of Γ′, such
that for an edge between x and y in Γ′, the following diagram commutes:

Af∗(x)
✲ A∨

f∗(y)

Ax

qx
❄

✲ A∨
y

q∨y
✻

Remark 3.29. One can describe a C-graph as a graph Γ together with a sym-
metric functor F → C, where F is an appropriate category with duality defined
in terms of the flags and edges of Γ. Then a morphism of C-graphs can be
defined more simply in terms of a natural transformation. We leave the details
to the reader.
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3.4. Operads as algebras.

Notation 3.30. Let S be the category of stable C-graphs. Let S0 be the full
subcategory of corollas in S. Let [S0, E ] denote the category of functors S0 → E .

Definition 3.31. We call the objects of [S0, E ] stable CS-modules.

Remark 3.32. Suppose C is trivial. Then a functor S0 → E is the same thing as
a stable S-module in the terminology of [GK98], as S0 has the obvious skeleton

S0 ∼=
∐

g,n≥0
2g−2+n>0

Sn.

Hence a functor from S0 to E is just a family of Sn-representations indexed by g
and n, which recovers the definition of Getzler and Kapranov and justifies our
terminology. More generally one has for any C that

S0 ∼=
∐

g,n≥0
2g−2+n>0

C ≀ Sn.

Notation 3.33. Let Bij(S) denote the full subcategory of S consisting of graph
morphisms which do not contract any edge.

Remark 3.34. Any functor V : S0 → E can be extended to a functor Bij(S)→
E via

V (Γ) =
⊗

v∈V (Γ)

V (γ(v)).

Note that if Γ is stable then so are all the γ(v).

Definition 3.35. Let M be the endofunctor on [S0, E ] defined by

MV (γ) = colim
Γ∈Bij(S)↓γ

V (Γ)

for any corolla γ. Here Bij(S) ↓ γ denotes the slice category over γ; its objects
are graphs in S with a map to γ, and its morphisms are morphisms over γ which
do not contract any edges.

For any corolla γ ∈ S0 there is a natural map V (γ) → MV (γ) induced by
sending idγ to the corresponding morphism in Bij(S) ↓ γ. This defines a nat-
ural transformation η : id[S0,E] → M. There is also a natural transformation
µ : M2 → M, defined as usual by ‘erasing braces’ (cf. [Mar08]).

Proposition 3.36. The functor M is a monad with unit η and multiplication
µ.

Proof. A rather conceptual proof can be found in [GK98], which carries through
with only minor changes to the C-colored setting. The necessary commutative
diagrams can also be checked somewhat tediously by hand. �
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Definition 3.37. A modular C-operad is an M-algebra.

Remark 3.38. A posteriori, the fact that M turns out to be a monad can
be explained by saying that M maps a stable CS-module V to the underlying
stable CS-module of the free modular C-operad generated by V . Hence the fact
that M is a monad expresses the fact that the free modular operad functor is
left adjoint to the forgetful functor sending a modular operad to its underlying
stable CS-module.

Remark 3.39. One can describe modular C-operads more explicitly in the
following way. A modular C-operad A consists of:

(1) for any g, n ≥ 0 such that 2g − 2 + n > 0, and any n-tuple (x1, . . . , xn)
of objects of C, an object

A(g, x1, . . . , xn)

of E ;
(2) for any σ ∈ Sn a map

A(g, x1, . . . , xn)→ A(g, xσ(1), . . . , xσ(n));

(3) for any morphism xi 7→ x′i in C a map

A(g, x1, . . . , xi, . . . , xn)→ A(g, x1, . . . , x
′
i, . . . , xn);

(4) for any i and j and for every pairing between xi and yj , a gluing map

A(g1, x1, . . . , xn)⊗A(h, y1, . . . , ym)→ A(g + h, x1, . . . , x̂i, . . . , ŷj, . . . , ym);

(5) for any i 6= j and for every pairing between xi and xj, a gluing map

A(g, x1, . . . , xn)→ A(g + 1, x1, . . . , x̂i, . . . , x̂j , . . . , xn).

One thinks of A(g, x1, . . . , xn) as the value of A on a corolla of genus g with n
legs decorated by x1, . . . , xn. We will not list the functoriality conditions and
commutative diagrams that these maps must satisfy.

3.5. Algebras over operads. The notion of an algebra over an operad can
be defined in various levels of generality. We assume in this section that the
target category E is compact closed, i.e. every object is dualizable, which will
be sufficient for this article. In particular, this implies that E is a category with
duality.

Definition 3.40. Suppose given a weak symmetric functor ρ : C → E . We
associate to ρ its endomorphism operad Endρ. In the notation of Remark 3.39,
it is defined on objects by

Endρ(g, x1, . . . , xn) =
n⊗

i=1

ρ(xi).
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Every pairing between x and y in C gives a pairing between ρ(x) and ρ(y) in E
in the usual sense, i.e. a map

ρ(x)⊗ ρ(y)→ 1

where 1 is the monoidal unit in E . This pairing defines the gluing maps for the
modular C-operad Endρ.

Definition 3.41. An algebra over a modular C-operad A is a weak symmetric
functor ρ : C → E and a morphism A → Endρ.

3.6. Other operad-like structures. By considering some other category of
graphs G instead of S one can define in a similar same way C-colored versions
of other operad-like constructions. One lets G0 be the subcategory of corollas.
In order for the definition of M to make sense, one needs to assume that for
any Γ ∈ ob(G) and v ∈ V (Γ), we also have γ(v) ∈ ob(G). To define the
multiplication map µ one needs to assume that G is closed under “erasing
braces”. With these assumptions, it will remain true that M is a monad.

For example, take G to be the full subcategory of trees in S. The algebras over
the corresponding monad are exactly the cyclic C-operads.

We would also like to be able to define C-colored versions of more ordinary things
like operads and PROPs, which are modeled on directed graphs. One could
repeat appropriate modification of all our definitions for digraphs, but there is
a quicker way. This is based on the observation that an ordinary operad is the
same thing as a two-colored cyclic operad whose colors are {input, output}, and
where the gluing rules have been twisted by an involution: one is only allowed
to glue an input leg to an output, and vice versa.

Observe that for any category C, there is an obvious structure of category with
duality on the disjoint union C

∐
Cop.

Definition 3.42. We define a C-digraph to be a (C
∐
Cop)-graph. Flags deco-

rated by objects in C are called incoming and flags decorated by objects in Cop

are outgoing.

Remark 3.43. Note that every edge in a C-digraph consists of exactly one
incoming and one outgoing flag, by our definition of a pairing.

Let then for instance G be the category of C-digraphs which are trees, and where
each vertex is adjacent exactly one outgoing flag. Algebras over the resulting
monad are called C-operads. If G consists of arbitrary C-digraphs which are
trees, then we have defined the notion of a C-PROP. This also gives the correct
notions of algebras over C-operads and C-PROPs.
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Proposition 3.44. This definition of a C-operad coincides with the one in
Definition 3.8.

Proof. We allow ourselves to be brief, as the proof is similar to the uncolored
case [Mar08, Theorem 40]. The only new subtlety in the C-colored situation is
that we must compare the coend appearing in Definition 3.5 with the colimit
in Definition 3.35.

Consider the full subcategory G of Bij(G) ↓ γ where the underlying graph is
given by some fixed graph Γ with a single edge. An object of G consists of
a decoration of this edge, i.e. two objects x and y of C

∐
Cop, and a pairing

between x and y. It follows that an object of G is an arrow in C. By comparing
with Definition 3.28, we see that a morphism between x → y and x′ → y′ is a
commutative square

x ✲ y

x′
❄

✲ y′.

✻

In other words, G coincides with the so-called twisted arrow category of C, with
its natural map to Cop × C. If F is any functor on Cop × C, then

colim
G

F =

∫ C

F,

see [Mac71, Ex. IX.6.3]. For a graph Γ with n edges, we find instead the
category C ≀ Sn, and the coend over C ≀ Sn. It is now not hard to show that the
two definitions of a C-operad coincide. �

4. Equivariant CohFTs

4.1. The definition of a G-CohFT. Recall that M
G

g,n is the moduli stack
parametrizing stable n-pointed curves C of genus g equipped with an admissible
G-torsor P → C and liftings of the n markings to P . Let S be the category of
stable LG-graphs, and again S0 the full subcategory of corollas. Let Stack be
the category of DM-stacks over some fixed base k where |G| is invertible. The
analytically inclined reader can also take Stack to be the category of complex
orbispaces.

Remark 4.1. There are two minor issues at this point. We wish to consider
operads in Stack. Unfortunately, we formulated the earlier theory in a cocom-
plete symmetric monoidal category, but Stack is not cocomplete, and it is a
2-category! However, neither of these are serious problems. First of all, even
though Stack is not cocomplete, all colimits that occur in the definition of an
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LG-modular operad will exist: indeed, whenever the category of colors is a
finite groupoid, it is easy to see that one only needs to assume the existence
of coproducts and quotients by actions of finite groups. Secondly, there are no
2-categorical surprises, either: if we let E be a 2-category instead throughout
the preceding section, then the endofunctor M is naturally a 2-monad, and we
can define a modular operad to be a pseudo-algebra over it.

Definition 4.2. For a corolla γ ∈ ob(S0) with genus g, and legs decorated

by γ1, . . . , γn, let M(γ) be the open and closed substack of M
G

g,n where the
monodromy around the ith marking is given by γi, for i = 1, . . . , n. Then M
naturally becomes a stable LG ≀ S-module in Stack.

Theorem 4.3. The functor M extends naturally to a modular LG-operad in
Stack.

Proof. The structure maps in the operad M are given by gluing together ad-
missible covers along markings. The monodromy condition ensures that this
is well defined. For the necessary associativity conditions, apply the 2-Yoneda
lemma: on the level of moduli functors, associativity is clear. �

Since homology is a symmetric monoidal functor, one immediately obtains a
modular LG-operad H•(M) in the category of graded Z-modules (assuming
that we are working over the complex numbers). Algebraically, it is maybe more
natural to consider the co-operad H•(M) associated to some Weil cohomology
theory. In any case one can consider (co)algebras over the resulting operads.
The main examples of such algebras are the G-equivariant Cohomological Field
Theories of [JKK05]. They assume the existence of a flat identity, which is not
always natural from the operadic perspective. If we agree that a non-unital
CohFT is defined by omitting axioms (iii) and (iv) from Definition 4.1 in loc.
cit., then we can state the following result.

Proposition 4.4. An algebra H over H•(M,Q) (in the category of finite di-
mensional vector spaces) is the same thing as a non-unital G-CohFT.

Proof. The usual proof that an algebra over H•(Mg,n) is the same thing as a
CohFT carries through with only minor changes. �

In particular H needs to be a representation of LG, which means that it is a
module over the Drinfel’d double D(k[G]). As remarked earlier, this module
structure is well known by physicists [DPR90, Fre94, Kau04].

Remark 4.5. Axiom (i), that H is a G-graded G-module, just says that H is
a representation of LG. Write H =

⊕
γ∈GHγ. We remark that any algebra

over H•(M,Q) has a natural structure of a non-unital braided commutative
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G-Frobenius algebra obtained by imitating the construction in [JKK05]. The

multiplication is defined by noting that M
G

0,3 is a finite union of points (gen-
erally with nontrivial automorphism group), each of which defines a partial
multiplication on H:

Hγ1 ⊗Hγ2 →Hγ3 ,

where γi is the monodromy around the ith marked point. A total multiplication
can then be defined by summing over the distinguished points ξ(γ1, γ2, γ

−1
2 γ−1

1 ),
see [JKK05, 2.5]. The arguments of loc. cit. extend to show associativity (i.e.

the WDVV equation, via M
G

0,4) and the trace axiom (viaM
G

1,1).

4.2. Gromov–Witten invariants of global quotients. Just as the main
example of a CohFT is the cohomology of a smooth projective variety, it is
expected that the main example of a G-CohFT comes from a smooth projective
variety with a G-action. So let for the remainder of this section X be a smooth
projective variety acted upon by G. For simplicity, we work over the complex
numbers, so that classes of curves lie in the second integral homology group; it
is well known how to describe this algebraically.

Definition 4.6. Let β ∈ H2(X/G,Z). Define M
G

g,n(X, β) to be the moduli
stack parametrizing the following data:

• an admissible G-cover P → C, where C is a prestable n-pointed curve
of genus g
• a G-equivariant map f : P → X, such that the induced map f : C →
X/G is stable in the sense of Kontsevich and f∗[C] = β;
• a section of P → C over each marked point of C.

Equivalently, we have M
G

g,n(X, β) = Mg,n([X/G], β) ×Mg,n(BG) M
G

g,n, where

Mg,n(X , β) denotes the usual space of stable maps to a stack.

It follows from the work of [BF97] and [AGV08] thatM
G

g,n(X, β) has a virtual

fundamental class [M
G

g,n(X, β)]
vir defined by the relative obstruction theory

given by the G-invariants of Rπ∗f
∗TX , where π : P →M

G

g,n(X, β) is the natural
projection.

Definition 4.7. Denote byM(X, β) the stable LG ≀S-module in Stack given

by the spaces M
G

g,n(X, β). We extend M(X, β) to a functor from stable LG-
graphs to stacks, but in a slightly different way than in Remark 3.34: for an
LG-graph Γ with n vertices, we define

M(X, β)(Γ) =
∐

β1+...+βn=β

∏

v∈V (Γ)

M(X, βi)(γ(v)).
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Definition 4.8. The inertia variety of X is defined by

IX =
∐

g∈G

Xg.

Note that IX is naturally a representation of LG in the category of algebraic
varieties, since the element h ∈ G carries Xg to Xhgh−1

.

Since X is smooth, its inertia variety is smooth too, see [Ive72].

Definition 4.9. Let Corr be the Q-linear category, whose objects are smooth
and proper DM-stacks, and whose morphisms are given by

HomCorr(X ,Y) = A•(Y × X ),

where the latter denotes the Chow ring with rational coefficients. Composition
is defined via the formula

f ◦ g = p13,∗(p
∗
12f ∪ p

∗
23g).

Remark 4.10. The category of spans of smooth proper DM-stacks, with mor-
phisms defined via pullbacks, sits naturally inside Corr: a span

X
f
← Z

g
→ Y

defines a morphism X → Y in Corr via (g × f)∗[Z].

Remark 4.11. Let Corr′ be the category defined in the same way, except
with varieties instead of stacks. The natural inclusion Corr′ →֒ Corr induces
an equivalence of categories once one takes the pseudo-abelian completion of
both categories, see [Toë00].

The category Corr is compact closed with every object equal to its own dual.
The counit is given by the span

X ×X
∆
← X → Spec k,

and vice versa for the unit. This is a kind of motivic Poincaré duality; it gives
the usual Poincaré duality on any realization functor H•. Moreover, IX is a
symmetric functor LG → Corr since Xg = Xg−1

. It follows that we can talk
about the endomorphism operad End(IX), which is a modular LG-operad in
Corr. Its value on an n-tuple (g1, . . . , gn) of elements of G is the product∏n

i=1X
gi.

There are natural evaluation maps M
G

g,n(X, β)→ IX, giving a diagram

M
G

g,n ←M
G

g,n(X, β)→ (IX)n,
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equivariant for the LG ≀ Sn-action on all three spaces. We can write this as a
diagram of stable LG ≀ S-modules in Stack:

M
π
←M(X, β)

ev
→ End(IX).

Pushing forward the virtual fundamental class defines a morphismM→ End(IX)
of LG ≀ S-modules in Corr,

(ev × π)∗[M(X, β)]vir ∈ A•(End(IX)×M).

Theorem 4.12. For any fixed β ∈ H2(X/G,Z), the morphism just defined
gives the inertia variety IX the structure of an algebra over M in Corr.

Proof. We need to show that for any morphism Γ→ Γ′ in S, the diagram

M(Γ′) ✲ End(IX)(Γ′)

M(Γ)

✻

✲ End(IX)(Γ)

✻

in Corr commutes. We may assume that Γ → Γ′ is given by a contracting a
single edge, which is decorated by g, g−1 ∈ G. In this case we have

End(IX)(Γ) = End(IX)(Γ′)×Xg ×Xg−1

.

Unwinding the definition of composition in Corr, we see that we must study
the following diagram in Stack:

A ✲M(X, β)(Γ′) ✲ End(IX)(Γ′)

�

M(Γ)
❄

gl
✲M(Γ′)

❄

End(IX)(Γ) ✛id×∆
End(IX)(Γ′)×Xg

✻

�

M(Γ)

wwwwwwwwwwwwww
✛ M(X, β)(Γ)

✻

✛ B.

✻

Here ∆ is the diagonal map Xg → Xg × Xg−1

= Xg × Xg, and gl is the
gluing map of the operad M in Stack. The spaces A and B are defined
by the requirement that the smaller squares are cartesian. What we need to
show is that the pushforwards of gl![M(X, β)(Γ′)]vir and ∆![M(X, β)(Γ)]vir to
A•(End(IX)(Γ′)×M(Γ)) coincide.
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There is a natural morphism h : B → A, which is not an isomorphism. Indeed,
after unwinding the fiber products one finds that B parametrizes all the same
data as M(X, β)(Γ′), together with a decomposition of the admissible cover
P → C into two components whose genera and markings are determined by Γ.
The stack A parametrizes the same thing, except one only has a decomposition
of the stabilization of P → C into two components. However, one can show that
h is an isomorphism on an open set, and then prove that h∗∆

![M(X, β)(Γ)]vir =
gl![M(X, β)(Γ′)]vir, which proves the claim. What we need are exactly the
properties (III) and (IV) in [BM96], which they refer to as ‘cutting edges’ and
‘isogenies’. These are not proven exactly in this form in [AGV08], but they
follow by combining [AGV08, Proposition 5.3.1, 5.3.2] and the arguments of
[Beh97, Proposition 8] and the calculation immediately following Lemma 10 in
loc. cit., which generalize from pre-stable pointed curves to pre-stable pointed
curves with an admissible cover. �

Definition 4.13. We define ΘX to be the usual Novikov ring of X/G, i.e. the
ring of formal power series in the variables qβ, where β ∈ H2(X/G,Z) is the
class of a curve, and qβqβ

′

= qβ+β′

.

Definition 4.14. Let Corr ⊗ ΘX be the category obtained by tensoring all
hom-spaces in Corr with ΘX .

We define a morphism φ :M→ End(IX) in Corr⊗ΘX by
∑

β

(ev × π)∗[M(X, β)]virqβ ∈ A•(End(IX)×M)⊗ΘX .

Theorem 4.15. With these maps, IX is an algebra over M in Corr⊗ΘX .

Proof. This is clear from the preceding theorem. �

The category Corr is equipped with realization functors associated to (Weil)
cohomology theories; similarly, the category Corr ⊗ ΘX has functors Y 7→
H•(Y,ΘX) by the universal coefficients theorem. The cohomology of IX is
exactly Fantechi and Göttsche’s ring H•(X,G). Applying H• to the morphism
M→ End IX, one finds the following result:

Theorem 4.16. Let X be a smooth projective variety with an action of the finite
group G. Then the stringy cohomology ring H•(X,G), taken with coefficients
in the Novikov ring of X, is in a canonical way a G-CohFT.

Remark 4.17. In the above statement, we consider H•(X,G) just as a super
vector space, but one can with some care introduce a grading compatible with
the algebra. To do this, one needs to introduce a grading on Θ via deg(qβ) =
−2c1[X/G] ∩ β, and equip H•(X,G) with the so-called age grading. We omit
the details as this is well known.
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The above theorem was announced in [JKK05], but a proof has not appeared.
Although it is certainly possible to prove this without the language of operads,
the author believes that the operadic framework has simplified the proof.
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