ON THE CHERN NUMBER OF I-ADMISSIBLE FILTRATIONS OF IDEALS

MOUSUMI MANDAL AND J. K. VERMA

Abstract

Let I be an \mathfrak{m}-primary ideal of a Noetherian local ring (R, \mathfrak{m}) of positive dimension. The coefficient $e_{1}(\mathcal{I})$ of the Hilbert polynomial of an I-admissible filtration \mathcal{I} is called the Chern number of \mathcal{I}. A formula for the Chern number has been derived involving Euler characteristic of subcomplexes of a Koszul complex. Specific formulas for the Chern number have been given in local rings of dimension at most two. These have been used to provide new and unified proofs of several results about $e_{1}(\mathcal{I})$.

InTRODUCTION

Let (R, \mathfrak{m}) be a Noetherian local ring of dimension d and let I be an \mathfrak{m} primary ideal. A sequence of ideals $\mathcal{I}=\left\{I_{n}\right\}_{n \in \mathbb{Z}}$ is called an I-admissible filtration if there exists a $k \in \mathbb{N}$ such that for all $n, m \in \mathbb{Z}$,

$$
I_{n+1} \subseteq I_{n}, I_{m} I_{n} \subseteq I_{n+m} \text { and } I^{n} \subseteq I_{n} \subseteq I^{n-k}
$$

The Rees algebra $\mathcal{R}(\mathcal{I})$ and the associated graded ring $G(\mathcal{I})$ of the filtration \mathcal{I} are defined as

$$
\mathcal{R}(\mathcal{I})=\bigoplus_{n \in \mathbb{Z}} I_{n} t^{n} \quad G(\mathcal{I})=\bigoplus_{n \geq 0} I_{n} / I_{n+1}
$$

For the I-adic filtration $\mathcal{I}=\left\{I^{n}\right\}$, we put $\mathcal{R}(\mathcal{I})=\mathcal{R}(I)$ and $G(\mathcal{I})=G(I)$. Note that \mathcal{I} is an I-admissible filtration if and only if $\mathcal{R}(\mathcal{I})$ is a finitely generated $\mathcal{R}(I)$-module. Rees [10] proved that the integral closure filtration $\left\{\overline{I^{n}}\right\}$ is an I-admissible filtration if and only if R is analytically unramified. Marley [9] showed that if \mathcal{I} is an I-admissible filtration then the Hilbert function $H_{\mathcal{I}}(n)=\lambda\left(R / I_{n}\right)$, where λ denotes length as R-module, coincides with a polynomial $P_{\mathcal{I}}(x) \in \mathbb{Q}[x]$ of degree d for large n. This polynomial is
written as

$$
P_{\mathcal{I}}(x)=e_{0}(\mathcal{I})\binom{x+d-1}{d}-e_{1}(\mathcal{I})\binom{x+d-2}{d-1}+\cdots+(-1)^{d} e_{d}(\mathcal{I})
$$

and it is called the Hilbert polynomial of the I-admissible filtration \mathcal{I} and the uniquely determined integers $e_{i}(\mathcal{I})$ for $i=0, \ldots, d$ are called the Hilbert coefficients of \mathcal{I}. The coefficient $e_{1}(\mathcal{I})$ is called the Chern number associated with \mathcal{I}. A reduction of an I-admissible filtration $\mathcal{I}=\left\{I_{n}\right\}_{n \in \mathbb{Z}}$ is an ideal $J \subseteq I_{1}$ such that $J I_{n}=I_{n+1}$ for all large n. Equivalently, $J \subseteq I_{1}$ is a reduction of \mathcal{I} if and only if $R(\mathcal{I})$ is a finite $R(J)$-module. A minimal reduction of \mathcal{I} is a reduction of \mathcal{I} minimal with respect to containment. Recall that minimal reductions of admissible filtration always exists and generated by d elements if R / \mathfrak{m} is infinite. In this paper we assume that R / \mathfrak{m} is infinite.

The Chern number has traditionally been studied in Cohen-Macaulay local rings. The recent solutions by Goto et al [2, 3, 4] of conjectures of Vasconcelos [13] for the Chern numbers of parameter ideals and integral closure filtrations require their understanding in arbitrary local rings. Therefore it is useful to have versions of important formulas for the Chern numbers in general. We have chosen to find a general version of Huneke's fundamental lemma [7] for this purpose. This lemma has played a crucial role in various studies of Hilbert polynomial. This version expresses the Chern number in terms of Euler characteristics of a family of subcomplexes of the Koszul complex. Unexpectedly, we are able to apply this formula in dimension one to derive unified and simpler proofs of several results about Hilbert polynomial in one-dimensional local rings.

The paper is organized as follows. In the first section we establish a formula for the Chern number in any dimension involving the Euler characteristic of subcomplexes of a Koszul complex. In the second section we derive concrete versions of this formula in dimension one and provide unified proofs of results of Rees, Sally, Lipman and Huneke. In the third section we unify several results for the Chern number in local rings of dimension two. Huenke's fundamental lemma is deduced as a consequence.

1. A Formula for the Chern Number $e_{1}(\mathcal{I})$

In this section we give a formula for the Chern number of an I-admissible filtration in terms of the Euler Characteristics of subcomplexes of a Koszul complex. Let (R, \mathfrak{m}) be a d-dimensional local ring and I be an \mathfrak{m}-primary ideal. Let $\left\{I_{n}\right\}_{n \in \mathbb{Z}}$ be an I-admissible filtration. Let $\underline{\mathrm{x}}=x_{1}, \ldots, x_{d} \in I$ be a minimal reduction of \mathcal{I}. In order to prove the main theorem we define for $n \in \mathbb{Z}$ the complex $K^{(n)}(\underline{x}, \mathcal{I})$ which is a sub-complex of the Koszul complex given by

$$
0 \longrightarrow I_{n-d} \longrightarrow\left(I_{n-d+1}\right)^{\binom{d}{1}} \longrightarrow \cdots \longrightarrow\left(I_{n-1}\right)^{\binom{d}{d-1}} \longrightarrow I_{n} \longrightarrow 0
$$

The Euler characteristic of $K^{(n)}(\underline{x}, \mathcal{I})$ is defined as

$$
\chi\left(K^{(n)}(\underline{\mathrm{x}}, \mathcal{I})\right)=\sum_{i=0}^{d}(-1)^{i} \lambda\left(H_{i}\left(K^{(n)}(\underline{\mathrm{x}}, \mathcal{I})\right)\right) .
$$

For a numerical function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ we put $(\triangle f)(n)=f(n)-f(n-1)$.
Theorem 1.1. Let (R, \mathfrak{m}) be a d-dimensional local ring. Let I be an \mathfrak{m} primary ideal and $\mathcal{I}=\left\{I_{n}\right\}_{n \in \mathbb{Z}}$ be an I-admissible filtration. Let $\underline{x}=$ $\left(x_{1}, \ldots, x_{d}\right) \subseteq I$ be a minimal reduction of \mathcal{I}. Then

$$
e_{1}(\mathcal{I})=\sum_{n=1}^{\infty} \chi\left(K^{(n)}(\underline{x}, \mathcal{I})\right)
$$

Proof. Consider for $n \in \mathbb{Z}$ the modified Koszul complex C. (n, \mathcal{I}) introduced in [5] as

$$
0 \longrightarrow R / I_{n-d} \longrightarrow\left(R / I_{n-d+1}\right)^{\binom{d}{1}} \longrightarrow \cdots \longrightarrow\left(R / I_{n}\right) \longrightarrow 0
$$

with $I_{n}=R$ for $n \leq 0$ and the differentials are induced by the differentials of the Koszul complex K. $=K$. (\mathbf{x}). Then we get

$$
H_{\mathcal{I}}(n)-\binom{d}{1} H_{\mathcal{I}}(n-1)+\cdots+(-1)^{d} H_{\mathcal{I}}(n-d)=\sum_{i=0}^{d}(-1)^{i} \lambda\left(H_{i}(C .(n, \mathcal{I}))\right)
$$

Notice that $\triangle^{d} P_{\mathcal{I}}(n)=e_{0}(\mathcal{I})$ and

$$
\triangle^{d} H_{\mathcal{I}}(n)=H_{\mathcal{I}}(n)-\binom{d}{1} H_{\mathcal{I}}(n-1)+\cdots+(-1)^{d} H_{\mathcal{I}}(n-d)
$$

Therefore

$$
\triangle^{d}\left[P_{\mathcal{I}}(n)-H_{\mathcal{I}}(n)\right]=e_{0}(\mathcal{I})-\chi(C .(n, \mathcal{I})) .
$$

By Serre's Theorem [1, Theorem 4.7.6] we have $e_{0}(\mathcal{I})=\chi(K$.$) . Therefore$

$$
\triangle^{d}\left[P_{\mathcal{I}}(n)-H_{\mathcal{I}}(n)\right]=\chi(K .)-\chi(C .(n, \mathcal{I}))
$$

Consider the exact sequence of complexes

$$
\begin{equation*}
0 \longrightarrow K^{(n)}(\underline{\mathrm{x}}, \mathcal{I}) \longrightarrow K .(\underline{\mathrm{x}}) \longrightarrow C .(n, \mathcal{I}) \longrightarrow 0 \tag{1}
\end{equation*}
$$

Then from the exact sequence (11) we have

$$
\chi\left(K_{.}\right)=\chi\left(K^{(n)}(\underline{\mathbf{x}}, \mathcal{I})\right)+\chi(C .(n, \mathcal{I})) .
$$

Therefore

$$
\begin{equation*}
\triangle^{d}\left[P_{\mathcal{I}}(n)-H_{\mathcal{I}}(n)\right]=\chi\left(K^{(n)}(\underline{\mathrm{x}}, \mathcal{I})\right) . \tag{2}
\end{equation*}
$$

From Proposition 2.9 of [6] it follows that

$$
e_{1}(\mathcal{I})=\sum_{n=1}^{\infty} \triangle^{d}\left[P_{\mathcal{I}}(n)-H_{\mathcal{I}}(n)\right]=\sum_{n=1}^{\infty} \chi\left(K^{(n)}(\underline{\mathrm{x}}, \mathcal{I})\right) .
$$

2. Applications of the Formula in dimension one

In this section we explicitly write down the formula for the Chern number in one dimensional local rings as consequences of Theorem 1.1. As applications we unify several results in dimension one. The next result was proved for Cohen-Macaulay local rings in 5].

Theorem 2.1. Let (R, \mathfrak{m}) be a 1-dimensional local ring and I be an \mathfrak{m} primary ideal and $\mathcal{I}=\left\{I_{n}\right\}_{n \in \mathbb{Z}}$ be an I-admissible filtration. Let $J=(x) \subseteq$ I_{1} be a minimal reduction. Then

$$
e_{1}(\mathcal{I})=\sum_{n=1}^{\infty}\left[\lambda\left(I_{n} / J I_{n-1}\right)-\lambda\left((0: x) \cap I_{n-1}\right)\right] .
$$

In particular, if R is Cohen-Macaulay then

$$
e_{1}(\mathcal{I})=\sum_{n=1}^{\infty} \lambda\left(I_{n} / J I_{n-1}\right)
$$

Proof. From Theorem 1.1 we have

$$
e_{1}(\mathcal{I})=\sum_{n=1}^{\infty} \chi\left(K^{(n)}(\mathcal{I})\right)
$$

where the complex $K^{(n)}(\mathcal{I})$ is given as

$$
0 \longrightarrow I_{n-1} \xrightarrow{x} I_{n} \longrightarrow 0 .
$$

Note that

$$
H_{0}\left(K^{(n)}(\mathcal{I})\right)=I_{n} / J I_{n-1}
$$

and

$$
H_{1}\left(\left(K^{(n)}(\mathcal{I})\right)=(0: x) \cap I_{n-1} .\right.
$$

Hence

$$
e_{1}(\mathcal{I})=\sum_{n=1}^{\infty}\left[\lambda\left(I_{n} / J I_{n-1}\right)-\lambda\left((0: x) \cap I_{n-1}\right)\right] .
$$

If R is Cohen-Macaulay, then x is a regular element and so $(0: x)=0$. Hence we have

$$
e_{1}(\mathcal{I})=\sum_{n=1}^{\infty} \lambda\left(I_{n} / J I_{n-1}\right) .
$$

The next result is a deep theorem of Rees valid in any dimension. The proof given here in dimension one for admissible filtrations is new and straightforward.

Theorem 2.2. [11, Rees] Let (R, \mathfrak{m}) be a 1-dimensional local ring. Let I be an \mathfrak{m}-primary ideal and $\mathcal{I}=\left\{I_{n}\right\}_{n \in \mathbb{Z}}$ be an I-admissible filtration. Let $J \subseteq I_{1}$ be a parameter ideal such that $e_{0}(J)=e_{0}(\mathcal{I})$. Then J is a reduction of \mathcal{I}.

Proof. Let $J=(x) \subseteq I_{1}$. Consider the complex

$$
C .(n, J, \mathcal{I}): 0 \longrightarrow I_{n-1} / J^{n-1} \xrightarrow{x} I_{n} / J^{n} \longrightarrow 0 .
$$

Let $H_{\mathcal{I} / J}(n)=\lambda\left(I_{n} / J^{n}\right)$ be the Hilbert function and $P_{\mathcal{I} / J}(n)$ denote the corresponding Hilbert polynomial. Note that
$\triangle\left[P_{\mathcal{I} / J}(n)-H_{\mathcal{I} / J}(n)\right]=e_{0}(\mathcal{I} / J)-\lambda\left(H_{0}(C .(n, J, \mathcal{I}))\right)+\lambda\left(H_{1}(C .(n, J, \mathcal{I}))\right)$.
Since $e_{0}(\mathcal{I})=e_{0}(J), e_{0}(\mathcal{I} / J)=0$. Hence for large n we have

$$
\lambda\left(H_{1}(C .(n, J, \mathcal{I}))\right)-\lambda\left(H_{0}(C .(n, J, \mathcal{I}))\right)=0 .
$$

Notice that

$$
H_{0}(C .(n, J, \mathcal{I}))=\frac{I_{n}}{J I_{n-1}}
$$

and

$$
H_{1}(C .(n, J, \mathcal{I}))=\frac{\left(J^{n}: x\right) \cap I_{n-1}}{J^{n-1}} .
$$

Observe that $\left(J^{n}: x\right)=J^{n-1}+(0: x)$. Hence we have

$$
\begin{aligned}
\frac{\left(J^{n}: x\right) \cap I_{n-1}}{J^{n-1}} & =\frac{J^{n-1}+(0: x) \cap I_{n-1}}{J^{n-1}} \\
& =\frac{(0: x) \cap I_{n-1}}{(0: x) \cap J^{n-1}}
\end{aligned}
$$

By Artin-Rees Lemma,

$$
(0: x) \cap I_{n} \subseteq H_{\mathfrak{m}}^{0}(R) \cap I_{n}=I_{n-n_{0}}\left(I_{n_{0}} \cap H_{\mathfrak{m}}^{0}(R)\right)
$$

for some n_{0} and for all $n \geq n_{0}$. Since $\lambda\left(H_{\mathfrak{m}}^{0}(R)\right)<\infty$, for large n we have

$$
I_{n-n_{0}}\left(I_{n_{0}} \cap H_{\mathfrak{m}}^{0}(R)\right)=0 .
$$

Hence for large $n, I_{n}=J I_{n-1}$. Thus J is a reduction of \mathcal{I}.
Theorem 2.3. [8, Theorem 1.9] Let (R, \mathfrak{m}) be a 1-dimensional CohenMacaulay ring and I be an \mathfrak{m}-primary ideal and $\mathcal{I}=\left\{I_{n}\right\}_{n \in \mathbb{Z}}$ be an I admissible filtration. Let $J=(x)$ be a minimal reduction of \mathcal{I}. Then for all $n \geq 1$

$$
\lambda\left(I_{n-1} / I_{n}\right) \leq e_{0}(\mathcal{I})
$$

and

$$
\lambda\left(I_{n-1} / I_{n}\right)=e_{0}(\mathcal{I}) \text { if and only if } I_{n}=x I_{n-1} .
$$

Proof. From Equation (2) we have

$$
\triangle\left[P_{\mathcal{I}}(n)-H_{\mathcal{I}}(n)\right]=\lambda\left(I_{n} / J I_{n-1}\right)
$$

which implies

$$
e_{0}(\mathcal{I})-\lambda\left(R / I_{n}\right)+\lambda\left(R / I_{n-1}\right)=\lambda\left(I_{n} / J I_{n-1}\right) .
$$

Thus we have $\lambda\left(I_{n-1} / I_{n}\right)+\lambda\left(I_{n} / J I_{n-1}\right)=e_{0}(\mathcal{I})$. Hence $\lambda\left(I_{n-1} / I_{n}\right) \leq e_{0}(\mathcal{I})$ for $n \geq 1$ and equality holds if and only if $I_{n}=J I_{n-1}$.

Theorem 2.4. [7. Theorem 2.1] Let (R, \mathfrak{m}) be a 1-dimensional CohenMacaulay ring and I be an \mathfrak{m}-primary ideal and $\mathcal{I}=\left\{I_{n}\right\}_{n \in \mathbb{Z}}$ be an I admissible filtration. Assume that

$$
e_{1}(\mathcal{I})=e_{0}(\mathcal{I})-\lambda\left(R / I_{1}\right) .
$$

Then
(1) $H_{\mathcal{I}}(n)=P_{\mathcal{I}}(n)$ for all $n \geq 1$.
(2) If (x) is a minimal reduction of \mathcal{I} then $I_{n}=x I_{n-1}$ for all $n \geq 2$.

Proof. From Theorem 2.1 we have $e_{1}(\mathcal{I})=\sum_{n \geq 1} \lambda\left(I_{n} / J I_{n-1}\right)$. Since

$$
e_{1}(\mathcal{I})=e_{0}(\mathcal{I})-\lambda\left(R / I_{1}\right)=\lambda(R / J)-\lambda\left(R / I_{1}\right)=\lambda\left(I_{1} / J\right),
$$

we get $\sum_{n \geq 2} \lambda\left(I_{n} / J I_{n-1}\right)=0$. Hence $I_{n}=J I_{n-1}$ for all $n \geq 2$. From Equation (2) we have

$$
\triangle\left[P_{\mathcal{I}}(n)-H_{\mathcal{I}}(n)\right]=0
$$

for $n \geq 2$. Hence

$$
P_{\mathcal{I}}(n)-H_{\mathcal{I}}(n)=P_{\mathcal{I}}(n-1)-H_{\mathcal{I}}(n-1) .
$$

Notice that

$$
P_{\mathcal{I}}(1)-H_{\mathcal{I}}(1)=e_{0}(\mathcal{I})-e_{1}(\mathcal{I})-\lambda\left(R / I_{1}\right)=0 .
$$

Hence $H_{\mathcal{I}}(n)=P_{\mathcal{I}}(n)$ for all $n \geq 1$.
Theorem 2.5. [12, Proposition 3.2] Let (R, \mathfrak{m}) be a 1-dimensional CohenMacaulay ring and I be an \mathfrak{m}-primary ideal. Assume that

$$
e_{1}(I)=e_{0}(I)-\lambda(R / I)+1 .
$$

Then
(1) $H_{I}(n)=P_{I}(n)$ for all $n>1$.
(2) If (x) is a minimal reduction of I then $\lambda\left(I^{2} / x I\right)=1$ and $I^{3}=x I^{2}$.

Proof. From Theorem 2.1] we have $e_{1}(I)=\sum_{n=1}^{\infty} \lambda\left(\frac{I^{n}}{J I^{n-1}}\right)$. Since

$$
e_{1}(I)=e_{0}(I)-\lambda(R / I)+1=\lambda(R / J)-\lambda(R / I)+1=\lambda(I / J)+1
$$

we get

$$
\sum_{n \geq 2} \lambda\left(I^{n} / J I^{n-1}\right)=1 \text { and } \lambda\left(I^{2} / J I\right)=1 \text { and } I^{3}=J I^{2}
$$

From Equation (2) we have $\triangle\left[P_{I}(n)-H_{I}(n)\right]=0$ for all $n \geq 3$ and $\lambda\left(I^{2} / x I\right)=1$. Note that

$$
P_{I}(n)-H_{I}(n)=P_{I}(n-1)-H_{I}(n-1)
$$

for all $n \geq 3$ and

$$
P_{I}(2)-H_{I}(2)=P_{I}(1)-H_{I}(1)+1=e_{0}(I)-e_{1}(I)-\lambda(R / I)+1=0
$$

Hence $H_{I}(n)=P_{I}(n)$ for all $n>1$.

3. Applications of the Formula in dimension two

In this section we derive the formula for the Chern number in dimension 2 as a consequence of Theorem 1.1 and as an application derive Huneke's fundamental Lemma.

Proposition 3.1. Let (R, \mathfrak{m}) be a 2-dimensional local ring and let $J=$ (x, y) be a parameter ideal. Let $\mathcal{J}=\left\{J_{n}\right\}$ be a J-admissible filtration with depth $G(\mathcal{J}) \geq 1$ and $x^{*} \in J_{1} / J_{2}$ be a nonzerodivisor in $G(\mathcal{J})$. Let $K^{(n)}(\mathcal{J})$ be the subcomplex of the Koszul complex $K .(x, y)$ defined as :

$$
0 \longrightarrow J_{n-2} \xrightarrow{f_{n}=(y, x)}\left(J_{n-1}\right)^{2} \xrightarrow{g_{n}=\binom{-x}{y}} J_{n} \longrightarrow 0 .
$$

Then

$$
H_{1}\left(K_{\cdot}^{(n)}(\mathcal{J})\right) \cong \frac{(x: y) \cap J_{n-1}}{(x) J_{n-2}} .
$$

Proof. In order to calculate the first homology of the above complex we calculate ker g_{n} and image f_{n}.

$$
\begin{aligned}
\operatorname{ker} g_{n} & =\left\{(a, b) \in\left(J_{n-1}\right)^{2} \mid-a x+b y=0\right\} \\
& =\left\{(a, b) \in\left(J_{n-1}\right)^{2} \mid a x=b y\right\}
\end{aligned}
$$

Observe that ker $g_{n} \cong(x: y) \cap J_{n-1}$ through the map $(a, b) \mapsto b$. Indeed, as x is a regular element, for each $b \in(x: y)$ there exists a unique $a \in R$ such that $a x=b y$ and since x^{*} is $G(\mathcal{J})$ - regular $J_{n}: x=J_{n-1}$ for all $n \geq 2$, so $a \in J_{n-1}$. Thus ker $g_{n} \cong(x: y) \cap J_{n-1}$. Notice that image $f_{n}=\{(c y, c x) \mid c \in$ $\left.J_{n-2}\right\}$. Since image $f_{n} \subseteq \operatorname{ker} g_{n}$, we have image $f_{n} \cong(x) J_{n-2}$. Hence

$$
H_{1}\left(K_{\cdot}^{(n)}(\mathcal{J})\right) \cong \frac{(x: y) \cap J_{n-1}}{(x) J_{n-2}} .
$$

Theorem 3.2. Let (R, \mathfrak{m}) be a 2-dimensional local ring and $J=(x, y)$ be a parameter ideal. Let $\mathcal{J}=\left\{J_{n}\right\}$ be a J-admissible filtration and depth $G(\mathcal{J}) \geq$ 1 and $x^{*} \in J_{1} / J_{2}$ be a nonzerodivisor in $G(\mathcal{J})$. Then

$$
e_{1}(\mathcal{J})=\sum_{n \geq 1}\left[\lambda\left(\frac{J_{n}}{J J_{n-1}}\right)-\lambda\left(\frac{(x: y) \cap J_{n-1}}{(x) J_{n-2}}\right)\right]
$$

Proof. By Theorem 1.1 we have

$$
e_{1}(\mathcal{J})=\sum_{n \geq 1} \chi\left(K^{(n)}(\mathcal{J})\right) .
$$

Notice that

$$
H_{0}\left(K^{(n)}(\mathcal{J})\right)=J_{n} / J J_{n-1}
$$

and

$$
H_{2}\left(K^{(n)}(\mathcal{J})\right)=(0: J) \cap J_{n-2} .
$$

Since depth $G(\mathcal{J}) \geq 1$ and x^{*} is a nonzerodivisor so x is a nonzerodivisor and hence $H_{2}\left(K_{\text {. }}\right)=0$. Therefore $H_{2}\left(K^{(n)}(\mathcal{J})\right)=0$ for all n. By Proposition 3.1 we have

$$
H_{1}\left(K_{\cdot}^{(n)}(\mathcal{J})\right) \cong \frac{(x: y) \cap J_{n-1}}{(x) J_{n-2}} .
$$

Thus

$$
e_{1}(\mathcal{J})=\sum_{n \geq 1}\left[\lambda\left(\frac{J_{n}}{J J_{n-1}}\right)-\lambda\left(\frac{(x: y) \cap J_{n-1}}{(x) J_{n-2}}\right)\right] .
$$

Corollary 3.3. Let (R, \mathfrak{m}) be a 2-dimensional analytically unramified local ring and $J=(x, y)$ be a parameter ideal. Then

$$
\bar{e}_{1}(J)=\sum_{n \geq 1}\left[\lambda\left(\frac{\overline{J^{n}}}{J \overline{J^{n-1}}}\right)-\lambda\left(\frac{(x: y) \cap \overline{J^{n-1}}}{(x) \overline{J^{n-2}}}\right)\right]
$$

where \bar{J} denote the integral closure of J.
Proof. Since R is analytically unramified, $\mathcal{J}=\left\{\overline{J^{n}}\right\}$ is a J-admissible filtration and by [9, Theorem 3.25] depth $G(\mathcal{F}) \geq 1$. Hence by Theorem 3.2 we are done.

Next we derive Huneke's Fundamental Lemma for I-admissible filtrations. For this purpose we need the following Lemma.

Lemma 3.4. [5, Lemma 3.2] Let (R, \mathfrak{m}) be a d-dimensional local ring. Let I be an \mathfrak{m}-primary ideal and $\mathcal{I}=\left\{I_{n}\right\}_{n \in \mathbb{Z}}$ be an I-admissible filtration. Let x_{1}, \ldots, x_{d} be elements of I_{1}. Consider the complex C. (n, \mathcal{I})

$$
0 \longrightarrow R / I_{n-d} \longrightarrow\left(R / I_{n-d+1}\right)^{\binom{d}{1}} \longrightarrow \cdots \longrightarrow R / I_{n} \longrightarrow 0 .
$$

Then for $n \in \mathbb{Z}$, the following hold:
(1) $H_{d}(C .(n, \mathcal{I}))=\frac{\left(I_{n-d+1}:\left(x_{1}, \ldots, x_{d}\right)\right)}{I_{n-d}}$.
(2) $H_{0}(C .(n, \mathcal{I}))=R /\left(I_{n}+\left(x_{1}, \ldots, x_{d}\right)\right)$.
(3) if x_{1}, \ldots, x_{d} is an R-regular sequence then

$$
H_{1}(C .(n, \mathcal{I})) \cong \frac{\left(x_{1}, \ldots, x_{d}\right) \cap I_{n}}{\left(x_{1}, \ldots, x_{d}\right) I_{n-1}}
$$

Proposition 3.5. [7, Fundamental Lemma 2.4] Let (R, \mathfrak{m}) be a 2-dimensional Cohen-Macaulay local ring and I be an \mathfrak{m}-primary ideal and $\mathcal{I}=\left\{I_{n}\right\}_{n \in \mathbb{Z}}$ be an I-admissible filtration. Let $J=(x, y)$ be a minimal reduction of \mathcal{I}. Then for all $n \geq 2$
(1) $\triangle^{2}\left[P_{\mathcal{I}}(n)-H_{\mathcal{I}}(n)\right]=\lambda\left(\frac{I_{n}}{J I_{n-1}}\right)-\lambda\left(\frac{I_{n-1}: J}{I_{n-2}}\right)$.
(2) $e_{1}(\mathcal{I})=e_{0}(\mathcal{I})-\lambda\left(R / I_{1}\right)+\sum_{n \geq 2}\left[\lambda\left(\frac{I_{n}}{J I_{n-1}}\right)-\lambda\left(\frac{I_{n-1}: J}{I_{n-2}}\right)\right]$.

Proof. From Equation (2) we have

$$
\triangle^{2}\left[P_{\mathcal{I}}(n)-H_{\mathcal{I}}(n)\right]=\chi\left(K^{(n)}(\mathcal{I})\right)
$$

where $K^{(n)}(\mathcal{I})$ is the complex

$$
0 \longrightarrow I_{n-2} \longrightarrow\left(I_{n-1}\right)^{2} \longrightarrow I_{n} \longrightarrow 0 .
$$

Note that $H_{0}\left(K^{(n)}(\mathcal{I})\right)=I_{n} / J I_{n-1}$ and $H_{2}\left(K^{(n)}(\mathcal{I})\right)=(0: J) \cap I_{n-2}=0$ as R is Cohen-Macaulay. From the exact sequence of complexes (1) we get the long exact sequence

$$
\begin{aligned}
0 & \longrightarrow H_{2}\left(K^{(n)}(\mathcal{I})\right) \longrightarrow H_{2}(K .) \longrightarrow H_{2}(C .(n, \mathcal{I})) \longrightarrow \\
& \longrightarrow H_{1}\left(K^{(n)}(\mathcal{I})\right) \longrightarrow H_{1}(K .) \longrightarrow H_{1}(C .(n, \mathcal{I})) \longrightarrow
\end{aligned}
$$

Since R is Cohen-Macaulay $H_{1}\left(K_{.}\right)=H_{2}\left(K_{.}\right)=0$. Thus

$$
H_{1}\left(K^{(n)}(\mathcal{I})\right) \cong H_{2}(C .(n, \mathcal{I}))=\frac{I_{n-1}: J}{I_{n-2}} \quad(\text { by Lemma 3.4) }
$$

Hence

$$
\triangle^{2}\left[P_{\mathcal{I}}(n)-H_{\mathcal{I}}(n)\right]=\lambda\left(\frac{I_{n}}{J I_{n-1}}\right)-\lambda\left(\frac{I_{n-1}: J}{I_{n-2}}\right) .
$$

Now from Theorem 1.1 we have

$$
e_{1}(\mathcal{I})=e_{0}(\mathcal{I})-\lambda\left(R / I_{1}\right)+\sum_{n \geq 2}\left[\lambda\left(\frac{I_{n}}{J I_{n-1}}\right)-\lambda\left(\frac{I_{n-1}: J}{I_{n-2}}\right)\right] .
$$

References

[1] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Revised Edition, Cambridge University Press, 1998.
[2] L. Ghezzi, S. Goto, J. Hong, K. Ozeki, T.T.Phuong and W. Vasconcelos, CohenMacaulayness versus the vanishing of the first Hilbert coefficient of parameter ideal, Journal of the London Mathematical Soc. 81 (2010), 679-695.
[3] L. Ghezzi, J. Hong and W. Vasconcelos, The signature of the Chern coefficients of local rings, Math. Res. Lett 16 (2009), 279-289.
[4] S. Goto, M. Mandal and J. Hong, The positivity of the first coefficient of normal Hilbert polynomials, Proc. Amer. Math. Soc. 139 (2011), 2399-2406.
[5] S. Huckaba and T. Marley, Hilbert coefficients and the depths of associated graded rings, J. London Math. Soc. (2) 56 (1997), $64-76$.
[6] S. Huckaba, A d-dimensional extension of a lemma of Huneke's and formulas for the Hilbert coefficient, Proc. Amer. Math. Soc. 124 (1996), 1393-1401
[7] C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J. 34(2) (1987), 293-318
[8] J. Lipman, Stable ideals and Arf rings, Amer. J. Math. 93 (1971), 649 -685.
[9] T. Marley, Hilbert functions of ideals in Cohen-Macaulay rings, Ph.D. Thesis, Purdue University, (1989).
[10] D. Rees, A note on analytically unramified local rings, J. London Math. Soc. 36 (1961), $24-28$.
[11] D. Rees, \mathcal{A}-transforms of local rings and a theorem on multiplicities of ideals, Proc. Cambridge Philos. Soc. 57 (1961), 8-17.
[12] J. D. Sally, Hilbert coefficients and reduction number 2, J. Algebraic Geom 1 (1992), 325-333.
[13] W. Vasconcelos, The Chern coefficients of local rings, Michigan Math. J. 57 (2008) 725-743.

Dipartimento Di Matematica, Universita' Di Genova, Via Dodecaneso 35, 16146, Genova, Italy

E-mail address: mandal@dima.unige.it

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

E-mail address: jkv@math.iitb.ac.in

