Uniquely dimensional graphs

Behrooz Bagheri Gh., Mohsen Jannesari, Behnaz Omoomi
Department of Mathematical Sciences
Isfahan University of Technology
84156-83111, Isfahan, Iran

Abstract

A set $W \subseteq V(G)$ is called a resolving set, if for each two distinct vertices $u, v \in V(G)$ there exists $w \in W$ such that $d(u, w) \neq d(v, w)$, where $d(x, y)$ is the distance between the vertices x and y. A resolving set for G with minimum cardinality is called a metric basis. A graph with a unique metric basis is called a uniquely dimensional graph. In this paper, we study some properties of uniquely dimensional graphs.

Keywords: Resolving set; Metric basis; Uniquely dimensional.

1 Introduction

Throughout the paper, $G=(V, E)$ is a finite, simple, and connected graph of order n. The distance between two vertices u and v, denoted by $d(u, v)$, is the length of a shortest path between u and v in G. For a vertex $v \in V(G), \Gamma_{i}(v)=\{u \mid d(u, v)=i\}$. The diameter of G is $\operatorname{diam}(\mathrm{G})=\max \{d(u, v) \mid u, v \in V(G)\}$. The girth of G is the length of a shortest cycle in G. The set of all adjacent vertices to a vertex v is denoted by $N(v)$ and $|N(v)|$ is the degree of a vertex $v, \operatorname{deg}(v)$. The maximum degree and the minimum degree of a graph G, are denoted by $\Delta(G)$ and $\delta(G)$, respectively. The notations $u \sim v$ and $u \nsim v$ denote the adjacency and non-adjacency relations between u and v, respectively.

For an ordered set $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \subseteq V(G)$ and a vertex v of G, the k-vector

$$
r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)
$$

is called the metric representation of v with respect to W. The set W is called a resolving set for G if distinct vertices have different metric representations. A resolving set for G with minimum cardinality is called a metric basis, and its cardinality is the metric dimension of G, denoted by $\beta(G)$. If $\beta(G)=k$, then G is said to be k-dimensional.

In [14, Slater introduced the idea of a resolving set and used a locating set and the location number for what we call a resolving set and the metric dimension, respectively. He described
the usefulness of these concepts when working with U.S. Sonar and Coast Guard Loran stations. Independently, Harary and Melter [7] discovered the concept of the location number as well and called it the metric dimension. For more results related to these concepts see [3, 4, 6, 11. The concept of a resolving set has various applications in diverse areas including coin weighing problems [13], network discovery and verification 1], robot navigation [11], mastermind game [3], problems of pattern recognition and image processing [12] and combinatorial search and optimization (13.

It is obvious that to see whether a given set W is a resolving set, it is sufficient to consider the vertices in $V(G) \backslash W$, because $w \in W$ is the unique vertex in G for which $d(w, w)=0$. When W is a resolving set for G, we say that W resolves G. In general, we say an ordered set W resolves a set $T \subseteq V(G)$, if for each two distinct vertices $u, v \in T, r(u \mid W) \neq r(v \mid W)$.

The following bound is the known upper bound for the metric dimension.

Theorem A. 5] If G is a connected graph of order n and diameter d, then $\beta(G) \leq n-d$.

In [9, 10, the properties of k-dimensional graphs in which every k subset of vertices is a metric basis are studied. Such graphs are called randomly k-dimensional graphs. In the opposite point there are graphs which have a unique metric basis.

Definition. A graph G is called uniquely dimensional if G has a unique metric basis. A uniquely dimensional graph G with $\beta(G)=k$ is called a uniquely k-dimensional graph.

In this paper, we first obtain some upper bounds for the metric dimension of uniquely dimensional graphs. Then, we give some construction for uniquely k-dimensional graphs of the given order. Finally, we obtain a lower bound and an upper bound for the minimum order of uniquely k-dimensional graphs in terms of k.

2 Some upper bounds

In this section we obtain some upper bounds for the metric dimension of uniquely dimensional graphs.

Two vertices $u, v \in V(G)$ are called twin vertices if $N(u) \backslash\{v\}=N(v) \backslash\{u\}$. It is known that, if u and v are twin vertices, then every resolving set W for G contains at least one of the vertices u and v. Moreover, if $u \notin W$ then $(W \backslash v) \cup\{u\}$ is also a resolving set for G. [8]

For a uniquely dimensional graph we have the following fact.

Lemma 1. If G is a uniquely dimensional graph, then G contains no twin vertices.

Proof. Let B be the unique metric basis of G. If $u, v \in V(G)$ are twin vertices, then $u, v \in B$; otherwise we can replace the one in B with the other one. Now, since $B \backslash\{u\}$ is not a basis of G, there is exactly one vertex $w \in V(G) \backslash B$ such that $r(u \mid B \backslash\{u\})=r(w \mid B \backslash\{u\})$. Consequently, $(B \backslash\{u\}) \cup\{w\}$ is a metric basis of G different from B, which is a contradiction.

Theorem 1. If G is a uniquely dimensional graph of order n and diameter d, then $\beta(G) \leq$ $n-d-2$.

Proof. Let $\left(v_{0}, v_{1}, \ldots, v_{d}\right)$ be a path of length d in G. Two sets $V(G) \backslash\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ and $V(G) \backslash\left\{v_{0}, v_{1}, \ldots, v_{d-1}\right\}$ are two resolving set of G of size $n-d$. Hence, if G is uniquely dimensional, then $\beta(G) \leq n-d-1$. To complete the proof we show that $\beta(G) \neq n-d-1$.

Let $\beta(G)=n-d-1$ and for each $i, 1 \leq i \leq d, \Gamma_{i}=\Gamma_{i}\left(v_{0}\right)$. We claim that for each i, $1 \leq i \leq d, \Gamma_{i}$ is an independent set or a clique; otherwise there exists an i for which Γ_{i} contains vertices x, y, z such that $x \sim y$ and $x \nsim z$. Therefore, $V(G) \backslash\left\{y, z, v_{1}, v_{2}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{d}\right\}$ is a metric basis of G. Now, if $y \nsim z$, then $V(G) \backslash\left\{x, z, v_{1}, v_{2}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{d}\right\}$ and if $y \sim z$, then $V(G) \backslash\left\{x, y, v_{1}, v_{2}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{d}\right\}$ is another metric basis of G, respectively, which both are contradictions. Consequently, for each $i, 1 \leq i \leq d, \Gamma_{i}$ is an independent set or a clique.

Now let for some $i, 1 \leq i \leq d,\left|\Gamma_{i}\right| \geq 2$. Then, all vertices in Γ_{i} are adjacent to all vertices in Γ_{i-1}; otherwise there exist $a \in \Gamma_{i-1}$ and $x \in \Gamma_{i}$ such that $a \nsim x$. Therefore, x has a neighbor in Γ_{i-1}, say b. Assume that $y \in \Gamma_{i}$ and $y \neq x$. Clearly $i \geq 2$. Thus, $V(G) \backslash\left\{a, b, y, v_{1}, v_{2}, \ldots, v_{i-2}, v_{i+1}, \ldots, v_{d}\right\}$ is a metric basis of G. Now, if $y \sim a$, then $V(G) \backslash$ $\left\{b, x, y, v_{1}, v_{2}, \ldots, v_{i-2}, v_{i+1}, \ldots, v_{d}\right\}$, and if $y \nsim b$, then $V(G) \backslash\left\{a, x, y, v_{1}, v_{2}, \ldots, v_{i-2}, v_{i+1}, \ldots, v_{d}\right\}$ is another metric basis of G, respectively. These contradictions imply that $y \nsim a$ and $y \sim b$. Hence, $V(G) \backslash\left\{a, b, x, v_{1}, v_{2}, \ldots, v_{i-2}, v_{i+1}, \ldots, v_{d}\right\}$ is a metric basis of G, which is also a contradiction. Consequently, all vertices in Γ_{i} are adjacent to all vertices in Γ_{i-1}.

The above two facts imply that, if $\left|\Gamma_{i}\right| \geq 2$ and $\left|\Gamma_{i+1}\right| \geq 2$, then all vertices in Γ_{i} have the same neighbors in $\Gamma_{i-1} \cup \Gamma_{i} \cup \Gamma_{i+1}$. Therefore, all vertices $u, v \in \Gamma_{i}$ are twin vertices, which by Lemma 1 this is impossible. Thus, $\left|\Gamma_{i}\right| \geq 2$ implies that $\left|\Gamma_{i+1}\right|=1$ and $\left|\Gamma_{i-1}\right|=1$. Hence, if $\left|\Gamma_{i}\right|>2$, then since $\Gamma_{i+1}=\left\{v_{i+1}\right\}$, by the Pigenhole principle there are two vertices $u, v \in \Gamma_{i}$ with the same adjacency relation with v_{i+1}. Therefore, u and v are twin vertices, which is impossible. That is, for each $i, 1 \leq i \leq d,\left|\Gamma_{i}\right| \leq 2$. Now let j be the largest integer in $\{1,2, \ldots, d\}$ with $\left|\Gamma_{j}\right|=2$ and $\Gamma_{j}=\left\{v_{j}, y_{j}\right\}$, where y_{j} is the vertex with no neighbor in Γ_{j+1}. Therefore, the sets $\left\{v_{0}, v_{d}\right\}$ and $\left\{v_{0}, y_{j}\right\}$ are two metric bases of G. This contradiction implies that $\beta(G) \neq n-d-1$.

Theorem 2. If G is a uniquely dimensional graph of order n and girth g, then $\beta(G) \leq n-g+1$.
Proof. Let $C_{g}=\left(v_{1}, v_{2}, \ldots, v_{g}, v_{1}\right)$ be a shortest cycle in G. Then $V(G) \backslash\left\{v_{3}, v_{4}, \ldots, v_{g}\right\}$ and $V(G) \backslash\left\{v_{2}, v_{3}, \ldots, v_{g-1}\right\}$ are two resolving set for G of size $n-g+2$. Since G has a unique basis, none of these two sets is a metric basis of G. Therefore, $\beta(G) \leq n-g+1$.

Theorem 3. If G is a uniquely dimensional graph of order n, then $\beta(G)<\frac{n}{2}$.
Proof. By the contrary assume that G has a unique metric basis $B=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ and $n \leq 2 k$. Since $k \leq n-1, W=(V(G) \backslash B) \cup\left\{v_{1}, v_{2}, \ldots, v_{2 k-n}\right\} \neq B$ with $|W|=k$. Therefore, W is not a basis of G and there exist vertices $x, y \in V(G) \backslash W \subseteq B$ such that $r(x \mid W)=r(y \mid W)$. Say $x=v_{i}$ and $y=v_{j}$. Hence, for each $v \in V(G) \backslash B, d\left(v, v_{i}\right)=d\left(v, v_{j}\right)$. By this reason, $B \backslash\left\{v_{i}\right\}$ resolves $V(G) \backslash B$. Therefore, there is exactly one vertex $u \in V(G) \backslash B$ such that $r\left(u \mid B \backslash\left\{v_{i}\right\}\right)=r\left(v_{i} \mid B \backslash\left\{v_{i}\right\}\right)$. Consequently, $\left(B \backslash\left\{v_{i}\right\}\right) \cup\{u\}$ is a metric basis of G, which is a contradiction. Thus, $2 \beta(G)<n$.

3 Construction of uniquely k-dimensional graphs

In this section, we provide some construction for uniquely k-dimensional graphs of given order. Then we end with giving a lower bound and an upper bound for the minimum number of vertices in such graphs in terms of k.

Remark 1. Note that, if G is a graph of diameter d, then every $W \subseteq V(G)$ can resolve at most $d^{|W|}$ vertices of $V(G) \backslash W$. Hence, every k-dimensional graph of diameter d has at most $k+d^{k}$ vertices.

In [2], Buczkowski et al. constructed a uniquely k-dimensional graph with diameter 2 and order $k+2^{k}$.

Theorem B. [2] For $k \geq 2$, there exists a uniquely k-dimensional graph of order $n=k+2^{k}$, diameter 2 , and maximum degree $n-1$.

In the following theorem regarding to constructing uniquely k-dimensional graphs with diameter d, we obtain two necessary conditions for the existence of k-dimensional graphs with diameter d and order $k+d^{k}$.

Theorem 4. If G is a k-dimensional graph with diameter d and order $k+d^{k}$, then
(i) $d \leq 3$.
(ii) For a basis B and every $v \in B,\left|\Gamma_{d}(v)\right| \geq d^{k-1}$.

Proof. (i) Let G be a k-dimensional graph of diameter $d \geq 4$ and order $k+d^{k}$. Thus, $V(G)=$ $U \cup B$, where $U=\left\{u_{1}, u_{2}, \ldots, u_{d^{k}}\right\}$ and the ordered set $B=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a basis of G. Clearly, $\left\{r\left(u_{i} \mid B\right) \mid 1 \leq i \leq d^{k}\right\}=[d]^{k}$, where $[d]^{k}$ denotes the set of all k-tuples with entries in $\{1,2, \ldots, d\}$. Without loss of generality, suppose that $r\left(u_{1} \mid B\right)=(1,1, \ldots, 1)$ and $r\left(u_{2} \mid B\right)=$ $(4,1, \ldots, 1)$. Therefore, $d\left(v_{1}, v_{2}\right) \leq 2$ and $d\left(u_{2}, v_{1}\right) \leq d\left(u_{2}, v_{2}\right)+d\left(v_{2}, v_{1}\right) \leq 3$, a contradiction. Thus, $d \leq 3$.
(ii) Let $B=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. By the order and diameter of G, each k-vector with coordinates in $\{1,2, \ldots, d\}$ is the metric representation of a vertex $u \in V(G) \backslash B$ with respect to B. Therefore, for each $v \in B$, there are d^{k-1} vertices of G that the i-th coordinate of their metric representations is d. Thus, $\left|\Gamma_{d}(v)\right| \geq d^{k-1}$.

In the following, we give a construction for uniquely k-dimensional graphs of diameter 3 and order $k+3^{k}$.

Theorem 5. For every integer $k \geq 2$, there exists a uniquely k-dimensional graph of diameter 3 and order $k+3^{k}$.

Proof. Let G be a graph with vertex set $U \cup W$, where $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ is an independent set and W is the set of all k-tuples with entries in $\{1,2,3\}$ and two vertices $x, y \in W$ are adjacent if they are different in exactly one coordinate and this difference is one. Moreover, the vertex $(2,2, \ldots, 2)$ is adjacent to all vertices in W. Also, $w \in W$ is adjacent to $u_{i} \in U$ if the i-th coordinate of w is 1 .

The vertex $(2,2, \ldots, 2)$ is adjacent to all vertices in W and $(1,1, \ldots, 1)$ is adjacent to all vertices in U, thus $\operatorname{diam}(G) \leq 3$. On the other hand, $d\left((3,3, \ldots, 3), u_{1}\right)=3$. Therefore, $\operatorname{diam}(G)=3$. Since $\operatorname{diam}(G)=3$ and the order of G is $k+3^{k}$, by Remark [1, $\beta(G) \geq k$. For each $w \in W, r(w \mid U)=w$, thus, U is a resolving set for G of size k. Hence, U is a metric basis of G.

Now since $\operatorname{diam}(\langle W\rangle)=2$, for each $w \in W,\left|\Gamma_{1}(w) \cup \Gamma_{2}(w)\right| \geq 3^{k}-1$ and hence $\left|\Gamma_{3}(w)\right| \leq$ $k<3^{k-1}$. Therefore, by Theorem [4(ii), no vertex of W is in a metric basis of G. Consequently, U is the unique metric basis of G.

By Theorems 1 and 3, if G is a uniquely k-dimensional graph of order n, then $n \geq k+d+2$ and $n \geq 2 k+1$. Let

$$
n_{0}(k)=\min \{n \mid \text { there exists a uniquely } k \text {-dimensional graph of order } n\}
$$

Hence, we have $\max \{2 k+1, k+d+2\} \leq n_{0}(k)$.
The following theorem shows that if a uniquely k-dimensional graph of order n_{0} exists, then for every $n \geq n_{0}$, a uniquely k-dimensional graph of order n exists.

Theorem 6. If G is a uniquely k-dimensional graph of order n_{0}, then for every $n \geq n_{0}$, there exists a uniquely k-dimensional graph of order n.

Proof. Let G be a given uniquely k-dimensional graph of order n_{0} and u be a vertex in the basis B. Assume that $v_{0} \in V(G) \backslash B$ is a vertex that $d\left(v_{0}, u\right)=\max \{d(v, u) \mid v \in V(G) \backslash B\}$. We construct a graph G^{\prime} by identifying an end vertex of a path P of length $n-n_{0}$ by v_{0}. By the property of v_{0}, B is also a resolving set for G^{\prime}. Thus, $\beta\left(G^{\prime}\right) \leq k$. On the other hand, since every basis of G^{\prime} contains at most one vertex of the path P, by replacing that vertex by v_{0}, we obtain a basis for G. Thus, G^{\prime} is also a uniquely k-dimensional graph.

In the following theorem we give a recursive construction for uniquely dimensional graphs to obtain an upper bound for $n_{0}(G)$.

Theorem 7. If $G_{i}, i=1,2$, is a uniquely k_{i}-dimensional graph of order n_{i} with $\Delta\left(G_{i}\right)=n_{i}-1$, then there exists a uniquely $\left(k_{1}+k_{2}\right)$-dimensional graph G of order $n_{1}+n_{2}-1$ with $\Delta(G)=$ $n_{1}+n_{2}-2$.

Proof. Let G_{i} be a uniquely k_{i}-dimensional graph of order n_{i} with the basis B_{i} and $v_{i} \in V\left(G_{i}\right)$ such that $\operatorname{deg}\left(v_{i}\right)=n_{i}-1$, for $i=1,2$. Let G be a graph that obtained from joining G_{1} and G_{2}, and then identifying v_{1} and v_{2}, say v_{0}. Thus, $\operatorname{deg}\left(v_{0}\right)=n_{1}+n_{2}-2$. Since for every $u \in V\left(G_{1}\right) \backslash\left\{v_{1}\right\}$ and $v \in V\left(G_{2}\right) \backslash\left\{v_{2}\right\}, d(u, v)=1$, if B is a basis of G, then $B \cap V\left(G_{i}\right)$ is a basis of G_{i}, for $i=1,2$. Therefore, B is the unique basis of G.

Proposition 1. There exists a uniquely 3-dimensional graph of order 9 and maximum degree 8 .

Proof. Let $U=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{6}\right\}$. Also let G be graph with $V(G)=$ $U \cup W$ and $E(G)=\left\{w_{i} w_{j} \mid 1 \leq i \neq j \leq 6\right\} \cup\left\{u_{i} w_{j} \mid 1 \leq i \leq 3, j=i, i+1,6\right\}$. We show that U is the unique basis of G.

Clearly, $\operatorname{diam}(G)=2$. Since $|V(G)|=9$, by Remark $\mathbb{1}, \beta(G) \geq 3$. It is easy to see that U is resolving set and consequently is a basis of G. Now let B be another basis of G. Since $\langle W\rangle$ is a complete graph, $B \nsubseteq W$. Therefore, $|B \cap W|=1$ or 2 . If $|B \cap W|=1$, then five vertices of W have the same representation with respect to $B \cap W$ while since $\operatorname{diam}(G)=2, B \backslash W$ can not resolve five vertices. If $|B \cap W|=2$, then four vertices of W have the same representation with respect to $B \cap W$ while $B \backslash W$ can not resolve 4 vertices. These contradictions imply that U is the unique basis of G.

In the following theorem, based on the recursive construction in Theorem 7, we obtain an upper bound for $n_{0}(k)$.

Theorem 8. For every $k, k \geq 2$, there exists a uniquely k-dimensional graph of order $\left\lceil\frac{5 k}{2}+1\right\rceil$.

Proof. Let k be a positive integer. If $k=2 k^{\prime}$, then the graph G obtained by the recursive construction given in Theorm 7 from k^{\prime} copies of the uniquely 2-dimensional graph of order 6 , constructed in Theorem B is a uniquely k-dimensional graph of order $6 k^{\prime}-\left(k^{\prime}-1\right)=5 k^{\prime}+1=$ $\frac{5 k}{2}+1$.

If $k=2 k^{\prime}+1$, then the graph G obtained by the recursive construction given in Theorem 7 from $k^{\prime}-1$ copies of the uniquely 2 -dimensional graph of order 6 , constructed in Theorem B and one copy of the uniquely 3 -dimensional graph of order 9 given in Proposition 1, is a uniquely k-dimensional graph of order $6\left(k^{\prime}-1\right)-\left(k^{\prime}-2\right)+8=5 k^{\prime}+4=\left\lceil\frac{5 k}{2}+1\right\rceil$.

Although the above theorem provides the recursive construction for uniquely k-dimentional graphs of order $\left\lceil\frac{5 k}{2}+1\right\rceil$, to get the more explicit construction, we construct uniquely k dimensional graphs of order $3 k$, in the following theorem.

Theorem 9. For each $k \geq 2$, there exists a uniquely k-dimensional graph of order $3 k$.

Proof. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{2 k}\right\}$. Also, let G be a graph with vertex set $V(G)=U \cup W$ such that the induced subgraph $\langle W\rangle$ of G be a complete graph, U be an independent set, u_{k} be adjacent to $w_{2 i}, 1 \leq i \leq k$, and for each $i, 1 \leq i \leq k-1, u_{i}$ be adjacent to $w_{2 i-1}$ and $w_{2 i}$. We prove that G is the desired graph.

Let w_{i} and w_{j} be two arbitrary vertices of $V(G) \backslash U=W$. If i and j have different parity, then $d\left(w_{i}, u_{k}\right) \neq d\left(w_{j}, u_{k}\right)$. If i and j have the same parity, then $\left\lfloor\frac{i}{2}\right\rfloor \neq\left\lfloor\frac{j}{2}\right\rfloor$ and hence $d\left(w_{i}, u_{i}\right) \neq d\left(w_{j}, u_{i}\right)$. Therefore, U is a resolving set for G of size k and $\beta(G) \leq k$.

Now let B be a metric basis of G. If $u_{k} \notin B$, then to resolve the set $\left\{u_{1}, w_{1}, w_{2}, w_{2 k-1}, w_{2 k}\right\}$, B should contain at least three vertices from this set, since $\langle W\rangle$ is a complete graph, while
replacing these three vertices by u_{1} and u_{k} provides a resolving set with smaller size. This contradiction implies that $u_{k} \in B$. If for some $i, 1 \leq i \leq k-1, u_{i} \notin B$, then to resolve the set $\left\{u_{i}, w_{2 i-1}, w_{2 i}, w_{2 k-1}, w_{2 k}\right\}, B$ should contain at least two vertices from $\left\{w_{2 i-1}, w_{2 i}, w_{2 k-1}, w_{2 k}\right\}$, because $\langle W\rangle$ is a complete graph. But replacing these two vertices by u_{i} provides a resolving set with smaller size. This contradiction implies that $U \subseteq B$. Since U is a resolving set, $U=B$ is the unique metric basis of G.

By Theorems 3 and 8 , we have the following corollary.

Corollary 1. Let $k \geq 2$ be an integer. Then $2 k+1 \leq n_{0}(k) \leq\left\lceil\frac{5 k}{2}+1\right\rceil$.

For $k=2, n \geq 4+d$ implies $n \geq 6$. Hence, $n_{0}(2)=6$. It can be seen, there is no uniquely 3 -dimensional graph of order 7 . Thus, $8 \leq n_{0}(3) \leq 9$. The determination of $n_{0}(k)$, for every integer k could be an nontrivial interesting problem.

References

[1] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalak and L.S. Ram, Network dicovery and verification, IEEE Journal On Selected Areas in Communications 24(12) (2006) 2168-2181.
[2] P. Buczkowski, G. Chartrand, C. Poisson and P. Zhang, On k-dimensional graphs and their bases, Period. Math. Hungar. 46(1) (2003) 9-15.
[3] J. Caceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara and D.R. Wood, On the metric dimension of cartesian products of graphs, SIAM Journal on Discrete Mathematics 21(2) (2007) 423-441.
[4] G.G. Chappell, J. Gimbel and C. Hartman, Bounds on the metric and partition dimensions of a graph, Ars Combinatoria 88 (2008) 349-366.
[5] G. Chartrand, L. Eroh, M.A. Johnson and O.R. Ollermann, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics 105 (2000) 99-113.
[6] G. Chartrand and P. Zhang, The theory and applications of resolvability in graphs. A survey. In Proc. 34th Southeastern International Conf. on Combinatorics, Graph Theory and Computing 160 (2003) 47-68.
[7] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combinatoria 2 (1976) 191-195.
[8] C. Hernando, M. Mora, I.M. Pelayo, C. Seara and D.R. Wood, Extremal graph theory for metric dimension and diameter, The Electronic Journal of Combinatorics (2010) \#R30.
[9] M. Jannesari and B. Omoomi, On randomly k-dimensional graphs, Applied Mathematics Letters 24 (2011) 1625-1629.
[10] M. Jannesari and B. Omoomi, Characterization of Randomly k-dimensional graphs, arXiv:1103.357v1.
[11] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Applied Mathematics 70(3) (1996) 217-229.
[12] R.A. Melter and I. Tomescu, Metric bases in digital geometry, Computer Vision Graphics and Image Processing 25 (1984) 113-121.
[13] A. Sebo and E. Tannier, On metric generators of graphs, Mathematics of Operations Research 29(2) (2004) 383-393.
[14] P.J. Slater, Leaves of trees, Congressus Numerantium 14 (1975) 549-559.

