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Abstract. We prove two conjectures of Brändén on the real-rootedness of
polynomials Qn(x) and Rn(x) which are related to the Boros-Moll poly-
nomials Pn(x). In fact, we show that both Qn(x) and Rn(x) form Sturm
sequences. The first conjecture implies the 2-log-concavity of Pn(x), and the
second conjecture implies the 3-log-concavity of Pn(x).
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1 Introduction

In this paper, we prove two conjectures of Brändén [3] concerning the Boros-
Moll polynomials. Brändén introduced two polynomials based on the coeffi-
cients of the Boros-Moll polynomials and conjectured that these polynomials
have only real roots. As pointed out by Brändén, the first conjecture im-
plies the 2-fold log-concavity, or 2-log-concavity, for short, of the Boros-Moll
polynomials, whereas the second conjecture implies the 3-log-concavity.

Let us start with some definitions. Given a finite nonnegative sequence
{ai}

n
i=0, we say that it is unimodal if there exists an integer m ≥ 0 such that

a0 ≤ · · · ≤ am−1 ≤ am ≥ am+1 ≥ · · · ≥ an,

and we say that it is log-concave if

a2i − ai+1ai−1 ≥ 0

for 1 ≤ i ≤ n−1. Define L to be an operator acting on the sequence {ai}
n
i=0

as given by
L({ai}

n
i=0) = {bi}

n
i=0,

where bi = a2i − ai+1ai−1 for 0 ≤ i ≤ n under the convention that a−1 = 0
and an+1 = 0. Clearly, the sequence {ai}

n
i=0 is log-concave if and only if the

sequence {bi}
n
i=0 is nonnegative. Given a sequence {ai}

n
i=0, we say that it is
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k-fold log-concave, or k-log-concave, if Lj({ai}
n
i=0) is a nonnegative sequence

for any 1 ≤ j ≤ k. A sequence {ai}
n
i=0 is said to be infinitely log-concave if

it is k-log-concave for all k ≥ 1. Given a polynomial

f(x) = a0 + a1x+ · · ·+ anx
n,

we say that f(x) is log-concave (or k-log-concave, or infinitely log-concave)
if the sequence {ai}

n
i=0 of coefficients is log-concave (resp., k-log-concave,

infinitely log-concave).

The notion of infinite log-concavity was introduced by Boros and Moll
[2] in their study of the following quartic integral

∫ ∞

0

1

(t4 + 2xt2 + 1)n+1
dt.

For any x > −1 and any nonnegative integer n, they obtained the following
formula,

∫ ∞

0

1

(t4 + 2xt2 + 1)n+1
dt =

π

2n+3/2(x+ 1)n+1/2
Pn(x),

where

Pn(x) =
∑

j,k

(

2n+ 1

2j

)(

n− j

k

)(

2k + 2j

k + j

)

(x+ 1)j(x− 1)k

23(k+j)

are the Boros-Moll polynomials. Using Ramanujan’s Master Theorem, they
derived an alternative representation of Pn(x),

Pn(x) = 2−2n
∑

j

2j
(

2n− 2j

n− j

)(

n+ j

j

)

(x+ 1)j . (1.1)

Write

Pn(x) =

n
∑

i=0

di(n)x
i. (1.2)

We call {di(n)}
n
i=0 a Boros-Moll sequence. Boros and Moll proposed the

following conjecture.

Conjecture 1.1 ([2]) The sequence {di(n)}
n
i=0 is infinitely log-concave.

The log-concavity of {di(n)}
n
i=0 was conjectured by Moll [15], and it

was proved by Kauers and Paule [11] by establishing recurrence relations
of the coefficients di(n). Chen and Xia [6] showed that the polynomials
Pn(x) are ratio monotone. Notice that for a positive sequence, the ratio
monotone property implies both log-concavity and the spiral property. It is
worth mentioning that there are proofs of the log-concavity without using
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recurrence relations. Llamas and Mart́ınez-Bernal [13] proved that if f(x) is
a polynomial with nondecreasing and nonnegative coefficients, then f(x+1)
is log-concave. Furthermore, Chen, Yang and Zhou [8] proved that if f(x) is
a polynomial with nondecreasing and nonnegative coefficients, then f(x+1)
is ratio monotone. From (1.1) it is easily seen that the coefficients of Pn(x−1)
are nondecreasing and nonnegative. Hence Pn(x) are log-concave and ratio
monotone. A combinatorial interpretation of the log-concavity of Pn(x) has
been found by Chen, Pang and Qu [5].

There was little progress on the higher-fold log-concavity of the Boros-
Moll polynomials. As remarked by Kauers and Paule [11], it seems that
there is little hope to prove the 2-log-concavity of {di(n)}

n
i=0 using recurrence

relations. By constructing an intermediate function, Chen and Xia [7] proved
the 2-log-concavity of Pn(x) by applying recurrence relations. Based on a
technique of McNamara and Sagan [14], Kauers verified the infinite log-
concavity of Pn(x) for n ≤ 129.

Brändén [3] presented an approach to Conjecture 1.1 by relating higher-
order log-concavity to real-rooted polynomials. Boros and Moll [2] conjec-
tured that for any nonnegative integer n the sequence {

(n
k

)

}nk=0 is infinitely
log-concave. Fisk [10], McNamara and Sagan [14] and Stanley indepen-
dently made the following conjecture which implies the conjecture of Boros
and Moll. This conjecture has been proved by Brändén [3].

Theorem 1.2 If f(x) = a0 + a1x + · · · + anx
n is a real-rooted polynomial

with nonnegative coefficients, the polynomial

a20 + (a21 − a0a2)x+ · · · + (a2n−1 − an−2an)x
n−1 + a2nx

n

is also real-rooted.

Brändén’s proof is based on a symmetric function identity and the Grace-
Walsh-Szegö theorem concerning the location of zeros of multi-affine and
symmetric polynomials. Moreover, Brändén obtained a general result about
the characterization of nonlinear transformations preserving real-rootedness,
in the spirit of the characterization of linear transformations preserving sta-
bility given by Borcea and Brändén [1]. Cardon and Nielsen [4] found a com-
binatorial proof of Theorem 1.2 in terms of directed acyclic weighted planar
networks. Although the Boros-Moll polynomials Pn(x) are not real-rooted,
Brändén [3] introduced two polynomials related to Pn(x), and conjectured
that they are real-rooted.

Conjecture 1.3 ([3, Conjecture 8.5]) For any n ≥ 1, the polynomial

Qn(x) =

n
∑

i=0

di(n)

i!
xi (1.3)

has only real zeros.
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Conjecture 1.4 ([3, Conjecture 8.6]) For any n ≥ 1, the polynomial

Rn(x) =
n
∑

i=0

di(n)

(i+ 2)!
xi (1.4)

has only real zeros.

As pointed out by Brändén [3], the real-rootedness of Qn(x) implies the
2-log-concavity of Pn(x), and the real-rootedness of Rn(x) implies the 3-
log-concavity of Pn(x). It is worth mentioning that Csordas [9] proved the
real-rootedness of some polynomials related to Qn(x). In this paper, we
shall prove the above conjectures.

2 Proofs of Brändén’s Conjectures

To prove Brändén’s conjectures, we shall show that the polynomials Qn(x)
and Rn(x) form Sturm sequences. Let us recall a criterion of Liu and Wang
[12] which can be used to deduce that a polynomial sequence is a Sturm
sequence.

Throughout this paper, we shall be concerned with polynomials with real
coefficients. We say that a polynomial is standard if it is zero or its leading
coefficient is positive. Let RZ denote the set of polynomials with only real
zeros. Suppose that f(x) ∈ RZ is a polynomial of degree n with zeros
{rk}

n
k=1, and g(x) ∈ RZ is a polynomial of degree m with zeros {sk}

m
k=1. We

say that g(x) interlaces f(x) if n = m+ 1 and

rn ≤ sn−1 ≤ rn−1 ≤ · · · ≤ r2 ≤ s1 ≤ r1,

and we say that g(x) strictly interlaces f(x) if, in addition, they have no
common zeros. We use g(x) � f(x) to denote that g(x) interlaces f(x), and
use g(x) ≺ f(x) to denote that g(x) strictly interlaces f(x). For any real
numbers a, b and c, we assume that a ∈ RZ and a ≺ bx + c. A sequence
{fn(x)}n≥0 of standard polynomials is said to be a Sturm sequence if, for
n ≥ 0, we have deg fn(x) = n and

fn(x) ∈ RZ and fn(x) ≺ fn+1(x).

Liu and Wang [12] gave a sufficient condition for a polynomial sequence
{fn(x)}n≥0 to form an interlacing sequence.

Theorem 2.1 ([12, Corollary 2.4]) Let {fn(x)}n≥0 be a sequence of poly-
nomials with nonnegative coefficients and deg fn(x) = n, which satisfy the
following recurrence relation:

fn+1(x) = an(x)fn(x) + bn(x)f
′
n(x) + cn(x)fn−1(x), (2.1)

where an(x), bn(x), cn(x) are some polynomials with real coefficients. As-
sume that, for some n ≥ 1, the following conditions hold:
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(i) fn−1(x), fn(x) ∈ RZ and fn−1(x) ≺ fn(x); and

(ii) for any x ≤ 0 both of bn(x) and cn(x) are nonpositive, and at least one
of them is nonzero.

Then we have fn+1(x) ∈ RZ and fn(x) ≺ fn+1(x).

To prove Conjectures 1.3 and 1.4, we proceed to derive recurrence re-
lations for Qn(x) and Rn(x) based on the recurrence relations of the coef-
ficients di(n) of the Boros-Moll polynomials Pn(x). Kauers and Paule [11]
proved that

di(n + 1) =
n+ i

n+ 1
di−1(n) +

4n+ 2i+ 3

2(n + 1)
di(n), 0 ≤ i ≤ n+ 1, (2.2)

di(n + 2) =
8n2 + 24n + 19− 4i2

2(n + 2− i)(n + 2)
di(n+ 1)

−
(n+ i+ 1)(4n + 3)(4n + 5)

4(n+ 2− i)(n + 1)(n + 2)
di(n), 0 ≤ i ≤ n+ 1. (2.3)

In fact, (2.2) can be easily derived from (2.3). Note that Moll [16] indepen-
dently derived the relation (2.3) via the WZ-method.

Theorem 2.2 For n ≥ 1, we have the following recurrence relation

Qn+1(x) =

(

(2n + 1)x

(n+ 1)2
+

8n2 + 8n+ 3

2(n + 1)2

)

Qn(x)

−
(4n − 1)(4n + 1)

4(n+ 1)2
Qn−1(x) +

x

(n+ 1)2
Q′

n(x). (2.4)

Proof. For n ≥ 1, relation (2.4) can be rewritten as

4(n + 1)2di(n+ 1) = 2(8n2 + 8n+ 3 + 2i)di(n) + 4i(2n + 1)di−1(n)

− (16n2 − 1)di(n− 1), (2.5)

where 0 ≤ i ≤ n+ 1. From (2.2) it follows that

di−1(n) =
n+ 1

n+ i
di(n + 1)−

4n + 2i+ 3

2(n + i)
di(n). (2.6)

Substituting (2.6) into (2.5), we get

di(n+ 1) =
8n2 + 8n+ 3− 4i2

2(n+ 1− i)(n + 1)
di(n)

−
(n + i)(4n − 1)(4n + 1)

4n(n + 1)(n+ 1− i)
di(n− 1). (2.7)
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It is easily checked that the above relation (2.7) coincides with (2.3) with n

replaced by n− 1. This completes the proof.

Using the above recurrence relation and the criterion of Liu and Wang,
we can deduce that the polynomials Qn(x) form a Sturm sequence. This
leads to an affirmative answer to Conjecture 1.3.

Theorem 2.3 The polynomial sequence {Qn(x)}n≥0 is a Sturm sequence.

Proof. Clearly, we have deg(Qn(x)) = n. It suffices to prove that Qn(x) ∈
RZ and Qn(x) ≺ Qn+1(x) for any n ≥ 0. We use induction on n. By
convention,

Q0(x), Q1(x) ∈ RZ and Q0(x) ≺ Q1(x).

Assume that

Qn−1(x), Qn(x) ∈ RZ and Qn−1(x) ≺ Qn(x).

We proceed to verify that

Qn+1(x) ∈ RZ and Qn(x) ≺ Qn+1(x).

We see that the recurrence relation (2.4) of Qn(x) is of the form (2.1) in
Theorem 2.1, where the polynomials an(x), bn(x), cn(x) are given by

an(x) =
(2n+ 1)x

(n+ 1)2
+

8n2 + 8n+ 3

2(n + 1)2
,

bn(x) =
x

(n+ 1)2
,

cn(x) = −
(4n− 1)(4n + 1)

4(n + 1)2
.

For n ≥ 1 and x ≤ 0, one can check that

bn(x) ≤ 0 and cn(x) < 0.

In view of Theorem 2.1, we find that Qn+1(x) ∈ RZ and Qn(x) ≺ Qn+1(x).
This completes the proof.

The following recurrence relation for Rn(x) can be proved in a way sim-
ilar to the proof of Theorem 2.2.

Theorem 2.4 For n ≥ 1, we have

Rn+1(x) =

(

(2n + 1)x

(n+ 1)(n + 3)
+

8n2 + 8n+ 7

2(n+ 1)(n + 3)

)

Rn(x)

−
(4n− 1)(4n + 1)(n − 2)

4n(n+ 1)(n + 3)
Rn−1(x) +

5x

(n+ 1)(n + 3)
R′

n(x).

(2.8)
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Using the above recurrence relation, we obtain the following theorem,
which leads to an affirmative answer to Conjecture 1.4.

Theorem 2.5 The polynomial sequence {Rn(x)}n≥0 is a Sturm sequence.

Proof. The proof is analogous to that of Theorem 2.3. It is routine to verify
that

R0(x), R1(x), R2(x), R3(x) ∈ RZ and R0(x) ≺ R1(x) ≺ R2(x) ≺ R3(x).

It remains to show that Rn(x) ∈ RZ and Rn−1(x) ≺ Rn(x) for n ≥ 3. We
use induction n. Assume that

Rn−1(x), Rn(x) ∈ RZ and Rn−1(x) ≺ Rn(x).

We wish to prove that

Rn+1(x) ∈ RZ and Rn(x) ≺ Rn+1(x).

The recurrence relation (2.8) of Rn(x) is of the form (2.1) in Theorem 2.1,
and the polynomials an(x), bn(x), cn(x) are given by

an(x) =
(2n+ 1)x

(n+ 1)(n + 3)
+

8n2 + 8n+ 7

2(n + 1)(n + 3)
,

bn(x) =
5x

(n+ 1)(n + 3)
,

cn(x) = −
(4n− 1)(4n + 1)(n − 2)

4n(n+ 1)(n + 3)
.

For n ≥ 3 and x ≤ 0, we find that

bn(x) ≤ 0 and cn(x) < 0.

By Theorem 2.1, we conclude that Rn+1(x) ∈ RZ and Rn(x) ≺ Rn+1(x).
This completes the proof.
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