破片式战斗部对地空营装备的毁伤计算

姚 辉,张志峰

(空军工程大学 导弹学院,陕西 三原 713800)

摘要:通过对破片式战斗部毁伤场的分析,研究了破片式战斗部对地空导弹营的毁伤及其计算,为进一步进行装 备战损仿真分析提供了一定依据.

关键词:地空导弹武器系统;战场损伤;破片场;毁伤计算 中图分类号:U674.76 文献标识码:A

无论是在评估战斗部的毁伤效能,还是在对目标的损 伤研究中,都必须定量研究目标在战斗部作用下的毁伤情 况.通过对破片式战斗部毁伤场的分析,研究了破片式战 斗部对地空导弹营的毁伤及其计算,为进一步进行装备战 损仿真分析提供了一定依据.本文中主要以破片对目标的 杀伤作用为例,结合典型兵器的结构模型进行毁伤研究, 提出了一种较为详细的毁伤评估模型.

1 弹药分析及破片场的建立

弹药的主要用途是杀伤敌方各类目标,完成特定的战 术任务.但不同弹药对目标的毁伤机理不同,所以在研究 目标的毁伤之前,必须对弹药进行分析,分析是靠何种毁 伤元去毁伤目标,并根据弹药的结构确定毁伤元的分析, 即建立毁伤场.例如,破片式战斗部在终点处爆炸或开仓, 在炸点周围形成以破片为毁伤元的毁伤场,由战斗部类型 和终点条件,采用理论分析或试验方法总可确定毁伤场.

1.1 基本假设^[1]

当弹体爆炸时,由于战斗部不同,可能导致破片飞散 方向不同,即以球面向四周飞散或以对称锥面向四周飞 散,如图1所示.

破片以对称锥面向四周飞散,其实就是破片球面飞散 中的某一个球带,当弹体没有速度时,是对称于球心的球 带,当弹体有速度时,是对称于弹体速度方向的球带.

当破片以球面向四周飞散时,根据有关实弹试验数据 可知,沿各球瓣飞散出的破片数基本相同,表面破片的飞 散规律与经角 无关;沿各球带飞散出的破片数随纬角 的不同而不同,具有明显的正态分布特性.因此,可假设战 斗部爆炸后形成的破片分布为正态分布.令 f()代表破片 数沿 作正态分布的密度函数,则有: 文章编号:1006-0707(2009)09-0053-04

$$f() = \frac{1}{\sqrt{2}} e^{-(-)^{2/2}^{2}}$$
 (1)

式中:为 的均方差;^一为 的数学期望. *f(*)的曲线形状如图 2 所示,图中的 为包含有效破 片 90 %的飞散角.

图1 破片飞散球面

1.2 **破片场计算**

不同战斗部爆炸形成的自然破片的大小、形状、速度 以及飞散方向不同.战斗部爆炸后形成破片的质量分布、

* 收稿日期:2009 - 07 - 01
 作者简介:姚辉(1982 →),男,河北沧州人,硕士研究生,主要从事管理科学与工程研究.

空间飞散分布以及其速度可以由破片场来描述.

设 为破片飞散角, *n* 为战斗部爆炸后形成的破片 数, *m* 为破片质量, v₀ 为破片速度,则破片场可描述为:

1) 按 Magis 公式计算破片的平均质量

$$\mu = C_f \frac{t d^3}{1 + \frac{2m_C}{m_M}} \cdot f_1 T_s$$
(2)

式中:t为平均壁厚(mm);d为平均内径(mm); m_M 为金属 壳体质量(kg); m_C 为炸药质量(kg);G为实验系数,G= 0.132 804; f_1 为炸药系数,对于 TNT 炸药, f_1 =1.0; T_s 为钢 材系数.

 2) 按 Gurney 公式计算每个单元体形成的破片初速 (m/s)

$$v_0 = \sqrt{\frac{m_{C'} m_M}{1 + 0.5 m_{C'} m_M}}$$
(3)

其中: 是 Gurney 常数, 其值取决于炸药性质, 对于 TNT, = 7 600.

3) 破片的飞散分布

当破片以球面向四周飞散时,根据有关实弹试验数据 可知,沿各球瓣飞散出的破片数基本相同,表面破片的飞 散规律与经角 无关;沿各球带飞散出的破片数随纬角 的不同而不同,具有明显的正态分布特性.令 f()代表破 片数沿 作正态分布的密度函数,则有:

$$f() = \frac{1}{\sqrt{2}} e^{-(-\frac{1}{\sqrt{2}})^2/2^2}$$
 (4)

1.3 有效破片随距离的失效规律

根据破片运动方程

$$\frac{m_q \mathrm{d}v}{\mathrm{d}t} = -\frac{1}{2} C_x S v^2 \tag{5}$$

式中 : m_q 为破片的质量 (kg) ; S 为垂直于破片飞行方向的 迎风面积 (m²) ; C_x 为破片的迎面阻力系数; 为当地的空 气密度 (kg/m³) ; t 为破片的飞行时间 (s) ; v 为破片的飞行 速度 (m/s) ; x 为破片距爆炸点的距离 (m).

从而可以推得破片的飞行速度随飞行距离的变化函数:

$$v = e^{-\frac{C_x Sx}{2m_q}}$$
(6)

若令 v_{min}为质量为 m_q的破片的最小必要打击速度,则 该破片的有效杀伤距离 R 为:

$$R = -2 m_q \ln v_{\min} / C_x S \tag{7}$$

2 目标模型

由于现代战争的复杂性,目标必须具备许多相应的功 能才能顺利完成其作战任务^[2].例如地空导弹营为了完成 其作战使命,必须具备探测目标、对目标射击以及射击结 果评估等功能,以及一定的机动能力.而任何一种功能的 丧失都可能影响其完成战斗任务.因此,首先要对目标进 行功能结构分析.

2.1 目标功能及结构分析

目标功能框图(图3)表示了具有既定战斗使命的目标

应具有的各种功能,使研究人员对目标的功能有一个总体 的、全面的认识.目标的各种功能都是通过一套相应的物 理零部件协调运转而获得的.特别是一些复杂目标,如飞 机、舰船、防空导弹等,它们都是由许多功能系统构成,而 各个功能系统又由许多子功能系统及部件构成,子系统再 由零件够成.为了研究目标的毁伤,也必须进行目标的结 构分析(图 4),分析构成目标的部件之间及部件与目标之 间的功能关系及结构关系.然后把分析结果实如计算机进 行处理.

1. 雷达; 2. 电站; 3. 发射装置; 4. 电站; 5. 地形测量设备; 6. 备件车; 7. 指挥室

图 4 目标主要构成

2.2 目标关键部件分析

目标的部件中,有些部件的毁伤将导致目标某种程度 的毁伤,而有些部件的毁伤则不致于使目标毁伤,因此我 们可以把目标的部件分为关键部件和惰性部件2种.部件 毁伤导致目标毁伤的视为关键部件,否则为惰性部件.关 键部件的毁伤是造成目标毁伤的直接原因,在进行目标毁 伤的评估之前必须进行关键部件分析,确定关键部件.本 文中采用毁伤树技术结合系统功能图对关键部件进行分 析.由故障树我们很容易看出该目标的关键部件为其制导 雷达系统等.

2.3 部件毁伤准则及毁伤级别的划分

部件受损是由毁伤元直接作用引起的,其受损程度是 由毁伤元的特性和部件的特性等因素决定的,而这些因素 中有许多随机因素,这就决定了部件的受损量是个随机变 量,所以用概率的形式表示部件的受损程度与作用在部件 上毁伤元之间的关系.如破片对部件的毁伤,则可以利用 命中部件的有效破片数来表示.

部件毁伤级别的划分,应当根据损伤模式对装备完成 功能特别是基本功能的影响及危害性,确定其损伤影响, 建立具体的准则进行损伤评估.损伤影响一般按以下几个 层次来分析:

1) 轻微无影响(一级毁伤)损伤模式发生后不影响装 备基本功能.

2)局部影响(二级毁伤):局部影响是指损伤模式对分析的约定层次(基本功能项目)的影响,有可能就是分析的损伤模式自身.

 高一层次影响(三级毁伤):确定对分析产品上一层 次的使用、功能和状态的影响.

 4)最终影响(四级毁伤):确定产品损伤模式对最高约 定层次产品的使用、功能和状态的影响.

3 **毁伤计算**^[3]

一般的反辐射导弹爆炸后形成的破片数目都在20000 块左右,如果在分析弹爆炸对装备的影响时逐个对破片进行 分析,既是非常繁琐的,也是没有必要的,因此我们可以采用 几何法来近似解决这一问题.该方法是用空间解析几何的办 法来确定某一炸点的导弹爆炸后对装备的有效作用范围 (*R*),然后计算出该范围内的破片数(*N*).在此基础上计算破 片对各装备重要功能项目的损伤影响.步骤如下.

3.1 建立装备坐标系,定量描述有关参数

依据一定的规则建立装备坐标系后,地空导弹装备任 意一个有着规则几何形状的部分,可以采用有固定数据格 式的几何体(如正方体、圆柱、球、圆环等)进行描述.弹的 因素的定量指标应是落点坐标和弹的威力半径,弹的威力 半径可用下列各量的函数来描述,弹片的大小、数量、方 位、初速等.

建立投影坐标系,确定弹的有效作用范围.根据弹的 炸点坐标,确定投影面 A. 弹在坐标点 B(x_b, y_b, z_b)爆炸 后,对装备造成的损伤主要来自于弹片及爆炸的冲击波. 根据现有的研究成果,当某种反辐射导弹在空间爆炸后, 其弹片在空间的分布规律可用一空间曲面方程来描述,此 曲面方程与投影面方程联解所得的曲面即为弹的有效作 用范围.

如图 5 所示,对于 1 枚反辐射弹,它对装备的有效作用 范围对应着平面 A 上一个以 P 点为中心的圆(如图 5 虚线 所示).

圆的半径由式(8)确定:

7

 $\begin{cases} r^{2} = R_{0}^{2} - BP^{2} \\ BP^{2} = \left(x_{b} - x_{p}\right)^{2} + \left(y_{b} - y_{p}\right)^{2} + \left(z_{b} - z_{p}\right)^{2} \end{cases}$

式中: R₀ 是炸弹的有效爆炸半径,由本文破片场中有效破 片随距离的失效规律可得.

该圆在 xoy 平面上的投影是一椭圆, 它由式(9) 决定:

$$\begin{cases} \begin{pmatrix} x - x_b \end{pmatrix}^2 + \begin{pmatrix} y - y_b \end{pmatrix}^2 + \begin{pmatrix} z - z_b \end{pmatrix}^2 = R_0^2 \\ x_b \begin{pmatrix} x - a \end{pmatrix} + y_b \begin{pmatrix} y - b \end{pmatrix} + z_b \begin{pmatrix} z - c \end{pmatrix} = 0 \end{cases}$$
(9)

由图知,破片的有效飞行角为:

F

$$= \operatorname{arctg} \frac{r}{PB}$$
 (10)

由破片与飞行经角无关,随纬角成正态分布的假设, 可求得有效作用范围内的破片数占总破片数的百分数:

$$P_1 = \frac{1}{180} f(-) d$$
 (11)

$$\cos = \frac{z_b}{\sqrt{x_b^2 + y_b^2 + z_b^2}}$$
(12)

根据装备坐标系与投影坐标系之间的关系,

$$\begin{cases} x_1 = \underbrace{y + \frac{z\sin\vartheta \sin}{\cos\vartheta} - y_0}_{\cos\vartheta} \\ y_1 = \frac{z}{\cos\vartheta} \end{cases}$$
(13)
$$y_1 = \frac{z}{\cos\vartheta} \\ x_1 = \underbrace{x_0 - x - \frac{z\sin\vartheta \cos\vartheta}{\cos\vartheta}}_{\sin\vartheta} \\ (14)$$

 $\int y_1 = \cos \vartheta$

可求得该装备在投影面上的投影面积,设为 S₀,则雷 达装备上遭受到的破片数占总破片数的百分数为

$$P = \frac{S_0}{r^2} P_1$$
 (15)

3.2 计算有效破片最小质量及其数量^[4-5]

由于在弹爆炸形成的破片中,有一部分破片会由于在 飞行过程中其速度的衰减而使其动能的下降,从而不会对 装备造成损伤.考虑到在形成的破片中,所有破片的初速 基本上相同(假定弹爆炸前的初速可以忽略不计或是静 爆),因此对于某一炸点,只有质量大于某一值(动能达到 阀值)的破片才会对装备有影响.破片有效质量的最小值 可由式(16)求得.

$$q_{\min}\left(R\right) = \left[\left(2 E_{\min}/V_{o}^{2}\right)^{1/3} + \frac{1}{3} C_{x} R\right]^{3} \quad (16)$$

式中: C_x 为破片的迎面阻力系数; 为当地的空气密度 (kg/m^3); 为破片的形状系数; R 为炸点至目标的距离 (m).得到有效破片最小质量 q_{min} ,设弹的总破片数为 N_0 , 则雷达装备上遭受到的破片数为

$$N = N_0 P \left[e^{-\left(\frac{2 q_{\min}}{u}\right)^{\frac{1}{2}}} - e^{-\left(\frac{2 m_{\max}}{u}\right)^{\frac{1}{2}}} \right]$$
(17)

式中: *m*_{max}为破片的最大质量(kg), *u* 为破片的平均质量(kg).

3.3 确定雷达装备的损伤概率

假设利用几何法求得装备某重要功能项目遭受的有效破片数为 *n_e*,则每块破片对该重要功能项目的损伤概率 由式(18)确定:

$$P_{hki} = \begin{cases} 0\\ 1 + 2.65 e^{-0.347 \times 10^{-8} e_b} - 2.96 e^{-0.143 \times 10^{-8} e_b}\\ e_b < 4.5 \times 10^8\\ e_b & 4.5 \times 10^8 \end{cases}$$
(18)

式中: *phk*为单块破片对目标的条件损伤概率,即破片击中目标后,目标损伤的概率; *eb*为破片在目标单位厚度上的 撞击比动能.则所有有效破片对该重要功能项目造成损伤的概率为:

$$P_{hk} = 1 \cdot \begin{pmatrix} 1 & P_{hk1} \end{pmatrix} \cdot \begin{pmatrix} 1 & P_{hk2} \end{pmatrix} \cdot \begin{pmatrix} 1 & P_{hkn} \end{pmatrix} (19)$$

本文中以某型雷达车为模型,对某型航弹在空中爆炸时,雷达车遭受的破片数,进行了模拟计算,如表1所示.

表1 雷达车遭受的破片数

弹炸点坐标/ m			破片数/块
x	у	z	N
21. 213	18. 371	42. 426	2.42
28.190	19. 739	49.149	2. 81
18.988	35. 209	38. 576	2. 23
29. 544	24. 709	45.962	2. 62
29.835	26.864	44. 588	2.38
26.963	16. 848	50.882	3. 12

4 结束语

通过对某型雷达车的模拟计算可以发现,计算结果与 实际情况基本吻合,几何法的计算原理比较简单,而且这 种方法可用于任何装备的战斗损伤研究.但同时也可发 现,如果装备本身非常复杂,重要功能项目数量大,则几何 法的运算量将是十分庞大和繁琐的.对地空导弹装备的战 损仿真,由于装备复杂,且各部件之间功能联系密切,所以 在仿真的过程中还必须进行更深层次的结构分析,优选出 装备的关键部件,并建立适宜的坐标系,以便进行仿真研 究.另外还要对攻击兵器的毁伤影响进行全面分析,如冲 击影响、震动影响、爆轰和爆燃等也必须建立相应的毁伤 场,以及对攻击兵器的方向、角度、装药量等进行分析,从 而得出装备的全面受损情况.

参考文献:

- [1] 于永利,郝建平.装备群战斗损伤模拟方法研究[J]. 军械工程学院学报,1995(7):13-17.
- [2] 李向东. 目标毁伤理论及工程计算[D]. 南京:南京理 工大学,1996.
- [3] 姜欣.63 式装甲输送车毁伤计算[D].上海:华东工学 院,1992.
- [4] 张国伟. 终点效应及其应用技术[M]. 北京:国防工业 出版社,2001.
- [5] 石全.装备战伤理论与技术[M].北京:国防工业出版 社,2007.

7