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DIOPHANTINE APPROXIMATION WITH RESTRICTED

NUMERATORS AND DENOMINATORS ON SEMISIMPLE

GROUPS

A. GORODNIK AND S. KADYROV

Abstract. We consider the problem of Diophantine approximation on
semisimple algebraic groups by rational points with restricted numera-
tors and denominators and establish a quantitative approximation result
for all real points in the group by rational points with any prescribed
denominator and an almost prime numerator.

1. Introduction

In this paper we are interested in the problem of Diophantine approximation
of real points x by rational points u

v , where the numerator u and the de-
nominator v are restricted to interesting arithmetic sets; for instance, when
u, v are primes or r-primes. Recall that an integer is called r-prime if it is a
product of at most r prime factors counted with multiplicities.

Starting from the work of Vinogradov [V], the question for which α > 1 the
inequality

∣

∣

∣
x−

u

v

∣

∣

∣
≤ v−α, x ∈ R, (1.1)

has infinitely many solutions with integral u and prime v attracted significant
attention (see [V77, H83, B86, J93, H96, HBJ02, M09]). When u is r-prime
and v is prime, this question has been investigated in [V76, H84], but it still
seems open when both u and v are assumed to be prime (see [R77, S82]).

Here we consider an analogous question for the Diophantine approximation
on semisimple algebraic groups. For instance, let us consider a special linear
group SLN = {x ∈ MatN (C) : det(x) = 1}. It is well known that SLN (Q)
is dense in SLN (R), and explicit quantitative density estimates have been
established in [GGN]. Now it is natural to ask whether we can approximate
any x ∈ SLN (R) by rational points z ∈ SLN (Q) whose coordinates have
prescribed arithmetic properties. In particular,

Question 1.1. Is the set of points in SLN (Q) with prime denominators and

r-prime numerators dense in SLN (R)?

As we shall show, this is indeed the case, and moreover, a quantitative
estimate similar to (1.1) holds.
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2 A. GORODNIK AND S. KADYROV

In full generality, our result deals with a simply connected semisimple al-
gebraic Q-group G ⊂ GLN which is isotropic over Q and Q-simple. It is
known that G(Q) is dense in G(R). Moreover, it follows from the strong
approximation property [PR, §7.4] that for every n ≥ 2, the set G(Z[1/n])
is dense in G(R). Every z ∈ G(Q) can be uniquely written as z = v−1 u
with v ∈ N and u ∈ MatN (Z) such that gcd(u11, . . . , uNN , v) = 1. We use
the denominator den(z) := v to measure complexity of rational points and
quantify their density in G(R) with respect to a right invariant Riemannian
metric d on G(R).

Let f1, . . . , ft be a collection of polynomials on MatN (C) with integral co-
efficients. We assume that fi’s considered as elements of the coordinate
ring Q[G] are nonzero, distinct, and absolutely irreducible. We say that an
element z ∈ MatN (Z[1/n]) is r-prime, with respect to the family of polyno-
mials f1, . . . , ft, if f1(z) · · · ft(z) is a product of at most r prime factors in
the ring Z[1/n].

Our main result is the following

Theorem 1.2. Given a simply connected semisimple algebraic group G ⊂
GLN defined over Q, which is isotropic over Q and Q-simple, and a collection

of polynomials f1, . . . , ft as above, there exist explicit α > 0 and r ∈ N such

that for every x ∈ G(R) and n ≥ n0(x), one can find z ∈ G(Q) satisfying

d(x, z) ≤ n−α,

den(z) = n,

and r-prime in Matn(Z[1/n]). Moreover, the constant n0(x) is uniform over

x in bounded subsets of G(R).

Remark 1.3. Let ‖ · ‖∞ be the Euclidean norm on MatN (R). Using that
G(R) is a submanifold of MatN (R), one can check that

‖x1 − x2‖∞ ≪ d(x1, x2), x1, x2 ∈ G(R),

where the implied constant is uniform over x1, x2 in bounded subset of G(R).
Hence, Theorem 1.2 also implies a Diophantine approximation result with
respect to the Euclidean norm.

Next we consider the case when G is not necessarily isotropic over Q. Then
the set G(Z[1/p]), where p is prime, might be discrete in G(R). In fact,
G(Z[1/p]) is dense in G(R) if and only if the group G is isotropic over the
p-adic field Qp (see [PR, Th. 7.12]). Under this assumption we prove a
weaker version of Theorem 1.2 for G(Z[1/p]) ⊂ G(R) where the parameters
α, r, n0(x) might depend on p.

Theorem 1.4. Given a simply connected Q-simple algebraic group G ⊂
GLN defined over Q, a collection of polynomials f1, . . . , ft as above, and a

finite collection P of primes such that G is isotropic over Qp for all p ∈ P,
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there exist explicit α > 0 and r ∈ N such that for every x ∈ G(R) and

n ≥ n0(x) whose prime divisors are in P, one can find z ∈ G(Q) satisfying

d(x, z) ≤ n−α,

den(z) = n,

and r-prime in Mat(Z[1/n]). Moreover, the constant n0(x) is uniform over

x in bounded subsets of G(R).

More explicit statements of Theorems 1.2 and 1.4 are given in Section 6
below.

The proof of the main theorems is based on the uniform spectral gap prop-
erty for the automorphic unitary representations and the asymptotic analy-
sis of suitable averaging operators combined with standard number-theoretic
sieving arguments. In the following section we introduce essential notation
and outline the strategy of the proof in more details.

Acknowledgements. The first author is support by EPSRC, ERC and
RCUK, and the second author is supported by EPSRC. We would like to
thank A. Haynes for useful comments.

2. Initial set-up

Throughout the paper, p always denotes a prime number.

Let G ⊂ GLN be a simply connected Q-simple algebraic group defined over
Q. We also use the same notation for the corresponding integral model of
G defined by the embedding of G into GLN .

For n ∈ N, we set

Gf
n :=

∏

p|n

G(Qp) and Gn := G(R)×Gf
n.

Let

Γn := G(Z[1/n]).

We consider Γn as a subgroup of Gn embedded in Gn diagonally. Then Γn
is a discrete subgroup with finite covolume (see [PR, §5.4]).

For every prime p, we fix a special maximal compact open subgroup Up of
G(Qp) (as defined in [BrT72, T79]), so that Up = G(Zp) for almost all p.

We denote by mG(Qp) the Haar measure on G(Qp) normalised so that

mG(Qp)(Up) = 1.

The Haar measure mGf
n
on Gf

n is the product of the measures mG(Qp) over p
dividing n. The Haar measure mGn on Gn is the product of a Haar measure
mG(R) on G(R) and the measure mGf

n
.
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For q ∈ N, coprime to n, we define the congruence subgroups

Γn(q) := {γ ∈ Γn : γ = id mod q}.

Clearly, Γn(q) is a finite index normal subgroup of Γn, and the space

Yn,q := Gn/Γn(q)

has finite volume. For simplicity, we also set Yn := Gn/Γn. We denote
by mYn,q the invariant measure on Yn,q induced by mGn and by µYn,q the

probability invariant measure on Yn,q, so that µYn,q =
mYn,q

mYn,q (Yn,q)
.

We denote by ‖ · ‖p the maximum norm on MatN (Qp). Given n ∈ N with
prime decomposition n =

∏

p p
αp , we set

Bn,p := {g ∈ G(Qp) : ‖g‖p = pαp} and Bf
n :=

∏

p|n

Bn,p. (2.1)

Note that Bn,p is a compact subset of G(Qp), which is invariant under the
compact open subgroup G(Zp). In particular, Bn,p is invariant under Up
for almost all p. We fix a right-invariant Riemannian metric on G(R). For
x ∈ G(R) and ǫ > 0, we set

B∞(x, ǫ) := {g ∈ G(R) : d(g, x) ≤ ǫ},

Bn(x, ǫ) := B∞(x, ǫ)×Bf
n.

We denote by L2(Yn,q) = L2(Yn,q, µYn,q ) the Hilbert space of square-integrable

functions on Yn,q, and by L2
0(Yn,q) the subspace of functions with zero inte-

gral. For p = ∞ and a prime p dividing n, the group G(Qp) naturally acts
on Yn,q, and we denote by πYn,q,p the corresponding unitary representation

of G(Qp) on L
2(Yn,q). We denote by πYn,q and πYn,q ,f the unitary representa-

tions of Gn and Gf
n on L2(Yn,q) respectively. It would be also convenient to

denote by π0Yn,q,p, π
0
Yn,q

, π0Yn,q,f the restrictions of the above representations

to L2
0(Yn,q).

Given a unitary representation π of a locally compact group G on a Hilbert
space H and a finite Borel measure β on G, we denote by π(β) : H → H the
corresponding averaging operator defined by

π(β)v =

∫

G
π(g)v dβ(g), v ∈ H.

We note that if β is a probability measure, then ‖π(β)‖ ≤ 1.

The crucial ingredient of our argument is the study of suitable averaging
operators on the space L2(Yn,q). Namely, we denote by βn,x,ǫ the uniform
probability measure on Gn supported on the set Bn(x, ǫ). This defines an
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averaging operator

πYn,q (βn,x,ǫ) : L
2(Yn,q) → L2(Yn,q) : (2.2)

f 7→
1

mGn(Bn(x, ǫ))

∫

Bn(x,ǫ)
πYn,q (g)f dmGn(g).

A unitary representation π of a locally compact group G on a Hilbert space
H is called Lr+ integrable if there exists a dense family of vectors v1, v2 ∈ H
such that the function

g 7→ 〈π(g)v1, v2〉 , g ∈ G,

is in Lr+δ(G) for every δ > 0. In our setting, it follows from the property (τ),
established in [C03], that the representations πYn,q,p, restricted to L2

0(Yn,q),
are uniformly integrable. Namely, there exists r ≥ 2, independent of n, q, p,
such that all the representations πYn,q,p, restricted to L2

0(Yn,q), are L
r+ in-

tegrable. We denote by r(G) the least real number with this property. Let
ι(G) be the least even integer greater than or equal to r(G)/2 if r(G) > 2,
and ι(G) = 1 if r(G) = 2.

Outline of the proof. In Section 3, we analyse the asymptotic behaviour
of the averaging operators πYn,q (βn,x,ǫ) and establish a quantitative mean
ergodic theorem for them, namely, an estimate of the form

∥

∥

∥
πYn,q (βn,x,ǫ)|L2

0(Yn,q)

∥

∥

∥
≪ mGf

n
(Bf

n)
−θ, (2.3)

where θ > 0 is determined by the integrability exponent r(G). This argu-
ment is based on the techniques developed in [GN, GN12a], but it is crucial
for our application that the implied constant in (2.3) is uniform on n, and
this requires additional considerations.

Section 4 plays auxiliary role. In this section we establish several volume
estimates which might be of independent interest. We use these estimates
in the later sections to guarantee uniformity in the parameter n.

In Section 5, we use (2.3) to estimate the cardinality of elements in γ̄Γn(q)
lying in the regions Bn(x, ǫ). Typically, such a counting estimate requires
that the regions are well-rounded in the sense of [GN12a, Def. 1.1], but
the regions Bn(x, ǫ) are not well-rounded as ǫ → 0+. Nonetheless, we shall
establish a quantitative estimate for |Bn(x, ǫ) ∩ γ̄Γn(q)| as n→ ∞.

Finally, in Section 6, we use a combinatorial sieving argument as in [HR,
NS10, GN12b] to estimate the cardinality of almost prime points lying in
the regions Bn(x, ǫ). This leads to the proof of the main theorems.

3. Averaging operators

In this section, we study the asymptotic behaviour of the averaging op-
erators πYn,q(βn,x,ǫ) defined in (2.2). Similar problem has been previously
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investigated in [GN, GN12a]. In particular, the following theorem can be
proved by adopting the methods of [GN12a, Theorem 4.5].

Theorem 3.1. For every η > 0 and f ∈ L2(Yn,q),
∥

∥

∥

∥

∥

πYn,q (βn,x,ǫ)f −

∫

Yn,q

f dµYn,q

∥

∥

∥

∥

∥

2

≪n,η mGf
n
(Bf

n)
−(2ι(G))−1+η‖f‖2,

where the implied constant depends only on the set of prime divisors of n.

Proof. The statement of the theorem is equivalent to the estimate
∥

∥

∥
π0Yn,q (βn,x,ǫ)

∥

∥

∥
≪n,η mGf

n
(Bf

n)
−(2ι(G))−1+η, η > 0.

We observe that the probability measure βn,x,ǫ decomposes as a product

βn,x,ǫ = β∞x,ǫ ⊗





⊗

p|n

βn,p



 ,

where β∞x,ǫ is the uniform probability measure on G(R) supported onB∞(x, ǫ),
and βn,p’s are the uniform probability measures on G(Qp) supported on Bn,p.
This implies that π0Yn,q(βn,x,ǫ) can be written as a product of commuting op-
erators

π0Yn,q(βn,x,ǫ) = π0Yn,q,∞(β∞x,ǫ)
∏

p|n

π0Yn,q ,p(βn,p).

Since ‖π0Yn,q ,∞(β∞x,ǫ)‖ ≤ 1, we obtain
∥

∥

∥
π0Yn,q (βn,x,ǫ)

∥

∥

∥
≤

∏

p|n

∥

∥

∥
π0Yn,q,p(βn,p)

∥

∥

∥
. (3.1)

The argument as in [GN12a, Theorem 4.5] gives the estimate
∥

∥

∥π0Yn,q ,p(βn,p)
∥

∥

∥ ≪p,η mG(Qp)(Bn,p)
−(2ι(G))−1+η, η > 0, (3.2)

which completes the proof of the theorem. �

We note that the crucial estimate (3.2) is based on Nevo’s transfer princi-
ple (see [N98]) and the spherical Kunze–Stein inequality (see, for instance,
[C97]). The implied constant in (3.2) can be estimated explicitly, but un-
fortunately it blows up as p→ ∞.

For our purposes we need the following uniform version of Theorem 3.1.

Theorem 3.2. For every η > 0 and f ∈ L2(Yn,q),
∥

∥

∥

∥

∥

πYn,q(βn,x,ǫ)f −

∫

Yn,q

f dµYn,q

∥

∥

∥

∥

∥

2

≪η mGf
n
(Bf

n)
−(4ι(G))−1+η‖f‖2.
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Proof. As in the above proof, we need to estimate ‖π0Yn,q (βn,x,ǫ)‖, and be-

cause of (3.1), it is sufficient to give a bound on the norms of π0Yn,q ,p(βn,p).

We claim that
∥

∥

∥π0Yn,q,p(βn,p)
∥

∥

∥ ≤ cp,ηmG(Qp)(Bn,p)
−(4ι(G))−1+η, η > 0, (3.3)

where the constant cp,η ≥ 1 satisfies
∏

p

cp,η <∞.

Clearly, (3.1) combined with (3.3) implies the theorem.

To prove (3.3) we consider the tensor-power representation (π0Yn,q ,p)
⊗ι(G). It

follows from Nevo’s spectral transfer principle [N98, Th. 1] that
∥

∥

∥π0Yn,q,p(βn,p)
∥

∥

∥ ≤
∥

∥

∥(π0Yn,q ,p)
⊗ι(G)(βn,p)

∥

∥

∥

1/ι(G)
. (3.4)

Since π0Yn,q,p is L
r(G)+ integrable, the representation (π0Yn,q,p)

⊗ι(G) is L2+ in-

tegrable. Therefore, by [CHH88], the representation (π0Yn,q,p)
⊗ι(G) is weakly

contained in the regular representation λG(Qp) of G(Qp) on L
2(G(Qp)). This

implies the estimate
∥

∥

∥
(π0Yn,q ,p)

⊗ι(G)(βn,p)
∥

∥

∥
≤

∥

∥λG(Qp)(βn,p)
∥

∥ . (3.5)

Let B̃n,p := UpBn,pUp and β̃n,p be the uniform probability measure sup-

ported on B̃n,p. Recall that for almost all p, we have Up = G(Zp). For those

p, we have B̃n,p = Bn,p and
∥

∥λG(Qp)(βn,p)
∥

∥ =
∥

∥

∥
λG(Qp)(β̃n,p)

∥

∥

∥
. (3.6)

To deal with the remaining finite set of primes, we observe that Bn,p ⊂ B̃n,p,
and hence for every f ∈ L2(G(Qp)),

∥

∥λG(Qp)(βn,p)f
∥

∥ ≤
∥

∥λG(Qp)(βn,p)|f |
∥

∥

≤
mG(Qp)(B̃n,p)

mG(Qp)(Bn,p)
·
∥

∥

∥
λG(Qp)(β̃n,p)|f |

∥

∥

∥
.

Hence,

∥

∥λG(Qp)(βn,p)
∥

∥ ≤
mG(Qp)(B̃n,p)

mG(Qp)(Bn,p)
·
∥

∥

∥
λG(Qp)(β̃n,p)

∥

∥

∥
. (3.7)

Since the group Up is compact, there exists κp ∈ N such that

B̃n,p ⊂ {g ∈ G(Qp) : p
αp−κp ≤ ‖g‖p ≤ pαp+κp}. (3.8)

Consider the function

v(ℓ) := mG(Qp)

(

{g ∈ G(Qp) : ‖g‖p = pℓ}
)

.
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By [D84, Th. 7.4], the sum
∑

ℓ≥0 v(ℓ)p
−ℓs is a rational function of p−s.

Therefore,

v(ℓ) =

i0
∑

i=1

ri(ℓ)p
aiℓ

for some polynomials ri and ai ∈ Z. In view of (3.8), this implies that for
some cp ≥ 1,

mG(Qp)(B̃n,p) ≤ cpmG(Qp)(Bn,p).

Hence, it follows from (3.6) and (3.7) that
∥

∥λG(Qp)(βn,p)
∥

∥ ≤ cp

∥

∥

∥λG(Qp)(β̃n,p)
∥

∥

∥ , (3.9)

where cp = 1 for almost all p.

Since β̃n,p is bi-invariant under Up, we can estimate the norm
∥

∥

∥
λG(Qp)(β̃n,p)

∥

∥

∥

using Herz’ majoration argument, as explained in [C97]. Indeed, since Up’s
are special subgroups, it follows from the structure theory [T79, 3.3.2] that
there exists a closed amenable subgroup Qp such that

G(Qp) = UpQp, (3.10)

i.e., G(Qp) is an Iwasawa group in the sense of [GN, Def. 5.1(1)]. The Herz’
majoration argument [C97] can be applied to any Iwasawa group. It gives
that for every f ∈ L2(G(Qp)) and s ∈ [1, 2),

‖λG(Qp)(β̃n,p)f‖2 ≤ ap,s ‖β̃n,p‖s‖f‖2 = ap,smG(Qp)(B̃n,p)
−1+1/s‖f‖2 (3.11)

≤ ap,smG(Qp)(Bn,p)
−1+1/s‖f‖2.

The constant ap,s in the above estimate is explicit and computed in terms
of the Harish-Chandra function Ξp (see [GN, Def. 5.1(2)]), which we now
recall.

Let ∆p denote the modular function on the group Qp. For g ∈ G(Qp), we
denote by q(g) the Qp-component of g with respect to the decomposition
(3.10). The Harish-Chandra function on G(Qp) is defined by

Ξp(g) =

∫

Up

∆p(q(gu))
−1/2 dmG(Qp)(u).

The constant ap,s in (3.11) is given by

ap,s = ‖Ξp‖t

with t = (1− 1/s)−1. We have

ap,s ≥ Ξp(e)mG(Qp)(Up)
1/t = 1,

and by [GN12a, Prop. 6.3], when t > 4 (that is, when s < 4/3),
∏

p

ap,s <∞.
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Combining (3.4), (3.5), (3.9), and (3.11), we conclude that
∥

∥

∥
π0Yn,q,p(βn,p)

∥

∥

∥
≤ (ap,scp)

1/ι(G)mG(Qp)(Bn,p)
(−1+1/s)/ι(G) ,

where
∏

p

(ap,scp)
1/ι(G) <∞

for s < 4/3. This implies (3.3) and completes the proof of the theorem. �

4. Volume estimates

This section plays auxiliary role and can be skipped for the first reading.
Here we prove uniform estimates for the volumes of the sets Yn and the sets
Bf
n.

Proposition 4.1.

inf
n∈N

mYn(Yn) > 0 and sup
n∈N

mYn(Yn) <∞.

Proof. For n ∈ N we define

Of
n :=

∏

p|n

G(Zp), (4.1)

which is a compact open subgroup of Gf
n.

To prove the first claim, we fix a sufficiently small open subset O∞ of G(R)
and set On := O∞ ×Of

n. We claim that On injects into Yn = Gn/Γn under
the projection map Gn → Gn/Γn. Indeed, if for some γ ∈ Γn, we have
Onγ ∩ On 6= ∅, then it follows that γ ∈ G(Z). Therefore, it is sufficient to
take O∞ which injects into G(R)/G(Z). Then

mYn(Yn) ≥ mG(R)(O
∞)

∏

p|n

mG(Qp)(G(Zp)).

SincemG(Qp)(G(Zp)) = mG(Qp)(Up) = 1 for almost all p, this proves the first
claim.

Now we turn to the proof of the second claim. We fix a prime p0 such that G
is isotropic over Qp and Up = G(Zp) (such a prime exists by [PR, Th. 6.7]).
We consider the two separate cases depending on whether p0 divides n or
not.

Suppose that p0 divides n and write n = pα0n0 with n0 coprime to p. We
identify Gp0 and Gf

n0
with the corresponding subgroups of Gn, so that

Gn = Gp0G
f
n0
. (4.2)

Since G is isotropic over Qp, it follows that Gp0 is not compact, and by
the strong approximation property [PR, §7.4], Gp0Γn is dense in Gn. In
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particular, it follows that for every g ∈ Gn,

Gp0Γn ∩O
f
n0
g 6= ∅.

This proves that

Gn = Gp0O
f
n0
Γn.

Let Ωp0 be a measurable fundamental set in Gp0 for the right action of Γp0 .
Then Gp0 = Ωp0Γp0 , and every element g ∈ Gn can be written with respect
to the decomposition (4.2) as

g = (ωδ, o) · (γ, γ) = (ω, oδ−1) · (δγ, δγ),

where ω ∈ Ωp0 , δ ∈ Γp0 , o ∈ Of
n0
, and γ ∈ Γn. Since oδ−1 ∈ Of

n0
and

δγ ∈ Γn, this shows that

Gn = Ωp0O
f
n0
Γn.

Therefore,

mYn(Yn) ≤ mGn(Ωp0O
f
n0
) = mGp0

(Ωp0) ·mGf
n0
(Of

n0
). (4.3)

We observe that

mGf
n0
(Of

n0
) =

∏

p|n0

mG(Qp)(G(Zp)).

Since G(Zp) is compact, mG(Qp)(G(Zp)) < ∞. Moreover, for almost p, we
have G(Zp) = Up and mG(Qp)(G(Zp)) = 1. Hence, the second claim of the
lemma follows from (4.3).

Now suppose that p0 does not divide n. In this case, we identify Gn and
G(Qp0) with the corresponding subgroups of Gnp0 , so that

Gnp0 = GnG(Qp0). (4.4)

Let Ωn be a measurable fundamental set in Gn for the right action of Γn.
We claim that the natural projection map

Ωn ×G(Zp0) → Ynp0 = Gnp0/Γnp0 (4.5)

defined by the decomposition (4.4) is one-to-one. Indeed, suppose that for
some g1, g2 ∈ Ωn and u1, u2 ∈ G(Zp0), there exists γ ∈ Γnp0 such that
g1γ = g2 and u1γ = u2. Then

γ = u−1
1 u2 ∈ Γnp0 ∩G(Zp0) = Γn

and since Ωn is a fundamental set, it follows that γ = e. This proves the
claim. It is clear the map (4.5) sends the product measure mGn ⊗mG(Qp0 )

to the measure mYnp0
. Hence, we obtain

mGn(Ωn)mG(Qp0 )
(G(Zp0)) ≤ mYnp0

(Ynp0).

Since it follows from the previous paragraph that the right hand side is
uniformly bounded, we conclude that mYn(Yn) = mGn(Ωn) is uniformly
bounded as well. This completes the proof of the proposition. �
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We say that a number n is isotropic if for every prime divisor p of n, the
group G is isotropic over Qp. In particular, if G is isotropic over Q, then
every number is isotropic.

Proposition 4.2. There exists a > 0 such that for every isotropic number

n,

mGf
n
(Bf

n) ≥ c(n)na,

where c(n) > 0 depends only on the set of prime divisors of n.

Moreover, if G is isotropic over Q, then c(n) is independent of n.

Proof. Let n =
∏

p p
αp be the prime decomposition of n. Since Bf

n is the

product of the sets Bn,p (see (2.1)), it is sufficient to prove that there exists
cp > 0 such that

mG(Qp)(Bn,p) ≥ cp (p
αp)a,

When G is isotropic over Q, we show that cp = 1 for almost all p.

Recall that Up is a special maximal compact subgroup. Therefore, by [T79,
3.3.3], we have a Cartan decomposition

G(Qp) = UpZp(Qp)Up,

where Zp is the centraliser of a maximal Qp-split torus Sp in G. We fix a set
Πp of (restricted) simple roots for G with respect to Sp, and set

S+
p = {s ∈ S(Qp) : |χ(s)|p ≥ 1 for χ ∈ Πp}.

Then the Cartan decomposition takes form

G(Qp) = UpS
+
p ΩpUp, (4.6)

where Ωp is a finite subset of Zp(Qp). Since Up is compact and Ωp is finite,
there exists c′p > 0 such that for g = u1sωu2 ∈ UpS

+
p ΩpUp, we have

‖g‖ ≤ c′p‖s‖p. (4.7)

Consider the representation ρ : G → GLN corresponding to the embedding
G ⊂ GLN and denote by Φp the set of weights of this representation with
respect to Sp. Since Sp is split over Qp, the action of Sp(Qp) on QN

p is
completely reducible, and

‖s‖p ≤ c′′p ·max
ξ∈Φp

|ξ(s)|p (4.8)

for some c′′p > 0.

Let Π∨
p denote the set of fundamental weights corresponding to Πp. A weight

ξ is called dominant if

ξ =
∏

ψ∈Π∨
p

ψnψ
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for some nonnegative integers nψ. It follows from [OV, Ch. 3, §1.9] that
there exists k0 ∈ N such that every weight ξ can be written as

ξk0 =
∏

χ∈Πp

χmχ (4.9)

with mχ ∈ Z. Moreover, if ξ is dominant, then the integers mχ are non-
negative.

By [BoT65, Th. 7.2], there exists a semisimple subgroup G̃p of G which is
split over Qp, contains Sp as a maximal torus, and the set Πp forms the set of

simple roots for Sp in G̃p. The linear representations of G̃p defined over Qp

are described by the theory of highest weights. In particular, it follows from
the description of possible weights (see [OV, Ch. 3, §2.2]) that the maximum
in (4.8) can be taken over the dominant weights in Φp. Moreover, it follows
from the classification of semisimple groups and their representations that
the set of all possible weights appearing in ρ|Sp for some p is finite. Let ∆p

be the product of all positive roots of Sp in G counted with multiplicities.
Then we deduce from (4.9) that there exists ℓ ∈ N, independent of p, such
that

ξ ≤ ∆ℓ
p (4.10)

for all dominant weights ξ appearing in ρ|Sp .

Now combining (4.7), (4.8) and (4.10), we deduce that for all g = u1sωu2 ∈
UpS

+
p ΩpUp, we have

‖g‖p ≤ (c′pc
′′
p) |∆p(s)|

ℓ,

and when g ∈ Bn,p, we obtain

|∆p(s)| ≥ (c′pc
′′
p)

−1/ℓ (pαp)1/ℓ. (4.11)

By [M71, 3.2.15],

mG(Qp)(UpsUp) ≥ |∆p(s)|. (4.12)

Since both G(Zp) and Up are compact open subgroups, G(Zp)∩Up has finite
index in Up, and there exists an open normal subgroup Vp of Up contained
in G(Zp). Then for g = u1sωu2 ∈ UpS

+
p ΩpUp, we obtain

mG(Qp)(VpgVp) = mG(Qp)(u1Vps(ωVpω
−1)ωu2) (4.13)

= mG(Qp)(Vps(ωVpω
−1)).

By compactness, both Vp and Vp∩ωVpω
−1 have finite index in Up. Therefore,

it follows that

mG(Qp)(UpsUp) ≤ c′′′p mG(Qp)(Vps(ωVpω
−1)) (4.14)

for some c′′′p > 0. Hence, when g ∈ Bn,p, we deduce from (4.11)–(4.12)
combined with (4.13)–(4.14) that

mG(Qp)(VpgVp) ≥ (c′pc
′′
p)

−1/ℓ(c′′′p )
−1 (pαp)1/ℓ.
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Since Vp ⊂ G(Zp), we have VpgVp ⊂ Bn,p, and this proves the first claim of
the proposition.

To prove the second claim, let us assume first that G is split over Q. Then the
Cartan decomposition (4.6) is of the form G(Qp) = UpS

+
p Up. For almost all

p, we can take Sp to be a maximal Q-split torus S. Then the action of S(Q)
on QN is completely reducible. Since for almost all p, we have Up = G(Zp),
the estimate (4.7) holds with c′p = 1 for almost all p. Since the action of S
is completely reducible over Q, for s ∈ S,

ρ(s) =
∑

ξ∈Φp

ξ(s)vξ

for some vξ ∈ MatN (Q). Hence, in the estimate (4.8),

c′′p = max
ξ

‖vξ‖p,

and it is clear that for almost all p, c′′p = 1. Finally, in the argument (4.13)–
(4.14), we can take Vp = Up = G(Zp) for almost all p. Therefore, for almost
all p, we obtain

mG(Qp)(Bn,p) ≥ (pαp)1/ℓ,

which completes the proof of the proposition when G is split.

Now let G be isotropic over Q. Then by [BoT65, Th. 7.2], there exists a
semisimple Q-subgroup H of G which is split over Q. Moreover, by [BoT72,
Cor. 4.6], the group H is simply connected. It follows from the previous
paragraph that for almost all p,

mH(Qp)(Bn,p ∩H(Qp)) ≥ (pαp)1/ℓ. (4.15)

Here mH(Qp) is the Haar measure on H(Qp) which is normalised so that

mH(Qp)(U
H
p ) = 1, where UH

p is a special maximal compact subgroup of H(Qp)

which is chosen so that UH
p = H(Zp) for almost all p. It follows from the

uniqueness of invariant measures that the measure mG(Qp) restricted to the
open set UpH(Qp) is given by

f 7→
1

mH(Qp)(Up ∩H(Qp))

∫

Up×H(Qp)
f(uh) dmG(Qp)(u)dmH(Qp)(h) (4.16)

for f ∈ Cc(UpH(Qp)). Indeed, the measure m, defined by (4.16), is invariant
under the transitive action

x 7→ uxh−1, x ∈ UpH(Qp), (u, h) ∈ Up ×H(Qp),

and satisfies the normalisation m(Up) = 1, so that it has to be equal to the
measure mG(Qp) restricted to UpH(Qp). It follows from (4.16) that

mG(Qp)(Up(Bn,p ∩H(Qp))) ≥
mH(Qp)(Bn,p ∩H(Qp))

mH(Qp)(Up ∩H(Qp))
. (4.17)

For almost all p, we have

Up ∩H(Qp) = G(Zp) ∩H(Qp) = H(Zp),
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so that

mH(Qp)(Up ∩H(Qp)) = 1. (4.18)

Since the set Bn,p is Up-invariant for almost all p, it follows that for almost
all p,

mG(Qp)(Bn,p) ≥ mG(Qp)(Up(Bn,p ∩H(Qp))). (4.19)

Therefore, it follows from (4.15), combined with (4.17)–(4.19), that

mH(Qp)(Bn,p) ≥ (pαp)1/ℓ

for almost all p. This completes the proof of the proposition. �

5. Counting estimates

In this section we prove an estimate on the number of lattice points in the
regions Bn(x, ǫ).

Theorem 5.1. For every coprime n, q ∈ N, γ̄ ∈ Γn, x ∈ G(R), κ, η > 0,
and ǫ ∈ (0, ǫ0(κ, x)], the following estimate holds

|Bn(x, ǫ) ∩ γ̄Γn(q)| =
mGn(Bn(x, ǫ))

mYn,q (Yn,q)
+Ox

(

ǫκ+dim(G)mGf
n
(Bf

n)
)

+Ox,η

(

ǫ−κdim(G)mGf
n
(Bf

n)
1−(4ι(G))−1+η

)

,

where ǫ0(κ, x) and the implied constants are uniform over x in bounded sets.

This result will be deduced from Theorem 3.2 following the strategy of
[GN12a].

We set

On(ǫ) := B∞(e, ǫ)×
∏

p|n

G(Zp), (5.1)

where B∞(e, ǫ) is the ǫ-neighbourhood of identity in G(R) with respect to
the Riemannian metric d on G(R). Since the metric d is right invariant,
On(ǫ) is a symmetric neighbourhood of identity in Gn.

Lemma 5.2. For every n ∈ N and ǫ ∈ (0, 1],

ǫdim(G) ≪ mGn(On(ǫ)) ≪ ǫdim(G).

Proof. Writing B∞(e, ǫ) in the exponential coordinates for the Riemannian
metric, we deduce that

ǫdim(G) ≪ mG(R)(B
∞(e, ǫ)) ≪ ǫdim(G). (5.2)

We recall that the measures mG(Qp) are normalised so that mG(Qp)(Up) = 1,
and Up = G(Zp) for all but finitely many primes p. For the remaining
primes, we observe that since Up and G(Zp) are compact open subgroups in
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G(Qp), it follows that Up ∩ G(Zp) has finite index in both Up and G(Zp).
Therefore,

1 ≪
∏

p|n

mG(Qp)(G(Zp)) ≪ 1.

Combining this estimate with (5.2), we deduce the lemma. �

Lemma 5.3. (i) For every n ∈ N, x ∈ G(R), and ǫ, ǫ′ ∈ (0, 1],

On(ǫ
′)Bn(x, ǫ)On(ǫ

′) ⊂ Bn(x, ǫ+ c1(x)ǫ
′),

where c1(x) is uniform over x in bounded sets.

(ii) For every n ∈ N, x ∈ G(R), and ǫ, ǫ′ ∈ (0, ǫ0(x)],

mGn(Bn(x, ǫ+ ǫ′)) ≤ mGn(Bn(x, ǫ)) + c2(x)ǫ
′ǫdim(G)−1mGf

n
(Bf

n),

where ǫ0(x) and c2(x) are uniform over x in bounded sets.

Proof. To prove (i), we observe that Bn(x, ǫ) = B∞(x, ǫ) ×
∏

p|nBn,p and

the sets Bn,p are invariant under G(Zp). Thus, it suffices to prove that for
every u1, u2 ∈ B∞(e, ǫ′) and b ∈ B∞(x, ǫ), we have

d(x, u1bu2) ≤ ǫ+ c1(x)ǫ
′. (5.3)

Using the right invariance of the Riemannian metric on G(R), we obtain

d(x, u1bu2) = d(x(bu2)
−1, u1) ≤ d(x(bu2)

−1, e) + d(e, u1)

≤ d(x, bu2) + ǫ′ ≤ d(xb−1, bu2b
−1) + ǫ′

≤ d(xb−1, e) + d(e, bu2b
−1) + ǫ′ ≤ ǫ+ d(e, bu2b

−1) + ǫ′.

Since d(e, bu2b
−1) ≪b d(e, u2) ≤ ǫ′ where the implied constant is uniform

over b in bounded sets, we deduce (5.3).

To prove (ii), it is sufficient to show that

mG(R)(B
∞(x, ǫ+ ǫ′))−mG(R)(B

∞(x, ǫ)) ≤ c2(x)ǫ
′ǫdim(G)−1.

This follows from the disintegration formula for the measure mG(R) as in [S,
p. 66]. �

Let χn,ǫ be the constant multiple of the characteristic function of the set
On(ǫ) which is normalised so that

∫

Gn
χn,ǫ dmGn = 1. We also define a

function φγ̄n,q,ǫ on Yn,q = Gn/Γn(q) by

φγ̄n,q,ǫ(gΓn(q)) :=
∑

γ∈Γn(q)

χn,ǫ(gγγ̄).

Clearly, φγ̄n,q,ǫ is a bounded measurable function on Yn,q with compact sup-
port. The following lemma shows that averages of this function can be used
to approximate the cardinality |Bn(x, ǫ) ∩ γ̄Γn(q)|. Note that γ̄Γn(q) =
Γn(q)γ̄ because Γn(q) is normal in Γn.
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Lemma 5.4. For every coprime n, q ∈ N, γ̄ ∈ Γn, x ∈ G(R), ǫ, ǫ′ ∈ (0, 1],
and h ∈ On(ǫ

′),

|Bn(x, ǫ) ∩ γ̄Γn(q)| ≤

∫

Bn(x,ǫ+c1(x)ǫ′)
φγ̄n,q,ǫ′(g

−1hΓn(q)) dmGn(g),

|Bn(x, ǫ) ∩ γ̄Γn(q)| ≥

∫

Bn(x,ǫ−c1(x)ǫ′)
φγ̄n,q,ǫ′(g

−1hΓn(q)) dmGn(g).

With the help of Lemma 5.3(i), the proof of Lemma 5.4 is the same as the
proof of Lemma 2.1 in [GN12a].

Proof of Theorem 5.1. We first show that there exists θ0 > 0 such that for
any distinct γ1, γ2 ∈ Γn,

On(θ0)γ1 ∩ On(θ0)γ2 = ∅. (5.4)

Indeed, suppose that for some

(g∞, gf ), (h∞, hf ) ∈ On(θ) = B∞(e, θ)×
∏

p|n

G(Zp) and γ ∈ Γn,

we have

(g∞, gf ) = (h∞, hf )(γ, γ).

Then

(γ, γ) = (g∞h
−1
∞ , gfh

−1
f ) ∈ B∞(e, θ)2 ×

∏

p|n

G(Zp).

In particular, we conclude that γ ∈ G(Z), and hence γ = e if θ is sufficiently
small.

It follows from (5.4) for every θ ∈ (0, θ0],

µYn,q (On(θ)Γn(q)) =
mGn(On(θ))

mYn,q(Yn,q)
. (5.5)

Moreover,
∫

Yn,q

φγ̄n,q,θ dµYn,q =

∫

Gn

χn,θ(g)
dmGn(g)

mYn,q(Yn,q)
=

1

mYn,q (Yn,q)
,

and similarly,

‖φγ̄n,q,θ‖
2
2 =

∫

Gn

χ2
n,θ(g)

dmGn(g)

mYn,q (Yn,q)
=
mGn(On(θ))

−1

mYn,q (Yn,q)
.

By Theorem 3.2, for every ρ, η > 0, there exists cη > 0 such that
∥

∥

∥

∥

∥

πYn,q(βn,x,ρ)φ
γ̄
n,q,θ −

∫

Yn,q

φγ̄n,q,θ dµYn,q

∥

∥

∥

∥

∥

2

≤ cηmGf
n
(Bf

n)
−(4ι(G))−1+η‖φγ̄n,q,θ‖2.
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Therefore, we deduce that for every δ > 0,

µYn,q

({

hΓn(q) :

∣

∣

∣

∣

πYn,q(βn,x,ρ)φ
γ̄
n,q,θ(hΓn(q))−

1

mYn,q(Yn,q)

∣

∣

∣

∣

> δ

})

≤ c2ηδ
−2mGn(On(θ))

−1

mYn,q (Yn,q)
mGf

n
(Bf

n)
−(2ι(G))−1+2η.

Let us take δ > 0 such that

µYn,q (On(θ)Γn(q)) > c2ηδ
−2mGn(On(θ))

−1

mYn,q (Yn,q)
mGf

n
(Bf

n)
−(2ι(G))−1+2η . (5.6)

Note that it follows from (5.5) that we may choose δ so that

δ = Oη

(

mGn(On(θ))
−1mGf

n
(Bf

n)
−(4ι(G))−1+η

)

= Oη

(

θ−dim(G)mGf
n
(Bf

n)
−(4ι(G))−1+η

)

,

where we used Lemma 5.2. Then we deduce from (5.6) that there exists
h ∈ On(θ) satisfying

∣

∣

∣

∣

πYn,q (βn,x,ρ)φ
γ̄
n,q,θ(hΓn(q))−

1

mYn,q (Yn,q)

∣

∣

∣

∣

≤ δ,

which gives
∣

∣

∣

∣

∣

∫

Bn(x,ρ)
φγ̄n,q,θ(g

−1hΓn(q)) dmGn(g)−
mGn(Bn(x, ρ))

mYn,q(Yn,q)

∣

∣

∣

∣

∣

≤ δ mGn(Bn(x, ρ)).

Therefore,
∫

Bn(x,ρ)
φγ̄n,q,θ(g

−1hΓn(q)) dmGn(g) (5.7)

=
mGn(Bn(x, ρ))

mYn,q(Yn,q)
+Oη

(

θ−dim(G)mGn(Bn(x, ρ))mGf
n
(Bf

n)
−(4ι(G))−1+η

)

.

Now to finish the proof of the theorem, we observe that according to Lemma 5.4,

|Bn(x, ǫ) ∩ γ̄Γn(q)| ≤

∫

Bn(x,ǫ+c1(x)ǫκ+1)
φγ̄
n,q,ǫκ+1(g

−1hΓn(q)) dmGn(g).

Combining this estimate with (5.7), we obtain

|Bn(x, ǫ) ∩ γ̄Γn(q)| ≤
mGn(Bn(x, ǫ+ c1(x)ǫ

κ+1))

mYn,q (Yn,q)
(5.8)

+Oη

(

ǫ−(κ+1) dim(G)mGn(Bn(x, ǫ+ c1(x)ǫ
κ+1))mGf

n
(Bf

n)
−(4ι(G))−1+η

)

.

By Lemma 5.3(ii), for sufficiently small ǫ > 0,

mGn(Bn(x, ǫ+ c1(x)ǫ
κ+1)) = mGn(Bn(x, ǫ)) +Ox

(

ǫκ+dim(G)mGf
n
(Bf

n)
)

,
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where the implied constants are uniform over x in bounded sets. Also, we
have

mGn(Bn(x, ǫ+ c1(x)ǫ
κ+1)) = Ox

(

ǫdim(G)mGf
n
(Bf

n)
)

.

Therefore, (5.8) implies that

|Bn(x, ǫ) ∩ γ̄Γn(q)| ≤
mGn(Bn(x, ǫ))

mYn,q (Yn,q)
+Ox

(

ǫκ+dim(G)mGf
n
(Bf

n)
)

+Ox,η

(

ǫ−κdim(G)mGf
n
(Bf

n)
1−(4ι(G))−1+η

)

.

Here we used that mYn,q(Yn,q) ≫ 1 which follows from Proposition 4.1. This
proves the required upper bound for |Bn(x, ǫ) ∩ γ̄Γn(q)|.

The proof of the lower bound is similar, and we use the second estimate from
Lemma 5.4. Note that in this proof we need to arrange that ǫ−c1(x)ǫ

κ+1 > 0
which holds for sufficiently small ǫ, depending on κ, x. �

6. Completion of the proof

In this section, we finish the proof of our main results stated in the Intro-
duction. It would be convenient to introduce a parameter

a(G) := lim sup
n→∞

logmGf
n
(Bf

n)

log n
. (6.1)

Note that according to Theorem 5.1, the quantity a(G) measures the poly-
nomial growth rate of the number of rational points in G with given denom-
inator and lying in a bounded subset of G(R). By Proposition 4.2, a(G) > 0
if G is isotropic over Q. Given a finite set P of prime numbers, we also set

a(G,P) := lim sup
n→∞

′
logmGf

n
(Bf

n)

log n
,

where the lim sup is taken over all integers n with prime divisors in P. If
the group G is isotropic over Qp for every p ∈ P, then a(G,P) > 0 by
Proposition 4.2.

Throughout this section we use the following simplified notation:

d := dim(G), a := a(G), aP := a(G,P), ι := ι(G).

Recall that ι(G) is computed in terms of the integrability exponent of auto-
morphic representations (see Section 2).

For an integral polynomial f , we denote by ∆n(f) the positive integer,
coprime to n, representing the greatest common divisor of f(γ), γ ∈ Γn, in
the ring Z[1/n]. We denote by δn(f) the number of prime factors of ∆n(f).
Note that ∆n(f) divides ∆1(f) and δn(f) ≤ δ1(f).

The following result is a more precise version of Theorem 1.2.
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Theorem 6.1. Let G ⊂ GLN be a simply connected Q-simple algebraic

group defined over Q, which is isotropic over Q and f1, . . . , ft a collection

of polynomials as in the Introduction. Then for every x ∈ G(R), α ∈ (0, α0)
with α0 := d−1a(4ι)−1 and n ≥ n0(α, x), there exists z ∈ G(Q) satisfying

d(x, z) ≤ n−α,

den(z) = n,

and r-prime in MatN (Z[1/n]), where

r = δn(f1 · · · ft) +

⌈

9t deg(f1 · · · ft)(d+ 1)2

a(4ι)−1 − αd

⌉

.

The constant n0(α, x) is uniform over x in bounded subsets of G(R).

Proof. By Theorem 5.1, for every coprime n, q ∈ N, γ̄ ∈ Γn, x ∈ G(R),
κ, η > 0, and ǫ ∈ (0, ǫ0(κ, x)],

|Bn(x, ǫ) ∩ γ̄Γn(q)| =
mGn(Bn(x, ǫ))

mYn,q(Yn,q)
+Ox

(

ǫκ+dmGf
n
(Bf

n)
)

(6.2)

+Ox,η

(

ǫ−κdmGf
n
(Bf

n)
1−(4ι(G))−1+η

)

,

where the implied constants are uniform over x in bounded sets. We apply
this estimate with ǫn = mGf

n
(Bf

n)
−α′

where n is sufficiently large, α′ ∈

(0, α′
0), and α

′
0 := α0/a = d−1(4ι)−1. To optimise the error term in (6.2),

we choose

κ =
(4ι)−1 − α′d

α′(d+ 1)
. (6.3)

Note that the parameter α′
0 is chosen to guarantee that κ > 0. Then (6.2)

becomes

|Bn(x, ǫn) ∩ γ̄Γn(q)| =
mGn(Bn(x, ǫn))

mYn,q (Yn,q)
+Ox,η

(

mGf
n
(Bf

n)
1−α′(κ+d)+η

)

.

(6.4)
It would be convenient to set

Tn(x) := |Bn(x, ǫn) ∩ Γn|.

Since

mG(R)(B
∞(x, ǫ)) = mG(R)(B

∞(e, ǫ)) ≫ ǫd,

we have

mGn(Bn(x, ǫn)) ≫ mGf
n
(Bf

n)
1−α′d. (6.5)

Using (6.5) and Proposition 4.1, we deduce from (6.4) with sufficiently small
η > 0 that

Tn(x) ≫
mGf

n
(Bf

n)
1−α′d

mYn(Yn)
+Ox,η

(

mGf
n
(Bf

n)
1−α′(κ+d)+η

)

(6.6)

≫ mGf
n
(Bf

n)
1−α′d
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when n is sufficiently large. In particular, it follows from the definition of
a = a(G) that for every b ∈ (0, a) and sufficiently large n,

Tn(x) ≫ nb(1−α
′d). (6.7)

Since

mYn,q(Yn,q) = mYn(Yn) · [Γn : Γn(q)],

it follows from (6.4) that

|Bn(x, ǫn) ∩ γ̄Γn(q)| =
Tn(x)

[Γn : Γn(q)]
+Ox,η

(

mGf
n
(Bf

n)
1−α′(κ+d)+η

)

. (6.8)

Every w ∈ Z[1/n] can be uniquely written as w = u · [w]n where u is a unit
in Z[1/n] and [w]n ∈ Z≥0 is coprime to n. Let f = f1 · · · ft and Pn,z be the
set of prime numbers which are coprime to ∆n(f)n and bounded by z. We
denote by Sn,z(x) the cardinality of the set of γ ∈ Bn(x, ǫn) ∩ Γn such that
[f(γ)]n is coprime to Pn,z (equivalently, f(γ) is coprime to Pn,z in the ring
Z[1/n]).

We will apply the combinatorial sieve as in [HR, Th. 7.4] (see also [NS10,
Sec. 2]) to estimate the quantity Sn,z(x). For this we let

ak := |{γ ∈ Bn(x, ǫn) ∩ Γn : [f(γ)]n = k}|.

Then Tn(x) =
∑

k≥0 ak. To apply the combinatorial sieve we need to verify
the following three conditions:

(A0) For every square-free q divisible only by primes in Pn,z,

∑

k=0 mod q

ak =
ρ(q)

q
Tn(x) +Rq, (6.9)

where ρ(q) is a nonnegative multiplicative function such that for
primes p ∈ Pn,z, there exists c1 < 1 satisfying

ρ(p)

p
≤ c1. (6.10)

(A1) Summing over square-free q divisible only by primes in Pn,z,
∑′

q≤Tn(x)τ

|Rq| ≤ c2Tn(x)
1−ζ

for some c2, τ, ζ > 0.
(A2) For some w ∈ [2, z],

− l ≤
∑

p∈Pn,z :w≤p<z

ρ(p) log p

p
− t log

z

w
≤ c3 (6.11)

for some c3, l, t > 0.
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Once the conditions (A0), (A1), and (A2) are verified, by [HR, Th. 7.4], for

z = Tn(x)
τ/s with s > 9t, we have the following estimate

Sn,z(x) ≥ Tn(x)W (z)

(

C1 − C2l
(log log 3Tn(x))

3t+2

log Tn(x)

)

, (6.12)

where

W (z) =
∏

p∈Pn,z :p≤z

(

1−
ρ(p)

p

)

,

and the constants C1, C2 > 0 are determined by c1, c2, c3, τ, ζ, t.

We denote by Γ
(q)
n the image of Γn in GLN (Z[1/n]/qZ[1/n]). Note that

Γ(q)
n ≃ Γn/Γn(q).

To verify (A0), we observe that (6.8) implies that
∑

k=0 mod q

ak = |{γ ∈ Bn(x, ǫn) ∩ Γn : f(γ) = 0 mod q}|

=
∑

γ̄∈Γ
(q)
n :f(γ̄)=0 mod q

|Bn(x, ǫn) ∩ γ̄Γn(q)|

= |Γ(q)
n ∩ {f = 0}|

(

Tn(x)

[Γn : Γn(q)]
+Ox,η

(

mGf
n
(Bf

n)
1−α′(κ+d)+η

)

)

=
ρ(q)

q
Tn(x) +Ox,η

(

|Γ(q)
n ∩ {f = 0}| ·mGf

n
(Bf

n)
1−α′(κ+d)+η

)

,

where

ρ(q) :=
q|Γ

(q)
n ∩ {f = 0}|

[Γn : Γn(q)]
.

Since q is coprime to ∆n(f), the polynomial f is not identically zero on Γ
(q)
n

and ρ(q) < q. Moreover, it follows from the strong approximation property
that

Γ(q)
n ≃

∏

p|q

Γ(p)
n ,

and for almost all primes p,

Γ(p)
n ≃ G(p)(Fp),

where G(p) denotes the reduction of G modulo p. Therefore, arguing as
in [NS10, Sec. 4.1], we deduce that the function ρ is multiplicative, (6.10)
holds, and for every prime p ∈ Pn,z,

ρ(p) = t+O(p−1/2). (6.13)

This proves (A0) with

Rq = Ox,η

(

|Γ(q)
n ∩ {f = 0}| ·mGf

n
(Bf

n)
1−α′(κ+d)+η

)

.
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It follows from (6.6) that
∑′

q≤Tn(x)τ

|Rq| ≪x,η

∑

q≤Tn(x)τ

qdmGf
n
(Bf

n)
1−α′(κ+d)+η

≪x,η (Tn(x)
τ )d+1Tn(x)

(1−α′(κ+d)+η)/(1−α′d).

Since η can be taken to be arbitrary positive number, we conclude that
∑′

q≤Tn(x)τ

|Rq| ≪x,η Tn(x)
1−ζ

with some ζ > 0, when

τ < τ0 := (1− (1− α′(κ+ d))/(1 − α′d))/(d + 1). (6.14)

Note that since κ > 0, it follows that τ0 > 0. This proves (A1). From (6.3),

τ0 =
(4ι)−1 − α′d

(d+ 1)2(1− α′d)
.

Using (6.13), we can also establish condition (A2) with

l = O (log log(∆n(f)n)) = O (log log n) .

This argument is exactly the same as in the proof of [GN12b, Th. 5.1].

Now we are in position to apply the main sieving argument (6.12). Note

that for z = Tn(x)
τ/s, it follows from (6.13) that

W (z) ≫ (log z)−t.

Therefore, (6.12) gives

Sn,Tn(x)τ/s(x) ≥
Tn(x)

(log Tn(x))t

(

C1 − C ′
2(log log n)

(log log 3Tn(x))
3t+2

log Tn(x)

)

,

Using (6.7), we deduce that for sufficiently large n,

Sn,Tn(x)τ/s(x) ≫x
Tn(x)

(log Tn(x))t
.

Every γ counted in Sn,Tn(x)τ/s(x) satisfies

d(x, γ) ≤ ǫn and γ ∈ Bf
n. (6.15)

This implies that den(γ) = n, and the numerator of γ is Ox(n). In particular,

[f(γ)]n ≪x n
deg(f).

On the other hand, for any γ counted in Sn,Tn(x)τ/s(x), all prime numbers p

which are coprime to ∆n(f) and divide [f(γ)]n must satisfy

p > z = Tn(x)
τ/s.
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Thus, using (6.7), we deduce that the number of such prime factors is
bounded from above by

log(ndeg(f)) +Ox(1)

log(Tn(x)τ/s)
=

s deg(f)

τb(1− α′d)
+ ox(1).

Since this estimate holds for all s > 9t, b < a and τ < τ0, the number of
such prime factors is at most

⌈

9t deg(f)

τ0a(1− α′d)

⌉

=

⌈

9t deg(f)(d+ 1)2

a((4ι)−1 − α′d)

⌉

provided that n is sufficiently large. Therefore, we conclude that the element
γ is r-prime in MatN (Z[1/n]) with

r = δn(f) +

⌈

9t deg(f)(d+ 1)2

a((4ι)−1 − α′d)

⌉

.

For every b ∈ (0, a) and sufficiently large n,

ǫn = mGf
n
(Bf

n)
−α′

≤ n−bα
′

.

Therefore, it follows from (6.15) that for every α < aα′
0 = α0 and sufficiently

large n,
d(x, γ) ≤ n−α.

This completes the proof of the theorem. �

When G is not assumed to be isotropic over Q, we have the following version
of Theorem 6.1.

Theorem 6.2. Let G ⊂ GLN be a simply connected Q-simple algebraic

group defined over Q, f1, . . . , ft a collection of polynomials as in the Intro-

duction, and P a finite collection of prime number such that G is isotropic

over Qp for all p ∈ P. Then for every x ∈ G(R), α ∈ (0, α0) with

α0 := d−1aP(2ι)
−1 and n ≥ n0(α, x) whose prime divisors are in P, there

exists z ∈ G(Q) satisfying

d(x, z) ≤ n−α,

den(z) = n,

and r-prime in MatN (Z[1/n]), where

r = δn(f1 · · · ft) +

⌈

9t deg(f1 · · · ft)(d+ 1)2

aP(2ι)−1 − αd

⌉

.

The constant n0(α, x) is uniform over x in bounded subsets of G(R).

The proof of Theorem 6.2 goes along the same lines as the proof of Theorem
6.1, but instead of the estimate on the averaging operators given by Theorem
3.2, we use Theorem 3.1. This leads to slightly better estimates for the
parameters α and r, but the parameter n0(α, x) now might depend on the
set P.
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