A MULTIVARIATE HOOK FORMULA FOR LABELLED TREES

VALENTIN FERAY AND I. P. GOULDEN

ABSTRACT. Several hook summation formulae for binary trees have apege
recently in the literature. In this paper we present an guale formula for

unordered increasing trees of sizewhich involvesr parameters. The right-
hand side can be written nicely as a product of linear factdke study two

specializations of this new formula, including Cayley'sigreration of trees with
respect to vertex degree. We give three proofs of the hookiftar. One of these
proofs arises somewhat indirectly, from representati@o of the symmetric
groups, and in particular uses Kerov’s character polyntsmighe other proofs
are more direct, and of independent interest.

1. INTRODUCTION AND THE MAIN RESULT

Hook formulae first appeared in the context of representdtieory of the sym-
metric groups: Frame, Robinson and Thralll[15, Theorem @ygu that the di-
mensionXA(Idw) of the representation associated to a Young diagka(hich
is also the number of increasing labellings of the Boxes)a$ given by the simple

ratio Al
AT _ :
U =y
where| | is the number of Boxes in the diagram aind) is the size of the hook
attached to the BoX..
It was subsequently pointed out by D. Knuth [[23, §5.1.4 EX20] that the
number L(T") of increasing labellings of the vertices of a rooted tfeean be

expressed by using the same kind of formula. In particular,
7!
H’UET hT(U) ’
where|T'| is the number of vertices &f andhr(v) is the size of the hookr(v)
attached to the vertexin 1" (see definition below).

At this point, we fix some terminology and notation. tiée is an acyclic con-
nected graphRootedmeans that we distinguish a vertex; then each edge can be
oriented towards the root and we call respectiviatherandsonthe head and tail
of the edge. With this terminology, it is easy to guess whaidéscendantsf a
vertex are: they can be defined recursively as the sons artk#oendants of the
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sons. The the hook attached to the vertér the treel’, denoted byyr(v), is the
set consisting of and its descendants.

For another consequence of the rooted tree hook forrhliladdall that there
is a well-known one-to-one correspondence between inagdénary trees with
n vertices, and permutations of size seee.qg. [30, p. 23-25]. Hence, the total
number of increasing labellings of all binary trees of sizis equal to the number
of permutations of size, which yields the formula

1
2 > 11 )~

T binary v€T
tree of sizen

Despite their simplicity, both formula€l(1) arld (2) haverbége subject of many
research papers. We mention briefly four directions thadlpapers have taken:

e g-analogues of formulé1) have been found where increasaingjlings of
a given tree are counted with respect to one (or more) statisteel[3] and
[9, Lemma 5.3];

e Formula[1) (and the-analogues mentioned above) has been extended to
more general classes of posets than trees (or forastsdmplete posets
[26],127], shrubs[[B, Proposition 3.6], forests with dupiicas [14, Theo-
rem 1.4];

e In summation formuld{2), the factq;rTl(—U) can be replaced by some more

complicated function ofr(v) such that the sum over binary trees remains
nice. An example is the following formula[l2, equation (].2

n—1
1 1 . .
T binary  v€T i=1
tree of sizen

The caser = 0 of course corresponds tbl (2), the case= 1 is due to
A. Postnikov [25, Corollary 17.3] and the general case is @uR. Du
and F. Liu, who proved a conjecture of A. Lascoux, see [12] thedref-
erences therein. Subsequently, G. Han designed an algotdttdiscover
such equalities, finding a generalization of Du and Liu'siless well as
many other formulae [19];

e Finally, formulae [(1) and{2) admit a number of higher lev@kipreta-
tions. In [20], it is explained how {2) (and some generai@at) arises
from solving differential equations and can be lifted to téeel of com-
binatorial Hopf algebras. In different directions, intexations of[(ll) and
some refinements/generalizations have been given in cge@xetry|[[5,
Section 6] and commutative algebral[14].

In this paper, we follow the third direction above and présesummation for-
mula, in which the simple rati% is replaced by a more complicated expression
with several parameters. The main difference from the tesnéntioned above is
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FIGURE 1. An increasing unordered tree

that we do not work with binary trees, but instead wittordered increasing rooted
trees

e unorderedmeans that the sons of a given vertex are not ordered;

e increasingmeans that the vertices are labelled (each integer betivard
r is used exactly once) and that the label of a son is alwaysbitpgn the
label of its father (in particular, the root always gets labe

An example of an unordered increasing tree is given in FigLi®ince the sons
of a given vertex are not ordered, we have chosen the cooventtalways drawing
them in increasing order from left to right.

Our summation formula is given in the following theorem, @his the main re-
sult of this paper. We use the notation for falling factari@l),,, = a(a—1) - - - (a—
m + 1) for positive integersn, with (a)o = 1, and(a),, = 1/(a —m)_,, for neg-
ative integersn.

Theorem 1.1. Letr > 1 be an integer and:q, - - - , k- be formal variables, with
K = %', k;. For an unordered increasing tre€ with r vertices, define the
weight to be

Wt(T):ﬁkf(v)<< 3 ku>—hT(v)—|—1>,
v=2

u€hr(v)
wheref (v) stands for the father af in 7. Then
(4) > wt(T) = ky -+ k(K — 1), _o,
T

where the sum runs over all unordered increasing trees wertices.
For example, the weight of the tree given in Figlure 1 is
]{71(1432—|—k73—|—k‘5+k‘6—|—k‘8—|-k‘9—5)-kgk?g'kl(k?4—|-k7—1)
. ]{72(1{75 + ke + kg — 2) - kske - kak7 - ksks - kokg.

Note that, ifv is a leaf, its contribution to the Weighth(v) k,. Since each vertex
is either a leaf or the father of another vertex, the quantityl’) is always divisible
by k1 - - - k. (except forr = 1).
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We refer to [(#) as ouhook formula We point out the fact that the formula
for trees of sizer involves r independent parameters, while formula (3) and all
formulae in [19] involve a fixed number of parameters. As ritertd above, for
r > 1, the monomialk; - - - &, divides all terms of the sum, but the latter do not
share any other factors. Thus it is quite remarkable thatigi-hand side, which
is a polynomial in- parameters, can be written as a product of simple lineasifact
(Note that in the case = 1, we have(K — 1),_» = k; ', which cancels the factor
k1.)

In Section(2 we present two specializations of our resultamaalogue of the
aforementioned hook formula of Postnikov, and the muliatarenumeration of
Cayley trees with respect to vertex degree. In our opintuis,hakes Theorefn 1.1
interesting in itself.

Another interesting feature of this new hook formula is tlmreection with
representation theory of the symmetric group. This linkqglaned in Sectiofl3,
where we give our first proof of Theordm 11.1. This proof usesol{s character
polynomials, and does not seem related to the Frame-Rabifisall formula.
The proof is quite involved, and reasonably indirect, so 1se give two inductive
proofs of the hook formula that are more direct. The first @fsthdirect proofs,
given in Sectio ¥, uses elementary operators on polynenilde second of these
direct proofs is given in Sectidd 5, and uses Lagrange’sitiinflunction Theorem
in many variables.

2. TWO SPECIALIZATIONS OF THE HOOK FORMULA

2.1. An analogue of Postnikov’s formula. Here we consider the specialization
of all variablesky, - -- , k. to the same valugé. Then the weight of an unordered
increasing tred” in Theoreni 1.1 becomes

wt'(T) = wt(T)

= k;"—lvli[z ((k — Dhr(v) + 1>

r—1
~ et I (0= vaeto 1),

veT

ki=k

Therefore, setting: = k£ — 1, our hook formula becomes

r—1
(5) > [[@hr@)+1) =@+ 1) [J(@-r+1)
T increasing v€T i=1

unordered tree
of sizer
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Using the fact (equatio (1)) that there arg(] ], 1., (T')) increasing labellings

for each binary tre&", equation[(B) can be rewritten as
1 n—1
(6) Z H<th(U)+1):n—4—1, (n+14dz+n+1—1).
T increasing V€T i=1

binary tree
of sizen

Thus the specialization with equal parameters of our foanislan analogue of
Postnikov’s formula for another family of trees. Unforttelg, a short computer
exploration suggests that equatiéh (6) does not seem tosliabea nice multivari-
ate refinement as Theorém11.1.

2.2. Multivariate enumeration of Cayley trees. By definition, a Cayley tree is
a tred with distinguishable vertices. As early as 1860 [4], C.WcBardt proved
that the number of trees with vertex $t= {1,--- ,r} isr"~2. As noticed by A.

Cayley [7], his proof also leads to the following multivaganumeration formula
for what are now called Cayley trees:

) Z k;‘lil(U)...kgr(U) — ke ke K72

U Cayley tree
with vertex sefr]

whered;(U) denotes the degree of the verter a treelU.

We will show that the specializatiafy, - - - , k. — oo, that is the highest degree
term ink of our hook formula, corresponds d (7). Hence our hook fdancan be
viewed as a non-homogeneous extension of the multivanmatemeration of Cayley
trees.

To do this, we define a mapping from Cayley trees with vertex séf to in-
creasing unordered trees with label $&twhereV is a finite nonempty set of
positive integers. Consider a Cayley tr&ewith vertex setl’. The definition is
inductive and produces an increasing unorderedfreep(U) as follows:

e Let/ = minV. If |V| = 1, thenT has a single vertex, with labél
Otherwise, remove vertek and all incident edges frorty, to obtain a
forest whose connected components are Cayley tfegss, - - - ;

e Apply ¢ inductively toU;, Us, - - -;

e Take the disjoint union of all; = ¢(U;), and add a vertex (which is the
root vertex ofT") with label/, joined to the root vertices of all;.

The mappingp is clearly not injective in general. If is an increasing unordered
tree with label set/, then the element§ of the preimage>—!(7") can be obtained
inductively as follows:
e Let/ = minV. If [V| = 1, thenU has the single vertekx Otherwise,
remove the root vertex df’ (which has label), to obtain the increasing
unordered tree®;, s, - - - ;

1Cayley trees are not embedded in the plane and have no regtatle only specified by an
adjacency matrix.
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e Select an elemertf; in each sety~1(T;);
e Take the disjoint union of all/;, choose one vertex in eaéh and add a
vertex with labell joined to all selected vertices.

For a given increasing unordered tfEedenote

wt(T) = Z H fdo (W),

U:p(U)=T veV

The above description gf ~!(T) implies that

wt'(T) = 1;[ wt”(Ty) <kz ; k:) ,

where/ is the label of the root and the product is taken over the tfgess, - - -
obtained by removing the root @f. An immediate induction yields

Wt"(T):UliIQkf(v)< > ku>

u€hr(v)

with the same notation as in Theorém]1.1. We observewthatl') is exactly the
highest degree term iwt(7") and therefore, as an immediate corollary of Theo-
rem[1.1, we get

> owt'(T) =ky-- kK,

T increasing
unordered tree
of sizer

which is the multivariate enumeration formula (7) for Capleees.

3. KEROV CHARACTER POLYNOMIALS

In this section, we explain how Theorém]1.1 arises from cdatfns in repre-
sentation theory of the symmetric group. In fact, the twesidf our hook formula
correspond to the same coefficient of the so caledbv character polynomials
computed in two different ways.

In paragraph_3]1, we explain Kerov character polynomiald which coeffi-
cient we want to compute. Then, in paragraph$[3.2, 3.3 afdv@ 4ive different
ways to compute this coefficient, which lead to our hook fdamurhe first two
approaches lead to the same result, but we have chosen émpbeth to be more
comprehensive on the subject.

3.1. Definitions. Let us consider, for each, the family of symmetric groups,,.

It is well-known (seeg.qg, [29, Chapter 2]) that both conjugacy classes and irre-
ducible representations 6f, can be indexed canonically by partitionsrgfso the
character table of,, is a collection of numberg™ (1), where and y run over
partitions ofn and are, respectively, the indices of the irreducible regmation
and the conjugacy class.
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Following S. Kerov and G. Olshanski [22], for any partitiomof sizek, we shall
consider the functiolCh,, on the sety of all Young diagrams (or equivalently of
all partitions of all sizes) defined by:

0 if n <k;
Ch,(N) = A n—k
g n(n—l)...(n—k—i—l)% else,
wheren is the size of\.

We also consider another family of functions on Young diatgathe free cumu-
lants (R ),>2 of the transition measure (for their definition we refer tp$ection
1]). It has been shown by S. Keray [2, Theorem 1] (the refezagigen deals only
with the case of a one-part partitipn but the proof can be readily extended to the
general case) that there exist polynomials such that, as functions on all Young
diagrams,

(8) Ch, = K, (R, Rs,...).

These polynomials are called Kerov character polynomiteir coefficients have
been the subject of many research articles in the last fevs yseel[10] and refer-
ences therein. Here we focus on the coefficient of a sifgl@inear coefficient)
for the maximal value of, that is

J=1lul—L£(p) +2
This coefficient has a very compact expression that we protleei next paragraph

(we use throughout the notatidA| B to denote theoefficientof A in the expan-
sion of B).

Proposition 3.1. Let . be a partition andj = |u| — ¢(u) + 2. Then

[R]K _ [ Z(u Zl(_u[,u ’N’_l) )
= F) Tl =Gy + 1

3.2. Combinatorial interpretation of Kerov polynomials. Linear coefficients in
Kerov polynomials have a quite simple combinatorial intetation, established
by P. Bianel[2, Theorem 5.1] for one-part partitionsand by A. Rattan and P.
Sniady [28, Theorem 19] for arbitrary partitiops
(—=1)*W=1[R,1K,, is the number of pairér, o) such that
e o1 andoy are permutations iS‘ 4l with

(9) 0109 = O'/“
where,o,, = (1---p1) (1 +1 ...p2) -5
e oy isalong cycle;
e 01 hasj — 1 cycles.
Note that the absolute lengfhsf o ando, are|u| — (j — 1) = ¢(n) — 1 and
|| — £(p). These two numbers sum up i@ — 1. This allows to use a theorem

2The absolute length of a permutation is the minimal numbeaators needed to write it as a
product of transpositions. It should note be confused wétiCoxeter length.
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of F. Bédard and A. Goupil, who counted the number of factdians [9) where
o1 has a given cycle-typ# (here,|\| = |u| and¢(\) = 7 — 1). They obtained the
following number[[6, Theorem 3.1] (see alsa|[17, Theoren})2.2
(Cp) = DG — 2)'TT; pa
ml()\)'mg()\)' s ’
wherem;(\) is the number of parts of equal toi, i > 1. To obtain[R;] K, we
have to sum over all possible cycle-types

) =1ip e W) — 1) 4 (j— 1!
(D) NRIK, = =5 Hu E O T
=l L)+
The term indexed by in the sum counts the number of sequenges: - ,i;_;
that are permutations of. Hence the sum is the number of sequenges - ,i;_;

of positive integers of surfu/, that is(";‘_‘;). It is then straightforward to see that
the expression above simplifies to the one in Propodifion 3.1

3.3. Macdonald symmetric functions. In this paragraph, we present another ap-
proach to Proposition 3.1, which relies on a basis of the sgtrimfunction ring
introduced by I.G. Macdonald.

Consider the centeZ (C[S,]) of the symmetric group algebra of size A basis
is given by the conjugacy class sums, that is

Ol = Z o.

cycle-typgo)=A

Since Z(C[S,]) is an algebra, there exist constanfﬁp such that, for any two
partitionsy, andv of sizen,

Cl.Cl,=> ), Cly.
AFn

These constants are callsilucture constantsr connection coefficientsf Z(C[S,,])
and have been widely studied in the literature.

Macdonald[[24, Exercises 1.7.24, 1.7.25] gave an explicitstruction of a basis
uy, of the symmetric function ring, which can be characterizefodows:

e u) is homogeneous of degrek;
e if A\ has only one part, them, is given by
U(n) = —Pn,
wherep,, is then-th power sum;

e for a partition\, denote\ the partition obtained from by adding one to
every part. Then, for any partitions v andn > || + |7|,

B 1=l
(10) UyUy = E (Cﬂlnf\ﬂ\’glnf\ﬁ\ (5
ARl pl+1v|

wherec is the structure constant of the center of the symmetricgaiu
gebra defined above.
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This construction can be found in paper![18] (see in pauiclilheorem 3.2 and
Proposition 4.1, which corresponds to the properties gbove

Note that it is well-known [13, Lemma 3.9] that the coeffidem the right-hand
side of [10) do not depend on(because\| = |u| + |v|).

We will see that Kerov polynomials contain in some sense Maattl symmet-
ric functions. To do this, consider, as in [11] the gradatileg, on the algebra\
generated by, (for £ > 2) defined

One can show that free cumulants are algebraically indegpergb the definition
makes sense. Then, one has the following properties:

e The top component ok, is Ry1. Indeed consider a monomig];_, R;,
appearing to the top component &, for degs, i.e. such that

t

Y Gi—2)=k-1

i=1

Then we must also have j; < k+ 1 [2, Section 6]. These two equations
imply ¢ < 1, which means that onli®;. , appears in the top component of
K. (and its coefficient is known to bB;

e Let ;. andv be two partitions. Then one has

K; Kj A K5
el Tl E ( %Z ‘w‘\ —pﬂv\) —2A 1 smaller degree terms fateg,,
25 Zp K v zy

Al +1v]

wherez; is the classical constaf{, " m;! if 7 is written asl”12™2 . ..
in exponential notatiori [24, Chapter 1]. This second priypean be de-
duced from|[21, Proposition 4.5]: we skip details here.

Consider the algebra isomorphism between the subalg@bRa, Ry, - - -] of
A and the symmetric function ring sendii®j;2 to —(j + 1)p;. Then the top
component ofl{— is sent tou) because of the two properties above.

Hence, thls top component can be computed using results, pim particular
[18, Lemmas 7.1 and 7.2]. Jf— 2 = || — ¢(v) = |v/|, then

_ZD

-1

_ZD

—_— §12 1
(-1 —2) 2l | (zm>0 hmsm)j_2

_zl7

(4 —2)
) <m1<u>,m2<u>7 . )
_ —2p vy (T—2+ L) -1
EDIEDNR <m1<u>,m2<u>,--->

Simplifying the expression above and setting- 7, we obtain Proposition 3.1.

[Rj|Ky =

[pj—2]uu
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3.4. Using the generalized Frobenius formula.The most efficient way to com-
pute the polynomialg(,, with a computer is to use the generalized Frobenius for-
mula [28, Theorem 5]. To state it, we need the notion of bavlaamulantsB;,

(for k£ > 2) of the transition measure. They are functions on the sell doang
diagrams and they form another algebraic basis sfich that

B, = R + non-linear terms

This implies tha{B;;] Ch,, = [R;] Ch,, which is by definition R, K, (see equa-
tion (8)). Lastly, we denote b¥ (=) the generating function of boolean cumulants
(which has coefficients in the riny):

H(z)=2—Boz ! — B3z 2 — ...

The following result of A. Rattan and Bniady express the normalized character
valuesCh,, in terms of boolean cumulants:

Theorem 3.2(]28]). For any integersu; > --- > p, > 1,

(11) (=1)"p1 -+ pr Chyy o,

% H (Zs - Zt)(zs — 2zt + iy — ,Us)
(Zs — Rt — ,us)(zs — 2+ //ft)

1<s<t<r

The right-hand side of11)) should be understood as follows: we expand the expres-
sion appearing there as a power series in decreasing powersvaith coefficients
beingA-valued functions of4, ..., z;_; and select the appropriate coefficient. We
repeat this procedure with respectg 1, z;_o,...,21.

In Propositiori 3.1, we are interested in the coefficient ahgle R; of maximal
degree. As mentioned above, it is equivalent to look at tiedfictent of a single3;
of maximal degree. In this paragraph, we try to understarglabefficient using
Theoren 3.2.

Let us first see what happens in the case 2: we consider the coefficient of
By 44, In Chy,, 4,. The right-hand side of (11) can then be written as

(12) [z '|H(z1)- - H(z1 — g1 + 1)

(21 — 20) (21 — 22 + p2 — )

(21 — 22 — 1) (21 — 22 + 1)
When we expand the fraction in decreasing powers,pho positive powers ap-
pear. In a facto, the maximal exponent af, is 1. Hence, the temth;(h_l)

for h > uo + 2 will not contribute to the coefficient im;l. In particular, one
can not obtainB,,, +,,, which is what we are looking for. Therefore each term
H(z9 — c) can be replaced by — c.

(23 '1H (22) -+ H (22 — p2 + 1)
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That being said, to obtain at the end tBg of maximal index, we have to keep
the biggest possible power of in the coefficient ofz; 1. To do that, we notice,
that if we consider the total degree in theariable set

29 — ¢ = z9 + Smaller degree terms

(21 — 20)(21 — 22 + g — ps) pop1 /73
— 14 2R
(21 — 22 — ps) (21 — 22 + 1¢) (1—21/2)
Hence we have

+ smaller degree terms

(21 — 22)(21 — 22 + p2 — p11)

-1
[z [H(z2) - H(Z2_“2+1)(z1—zz—ul)(z1—22+,ul)

2
= (2] (zgz . %) + smaller degree terms in
— <1/ <2

= s ().
Plugging this into equation (12) and setting &ll to 0, exceptB,,, 1,,,, We obtain
[Buy+pzltipz Chyy iy = [Bpyps][21 ]
p1—1

X H <Z1 — 7 — BHH—;LQ(zl _ Z’)—(Hl-ﬂw—l)) (Iullugziu—l + o(ziu_l)),
i=0

When we expand the product on the right-hand side, the tentaicing B,,, 1 .,
of maximal degree ir; is obtained by pickingu; — 1 factors z;, one factor
— Bz 27 and finally the factog: 12242 in the last parenthesis. We
haveu; ways to do so (corresponding to the choice of the indggm which we

take the termB,,, 1 .,/ 7#>~") and thus

[Bul +p2 ] g2 Chul JH2

=271 (—ulz’fl_lzfﬁm_l(um%zfrl)Jrsmaller degree terms iﬂ_) = — 22

Since (B, 41,) Chyy o = [Ruy+us) Chyy iy, We recover Proposition 3.1 in the
casel(u) = 2.

Let us consider now the general case. We want to compute #fosent of 5;
in Chy, ..., forj —2 =7%".(u; — 1) = K —r. Asin the casé(u) = 2, when
we extract the coefficient of some (for ¢t > 1), we have to keep only the highest
degree term in the-variable set. Therefore, for a fixed index 1, we can replace
H(z — ¢) by z; and use the approximation

(13) H (Zs B Zt)(zs — 2t + Mt — lu’s)
(Zoey (s = 20— ) (2 — 20+ 1)

2
ﬂtﬂs/zt
=1 —— 2t _ + smaller degree terms
LY G g
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So the highest degree term ip after successive extractions of the coefficients of

2l 2T ,22_1 is

r o r—1»
- ,u,u/z
-1 -1 II it E: ths/ <t
z e |2 z 1-+
[2] [r] t2t Zs/zt

1<s<t

Exchanging the product and summation symbol, we get a sumtloedollowing
set: for eacht > 1, we have to choose an integer< ¢ (we can not choose the
summandl in the bracket, because we would getwith a positive power, while
we want to extract the coefficient of ). These choices can be represented as an
unordered increasing tréé with r vertices, in whichs in the father oft. In the
caser = 2, we only had one summand.

If f(t) denotes the father ofin a treeT’, the summand associatedZds

= [ ] . Mg/ /7
(14) Ap =[5 (H Ll )

We then use the expansion

1
—_— me(z AL
Tyl 2, M0/

and rewrite equatiori (14) as

T

(15)  Ap =[xl | [ erpayz® D mulzpe /2™

t=2 me>1

A straightforward induction beginning at the leavesiond going up to the root
shows that the coefficients ef * - - - 2! corresponds to the summand

Z Mooy, — hT
u€br(t)

wherehr(t) = |hr(t)], andhr(t) is the hook oft, as defined in the introduction.
So, finally equation (15) reduces to

r
K— -1 2 :
AT — Zl pi+tr H'U/t,u/f(t) oy — hT
t=2 u€hr(t)

Coming back to formulg (11), the coefficief;] Ch,,, ... .., IS given by
[Br—r42](=1)"pi1 -+ pir Chyyy s,

= [Br—rs2lz 1H (21) -+ H(z1 — 1 + 1) (Z AT) :
T
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FIGURE 2. AtreeT as a grafting off/; onTj.

As in the case: = 2, the extraction of the coefficient (EK_T»+221_1 yields an
extra factoru; and the equation above simplifies to

(—1)""Y[B;] Chyy .oy = ZT: (gum ( > )uu — hy(t) + 1>>

uehr(t

Together with Proposition 3.1 and the remark above that
[Bj] Chm,---,ur = [Rj] Chm,---,ur = [Rj]Km,---,um

this proves (in a very indirect way) Theorém]1.1.

4. ELEMENTARY OPERATORS ON POLYNOMIALS

The purpose of this section is to give the first of our two dingoofs of the
hook formula (Theorern_1l.1), which uses operators on polyalsm\We proceed
by induction onr, with base case = 1, for which the theorem is trivially true.
Now consider an arbitrary (unordered increasing) ¥exd sizer > 1. The vertices
labelled1 and2 must be joined by an edge becaldsés increasing, sd’ can be
obtained in a unique way by grafting a tréewith root 2 on a tre€l; with root1
as shown in Figurgl2 (we denote this By= T, e T}). Note that we consider here
trees whose label sets are not necessarily an intéryvat {1,--- ,r}, and so we
use the notatioX (7) for the label set of a tre@. Also, for a subseX of [r], we
denoteKy = ) ;. x ki.

The weight of the tre@y, e T obtained by grafting is given by the formula

wt(Ty o T1) = wt(To) wt(T1)k1 (Kx(m,) — [ X (T2)] + 1),

so summing over all tre€s = T, e T7, we obtain

> wt(T) = Y wi(To) wt(Th)ky (Kx ) — |X(To)| +1) .
T tree, T1,T>
X(1)=[r]

The sum on the right-hand side runs over pairs of trees sattXt¥’ ) containsl,
X (T) contains2 and the sets( (77) and X (73) form a partition of[r]. Splitting
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the sum according to the sexs, = X (7},)\{h} (for h = 1,2), we obtain

(16) > wt(T)= > ki (ko + Kx, — |X2])
T treg X1,Xo,
X(T)=[r] X1UX2={3, 1}

><< ; Wt(T1)>< > wt(T2)>.

1, Tz,
X(T)={1}uxX, X (To)={2}LIX>

We now apply the induction hypothesis on the right-hand gidget, forh = 1, 2,
Z wt(T},) = kh< H kz) (kn + Kx,, — 1)1x,|-1-
Ty, ieXp,
X(Th)={h}UXp
Plugging this into[(16), we obtain

> wi(T) = (f[ki>P(k1,--- k),

T treg i=1
X(T)=Ir]
where
A7) P(ky,- k) o= Y ka(ky+ Kx, — 1) x,-1 (k2 + Kx, — 1)x, .

X1,Xo,
XluX2:{37“' 7T}

In order to complete the inductive proof of our hook formulse now prove
that, forr > 2, P(ky,--- , k) is equal to

Q(kh T JkT’) - (K - 1)7“—2-
It is clear that both{ P(k1,--- , k;)}r>2 and{Q(k1, - - , k) }r>2 are families of
multivariate polynomials, and that, for eagch> 2, () satisfies the following two
properties:

e As a polynomial ink, the constant term is

(18) Q(Oa k27 o 7k3) = (K{Z ,T} - 1)7“—2;
e |t satisfies the finite difference equation

(19) Ay QUhr, k) = QUhy + ki ko, ki, Ky).
i=3
Here Ay, stands for the finite difference operator with respect tothat
is, Ak, f(k1) = f(k1+1) — f(k1), and the notatiot; means thak; does
notappear as an argument.
These two properties completely determine the family oftiveuliate polynomials
{Q(k1,- -+ ,kr)}r>2 (by immediate induction on). We now complete the proof
that P = @ by proving that the family{ P(k,--- , k) }»>2 also has these two
properties.
Constant term If X; # 0, then (k1 + Kx, — 1)x,)—1 iS @ polynomial in
k1, which implies that the summand correspondingXtp in Equation [(1V) is a



A MULTIVARIATE HOOK FORMULA FOR LABELLED TREES 15

multiple of k;. Thus, the constant term &f corresponds to the summand indexed
by X; = 0, which implies immediately thaP satisfies equation _(18).
Finite difference equatianA simple computation gives
Ap, (ki(k1 + Kx, — D)x,-1) = (Xulk + Kx,) (k1 + Kx, — 1)x,)-2
Therefore, from[(1]7) we obtain
(20) A, P(k1,-- k)
= Y (IXalky+ Kx,) (k1 + Kx, = 1)jx—2(k2 + Kx, — 1)x,).

X1,Xo,
XluX2:{37“' 77'}

Also, directly from [1T), we have

ZP(k1+kiyk27"' 7];;7"' 7k7‘)

=3
=> D (ka4 ki) (b + ki + Ky, = Dy 1 (b2 + Ky, — 1)y
i—3 Y1,Ya,

ViLYa={3, r}\{i}
= > (ke E) (R + Kxy — Dy a(ke + Kx, = 1)x,

1=3 X1,Xo,
X1UXo={3,r}, i€Xy

= > ( > (k+ k?z')> (k1 + Kx, — 1)1x,—2(k2 + Kx;, — 1)1x,)5
X1,Xa, i€X1
X1UXo={3,,r}
where we have changed summation indices from the first emuatove to the
second by setting(; = Y; U {i} and X, = Y>. Comparing this with[{20) implies
immediately thatP satisfies equation (19), which completes the proof that Q,
and hence the first direct proof of our hook formula.

5. MULTIVARIATE LAGRANGE INVERSION

For the second direct proof of our hook formula (Theotenh, B apply La-
grange inversion in many variables. We again proceed byctmmiuonr, with base
caser = 1, for which the theorem is trivially true. Now consider anigdry (un-
ordered increasing) tréE of sizer > 1. The root vertex labelled has degreg
for somej > 1, and the tree decomposes intsub-trees, whose vertex sets form
a partition of{2, ..., r}. >From this analysis we immediately obtain the following
recurrence relationship for the combinatorial sum on thehand side of the hook
formula in Theorenh 1]1:

j J
(21) wa):z% oL Ex - Xl +1) D wi(T).
T

7>1 XlLl---LlXj =1 TL':X(TZ')IXi
:{27"'7T}
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We complete the proof by showing that the algebraic exprassi the right-
hand side of the hook formula in Theorém]1.1 also satisfiesréturrence equa-
tion. To do so, we apply the following multivariate form of drange’s Implicit
Function Theorem, as given in Goulden and Jacksaon [16], fEined.2.9(1).

Theorem 5.1. Suppose thaty; = t;¢;(w), whereg; is a formal power series
with constant termi, fori = 1,...,r, withw = (wy,...,w,). Then for integers
ni,...,n, and formal Laurent serieg, we have

[ -] f (w)

= AT AT F ()AL (A)™ - (W)™ det <5 -

Aj 5@0\))
@(A) a)‘j 1<i,j<r ’

wherel = (\q,..., \).
Applying this form of Lagrange’s Theorem, we obtain thedaling identity.
Theorem 5.2. For » > 2, we have
Kl ]
ki ke (K —1),_o :Zﬁ > H( 11 kg)(KXZ. —1)jxi-1-
jZl XlLl---LlXj:{Q,...J’} =1 leX;

Proof. Considerg;(w) = (1 + wy + - -+ +w, )%, fori = 1,...,r. Then we have

Aj 0¢i(N) Aik;
det ( 6;; — -2 = det [ 6;; — j
¢ < i(A) O\ > © < J 1+)\1+...+)\T>
_q iz Ak
- L+ A

sincedet(l + M) = 1 + traceM whenrankM < 1.
We now calculat€t; - - - t,Jw; in two ways. First, directly from Theorem 5.1,
withn; =--- =n, = 1, andf(w) = wy, we obtain

. TNk
t st Jwr = [Ar - A A (1 O 1_@
[t1- -t Jwr = [Ar - A A ( +i§:1A) ( = 2":1%')

—(r— 1)!<TK1> (K~ k)(r — 2)!<I:__21>

= k(K — 1),
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Second, applying the functional equatien = ¢1¢, (w), we obtain

[t tJwr = [t - ]t (1 + Zwi)’“

=ty ]Z <log 1+Zw,>

]>0

= ]—? > IT{ (11 teltog(t+ 3 wi)

Jjz1 X1U--UX;={2,...,r}i=1 \ z€X;

But, foranyX C {2,...,r}, with | X| = m > 1, Theoreni 511 gives

[H ty]log(1 + Z w;)

zeX
2 i1 Aiki
=[] Aellog( 1+Z>\ 1+ZA KX< e S
reX 1 +zi:1 /\Z
=[] Aellog(1 4+ > A1+ > M) (1 Dsex Meka )
zeX zeX zeX 142 ex A
= m![z2™]log(1 + 2)(1 + 2)5X — Kx(m — 1)![z™ ] log(1 + 2)(1 + z)Ex~1

= (m —1)![z™1 {dilz (log(1 + 2)(1 + 2)%x) —log(1 + z)d%(l + z)KX}

m(l +2)fX = (m — 1)!<%__11> = (Kx = Dm—1

The result follows by equating the two expressions[for - - ¢,.]wy, and then mul-
tiplying by ks - - - k.. O

= (m —1)![z™1

It follows immediately from Theorerin 5.2 that the algebraxpression on the
right-hand side of the hook formula in Theorém|1.1 also §asisecurrence equa-
tion (21), and this completes the second direct proof of @akiformula.
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