# Absolutely symmetric trees and complexity of natural number 

Kochkarev B.S.

May 3, 2012

Abstract. We consider the rooted trees which not have isomorphic representation and introduce a conception of complexity a natural number also. The connection between quantity such trees with $n$ edges and a complexity of natural number $n$ is established. The recurrent ratio for complexity of a natural number is founded. An expression for calculation of difference complexities of two adjacent natural numbers is constructed. It is proved that this difference equal 1 if and only if a natural number is simple. From proved theorems it follows corollaries.

Almost every book on graph theory contains some parts devoted to trees (see, e.g., [1, 2, 3, 4]). The concept of a tree has been entered for the first time by Kirchhoff [5] in connection with research of electric chains. Later this concept also was independent is entered by Cayley [6] and it had been received the first basic results in the theory of trees. Trees have wide appendices in various area of a science. The analysis of publications $[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]$ allows to assume that a class of rooted trees which not have isomorphic trees distinct from them in the scientific literature is disregarded. The connection between quantity such trees with $n$ edges and a complexity of natural number $n$ is established in this article.

Definition 1. A flat geometrical realization of a rooted tree is called absolutely symmetric rooted tree (a.s.r.t.) if it not have isomorphic representative distinct from them.

Evidently at $n=1,2$ all flat geometrical realization of rooted trees are a.s.r.t.. Since $n=3$ among realization of trees with $n$ edges there are isomorphic trees.

It is possible to make other inductive definition a.s.r.t. equivalent given
above.
Induction basis. The edge with the allocated end $a$ (fig.1) is a.s.r.t. with a root $a$.

Induction step. Let $A$ - be a a.s.r.t. with a root $a$ (fig.2). Then the tree $C$ (fig.3a) obtained from $A$ by "connecting" a new edge to the root $a$, become a a.s.r.t. with the root $c$, where $c$ is the free end of the connected edge. Further, the tree $D$ (fig. 3 b ), obtained from $k, k>1, A$ by joining their roots, become a a.s.r.t. with the root $a$.

Let $A=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ a vector with $k$ natural components $a_{i} \geq 1$. For $A$ we will define functional $f(A)$ recurrently: $f\left(a_{1}\right)=a_{1}, f\left(a_{1}, a_{2}, \ldots, a_{i+1}\right)=$ $\left(f\left(a_{1}, a_{2}, \ldots, a_{i}\right)+1\right) a_{i+1}$.

Definition 2. The quantity $T(n)$ of various vectors $A$ with $f(A)=n$ is called a complexity of number $n$.

Theorem 1. The quantity of a.s.r.t. with $n$ edges equal $T(n)$.
Proof. We show at first to any vector $A=\left(a_{1}, a_{2}, \ldots, a_{k}\right), a_{i} \geq 1$, it is possible to put in conformity a.s.r.t. with $f(A)$ edges. We prove it an induction on $k$. For $k=1 A=\left(a_{1}\right), f(A)=a_{1}$. We put to vector $A$ in conformity in this case a rooted tree $A_{1}^{\prime}$ (fig.4) which is a.s.r.t. with $a_{1}$ edges and with a root $a$. We assume now, that for any $l \leq i$ to vector $A=\left(a_{1}, a_{2}, \ldots, a_{l}\right)$ corresponds a.s.r.t. $A_{l}^{\prime}$ with number of edges equal $f(A)$ and with a root $a$. We will show how, that to vector $A=\left(a_{1}, a_{2}, \ldots, a_{i+1}\right)$ can put in conformity a.s.r.t. $A_{i+1}^{\prime}$ with number of edges $f(A)$.Really, under the assumption, to vector $A=\left(a_{1}, a_{2}, \ldots, a_{i}\right)$ corresponds a.s.r.t. $A_{i}^{\prime}$ (fig.5a) with number of edges equal $f(A)$ and with a root $a$. Then to vector $A=\left(a_{1}, a_{2}, \ldots, a_{i}, a_{i+1}\right)$ we will put in conformity rooted tree $A_{i+1}^{\prime}$ with a root $c$ (fig.5b) obtained from $a_{i+1}$ trees $A_{i}^{\prime \prime}$ (fig. 5 c ) by joining their roots $c$. Evidently, $A_{i+1}^{\prime}$ is a.s.r.t. with number of edges equal $f(A)=\left(f\left(a_{1}, a_{2}, \ldots, a_{i}\right)+1\right) a_{i+1}$, as was to be shown. Thus to any vector $A=\left(a_{1}, a_{2}, \ldots, a_{k}\right), a_{i} \geq 1$ it is possible to put in conformity a.s.r.t. with $f(A)$ edges.

We show now, that to any a.s.r.t. with number of edges $n$ there correspond some vector $A=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ wits $f(A)=n$. We prove it an induction on $n$. If $n=1$, a.s.r.t. with number of edges 1 (fig.1) correspond vector $A=(1)$ with $f(A)=1$ We assume now, that for any $l \leq k$ a.s.r.t. with number of edges $l$ there correspond some vector $A=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ with $f(A)=l$. Let now it is given a.s.r.t. with number of edges $k+1$. To inductive definition a.s.r.t. two cases are possible: the tree looks like, presented on fig.6a or 6 b , where $A$ and $B$ a.s.r.t. such, that vectors corresponding to them $A^{\prime}=\left(a_{1}, a_{2}, \ldots, a_{s}\right), B^{\prime}=\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{r}^{\prime}\right)$ have $f\left(A^{\prime}\right)=k, f\left(B^{\prime}\right)=m$.

Then a.s.r.t. $C$ (fig.6a) and $D$ (fig.6b) there will correspond vectors $A_{C}=$ $\left(a_{1}, a_{2}, \ldots, a_{s}, 1\right), A_{D}=\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{r}^{\prime}, t\right)$. Evidently, $f\left(A_{C}\right)=k+1, f\left(A_{D}\right)=$ $\left(f\left(B^{\prime}\right)+1\right) t=k+1$. Thus, to any a.s.r.t. with number of edges $n$ there correspond some vector $A=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ with $f(A)=n$.

Corollary 1. If $n$ is simple then all vectors $A=\left(a_{1}, a_{2}, \ldots, a_{k}\right), k>1$, for which $f(A)=n$ have $a_{k}=1$.

Corollary 2. $T(n)$ is the quantity of presentations of $n$ in look $a_{1} a_{2} \cdots a_{k}+$ $a_{2} a_{3} \cdots a_{k}+\cdots+a_{k}$.

Theorem 2. $T(n)=\sum_{r} T(r-1)$, where $r \geq 1$ divide $n, T(0)=1$.
Proof. We prove it an induction on $n . T(1)=1$ (fig.1). Really, $T(1)=$ $\sum_{r} T(r-1)=T(0)=1$.We assume now, that the statement is true for all $l \leq k$, i.e. $T(l)=\sum_{r} T(r-1)$. Let now $l=k+1$. A.s.r.t. with $k+1$ edges can be one of two kinds (fig.6a) or(fig.6b). Obviously, the number of a.s.r.t a kind (fig.6a) will be $T(k)$, and the number of a.s.r.t. a kind (fig.6b) will be $\sum_{r^{\prime}} T\left(r^{\prime}-1\right)$, where $r^{\prime}$ divide $k+1$ and $r^{\prime}<k+1$. Thus, the general number of a.s.r.t. with $k+1$ edges will be $T(k+1)=T(k)+\sum_{r^{\prime}} T\left(r^{\prime}-1\right)=\sum_{r} T(r-1)$. From here for any $n$ it is had

$$
T(n)=\sum_{r} T(r-1)(1)
$$

For example, if $n=12$ then $T(12)=T(0)+T(1)+T(2)+T(3)+T(5)+$ $T(11)=40$.

Corollary 1. Number $n$ is simple if and only if $T(n)=1+T(n-1)$
Corollary 2. If $n=p^{r}$, where $p$ is simple then $T(n)=\sum_{k=0}^{r} T\left(p^{k}-1\right)$.
Corollary 3. If $n$ is compound then $T(n)<1+T(n-1)+(2\lfloor\sqrt{n}\rfloor-$ 2) $T\left(\frac{n}{\min _{i} p_{i}}-1\right)$, where $p_{i}$ is simple divider of $n$.

Corollary 4. $T(n) \leq\binom{ n}{\left[\frac{n}{2}\right\rfloor}$.
Proof. It statement is proved on induction. For $n=1$ it is true. We assume now that it is true for all $l \leq k$, i.e. $T(l) \leq\binom{ l}{\left\lfloor\frac{l}{2}\right\rfloor}$. Then from corollary 2 we receive $T(k+1)<1+T(k)+(2\lfloor\sqrt{k+1}\rfloor-2) T\left(\frac{k+1}{\min _{i} p_{i}}-1\right) \leq\binom{ k+1}{\left\lfloor\frac{k+1}{2}\right\rfloor}$. Thus, for any $n$ we have $T(n) \leq\binom{ n}{\left[\frac{n}{2}\right.}$.

Let $T^{*}(n)=T(n)-T(n-1), n \geq 1$. Evidently, for $n \geq 2 T^{*}(n)$ represent a difference on complexity of two adjacent natural numbers, i.e. on how many complexity of natural number $n$ is more than complexity of $n-1$.

Theorem 3. $T^{*}(n)=\sum_{p_{i}} T\left(\frac{n}{p_{i}}\right)-\sum_{p_{i}, p_{j}} T\left(\frac{n}{p_{i} p_{j}}\right)+\cdots+(-1)^{m-1} T\left(\frac{n}{p_{1} p_{2} \cdots p_{m}}\right)$, where $p_{1}, p_{2}, \ldots, p_{m}$ runs all in pairs various simple dividers of number $n \geq 2$

Proof. According to (1) $T(n)=\sum_{r} T(r-1)=\sum_{r^{\prime}} T\left(r^{\prime}-1\right)+T(n-1)$ From here $T^{*}(n)=\sum_{r^{\prime}} T\left(r^{\prime}-1\right)$ It is obvious, if $n=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{m}^{r_{m}}$, where
$p_{1}, p_{2}, \ldots, p_{m}, m \geq 2$, runs all in pairs various simple dividers of number $n$ then $\sum_{i=1}^{m} T\left(\frac{n}{p_{i}}\right) \geq \sum_{r^{\prime}} T\left(r^{\prime}-1\right)$ as any divider $r^{\prime}$ of number $n$ distinct from $n$ is a divider at least one of numbers $\frac{n}{p_{i}}, i=\overline{1, m}$. At numbers $\frac{n}{p_{i}}, i=\overline{1, m}$, can be the general dividers. There fore, using a method of inclusions and exeption [16] we receive $T^{*}(n)=\sum_{p_{i}} T\left(\frac{n}{p_{i}}\right)-\sum_{p_{i}, p_{[ } j} T\left(\frac{n}{p_{i} p_{j}}\right)+\cdots+\left(-1^{m-1} T\left(\frac{n}{p_{1} p_{2} \cdots p_{m}}\right)\right.$.

Corollary. $T^{*}(n)=1$ if and only if $n$ is simple.
Proof. Let $n$ is simple. Then $T^{*}=T(n)-T(n-1)=T(0)+T(n-1)-$ $T(n-1)=T(0)=1$. Let now $T^{*}=1$. Then as $T^{*}=T(n)-T(n-1)=1$, $T(n)=1+T(n-1)$. But $T(n)=\sum_{r} T(r-1)=T(0)+T(n-1)+\sum_{r^{\prime \prime}} T\left(r^{\prime \prime}-\right.$ $1)$, where $r^{\prime \prime}>1$ divide $n$ and $r^{\prime \prime} \neq n$. From here $\sum_{r^{\prime \prime}} T\left(r^{\prime \prime}-1\right)=0$ Hence $n$ is simple.

From definition $T^{*}(n), n \geq 1$, we have $T(n)=1+\sum_{k=1}^{n} T^{*}(k)$ The first 40 values of numbers $T^{*}(n), n=1,2, \ldots, 40$, are that $0,1,1,2,1,4,1,5,3,7,1,13,1,12$, $8,16,1,26,1,29,13,28,1,51,6,42,19,56,1,87,1,77,29,79,16,124,1,106,43,145$.

References:

## References

[1] Berge K., Teorija graphoff i eje prilogenija, M., Inostr. lit., 1962, 162 c.
[2] Harary F., Graph theory, Addison-Wessley, Reading, Massachusetts, 1969
[3] Ore O., Teorija graphoff, izd. Nauka, 1980, 340 c.
[4] Emelichev V.A., Melnikov O.I., Sarvanov V.I., Tishkevich R.I., Lektsii po teorii graphoff, izd.2, 2009, 392 c.
[5] Kirchhoff G., Annalen der Physik and Chemie, 72, 1847, p. 497.
[6] Cayley A., Collected papers, Quart. J. of Mathematics, 13, Cambridge, 1897, p. 26.
[7] Otter R., The number of trees, Ann. Math.,49,1948, p.583-599
[8] Bott R., Mayberry J.P., Matrices and Trees, Economic Activity Analysis, Wiley, New York, 1954.
[9] Basaker R., Saaty T., Konechniye graphy i ceti, M., Nauka, 1974.
[10] Change S.K., The generation of minimal trees with Steiner topology, J. of ACM, 19, 1972, p. 699.
[11] Chen W.K., Applied Graph Theory, North-Holland, Amsterdam, 1971.
[12] Chen W.K., On the directed trees and directed k-trees of a digraph and their generation, J. of SIAM (Appl. Math.), 14, 1966, p.550.
[13] Chen W.K., Li H., Computer generation of directed trees and complete trees, Int. J. of Electronics, 34, 1973, p.1.
[14] Cockayne E.J., On the efficiency of the algorithm for Steiner minimal trees, J. of SIAM (Appl. Math.), 18 1970, p. 150.
[15] Yablonskiy S.V., Vvedeniye v discretnuju matematiku, M., Nauka, 1986, 384 s..
[16] Moon J.W. Various proofs of Cayley's formula for couting trees, A seminar of graph theory, Harary, Ed., Holt, Rinehart and Winston, New York, 1967.
[17] Stanley R.P., Enumerative Combinatorics, v.1, Monterey, California, 1986, 440 p.


Figure 1:


Figure 2:


Figure 3:


Figure 4:


Figure 5:


Figure 6:

