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Abstract

Catastrophic regime shifts in complex natural systems may be averted through advanced detection.

Recent work has provided a proof-of-principle that many systems approaching a catastrophic transition

may be identified through the lens of early warning indicators such as rising variance or increased return

times. Despite widespread appreciation of the difficulties and uncertainty involved in such forecasts,

proposed methods hardly ever characterize their expected error rates. Without the benefits of replicates,

controls, or hindsight, applications of these approaches must quantify how reliable different indicators

are in avoiding false alarms, and how sensitive they are to missing subtle warning signs. We propose

a model based approach in order to quantify this trade-off between reliability and sensitivity and

allow comparisons between different indicators. We show these error rates can be quite severe for

common indicators even under favorable assumptions, and also illustrate how a model-based indicator

can improve this performance. We demonstrate how the performance of an early warning indicator

varies in different data sets, and suggest that uncertainty quantification become a more central part of

early warning predictions.
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1. Introduction

There is an increasing recognition of the importance of regime shifts or critical transitions at a

variety of scales in ecological systems (Holling, 1973; Wissel, 1984; Scheffer et al., 2001, 2009; Drake

and Griffen, 2010; Carpenter, 2011). Many important ecosystems may currently be threatened with

collapse, including corals (Bellwood et al., 2004), fisheries (Berkes et al., 2006), lakes (Carpenter,

2011), and semi-arid ecosystems (Kéfi et al., 2007). Given the potential impact of these shifts on the

sustainable delivery of ecosystem services (Folke et al., 2004) and the need for management to either
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avoid an undesirable shift or else to adapt to novel conditions, it is important to develop the ability to

predict impending regime shifts based on early warning signs.

A number of particular systems have demonstrated the kinds of relationships that would produce

regime shifts, including dynamics of coral reefs (Mumby et al., 2007), and simple models of metapopu-

lations with differing local population sizes (Hastings, 1991). In cases like these one sensible approach

to understanding whether a regime shift would be likely would be to fit the model using either a time

series or else independent estimates of parameters. More generally, with a good model of the system,

detail-oriented approaches could be useful (Lade and Gross, 2012). In this treatment we focus on the

situation where these more detailed models are not available.

Indeed, for many ecological systems specific models are not available and general approaches are

needed (Scheffer et al., 2009; Lade and Gross, 2012) that do not depend on estimating the parameters of

a known model of a specific system. This has led to a variety of approaches based on summary statistics

(e.g. Carpenter and Brock, 2006; Held, 2004; Dakos et al., 2008; Guttal and Jayaprakash, 2008b; Biggs

et al., 2009; Carpenter, 2011; Seekell et al., 2011) that look for generic signs of impending regime shifts.

Here we extend earlier work by providing estimates of the ability of different potential indicators to

accurately signal impending regime shifts, and develop new approaches that both are more efficient and

also lay bare some of the important assumptions underlying attempts to find general warning signs of

regime shifts. We distinguish this question from the extensive literature involving change-point analysis

for the post-hoc identification of if and when a regime shift has occurred (Easterling and Peterson, 1995;

Rodionov, 2004; Lenton et al., 2009), which is of little use if the goal is the advanced detection of the

shift.

We begin by discussing the limitations of current approaches that rely on summary statistics and

provide a description of assumptions through the introduction of a model based approach to detect

early warning signals. We then illustrate how stochastic differential equation (SDE) models can be

used to reflect the uncertainty inherent in the detection of early warning signals. We caution against

paradigms that are not useful for capturing uncertainty in a model-selection based approach, such as

information criteria. Finally we use receiver-operating characteristics (Green and Swets, 1989; Keller

et al., 2009) as a way to illustrate the sensitivity different data sets and different indicators have in

detecting early warning signals and use this to explore a number of examples. This approach provides a

visualization of the types of errors that arise and how one can trade off between them, and is important

for framing the problem as one focused on prediction.
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2. The summary statistics approach

Foundational work on early warning signals has operated under the often-implicit assumption that

the system dynamics contain a saddle-node bifurcation by looking for patterns that are associated

with this kind of transition. A saddle-node bifurcation occurs when a parameter changes and a stable

equilibrium (node) and an unstable equilibrium (saddle) coalesce and dissapear. The system then

moves to a more distant equilbrium. Guckenheimer and Holmes (1983) or any other textbook on

dynamical systems will provide precise definitions and further explanation.

Typical patterns used as warning signals include an increasing trend in a summary statistic such as

variance (Carpenter and Brock, 2006), autocorrelation (Held, 2004; Dakos et al., 2008), skew (Guttal

and Jayaprakash, 2008b), spectral ratio (Biggs et al., 2009). While attractive for their simplicity, such

approaches must confront numerous challenges. In this paper we argue for a model-based approach to

warning signals, and describe how this can be done in a way that best addresses these difficulties. We

begin by enumerating several of the difficulties encountered in approaches lacking an explicit model.

Hidden assumptions

The underlying assumption that the system contains a saddle-node bifurcation can be easily over-

looked in common summary-statistics based approaches. For instance, variance may increase for reasons

that do not signal an approaching transition (Schreiber, 2003; Schreiber and Rudolf, 2008). Alterna-

tively, variance may not increase as a bifurcation is approached (Livina et al., 2012; Dakos et al.,

2011b). Some classes of sudden transitions may exhibit no warning signals Hastings and Wysham

(2010). Like saddle-node bifurcations, transcritical bifurcations involve an eigenvalue passing through

zero, and exhibit the patterns of critical slowing down and increased variance (Drake and Griffen, 2010).

However, transcritical bifurcations involve a change in stability of a fixed point, rather than the sudden

dissapearance of a fixed point that has made critical transitions so worrisome.While no approach will

be applicable to all classes of sudden transitions, it is certainly still useful to have an approach that

detects transitions driven by saddle-node bifurcations, which have been found in many contexts (e.g.,

see Scheffer et al., 2001).

Even when we can exclude or ignore other dynamics and restrict ourselves to systems that can

produce a saddle-node bifurcation, approaches based on critical slowing down or rising variance (e.g.

Held, 2004; Scheffer et al., 2009; Carpenter, 2011) must further assume that a changing parameter

has brought the system closer to the bifurcation. This assumption excludes at least three alternative

explanations for the transition in system behavior. The first possibility is that a large perturbation of
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the system state has moved the system into the alternative basin of attraction (Scheffer et al., 2001).

This is an exogenous forcing that does not arise from the system dynamics, so it is not the kind of

event we can expect to forecast. (An example might be a sudden dramatic increase in fishing effort

that pushes a harvested population past a threshold.) The second scenario is a purely noise-induced

transition, a chance fluctuation that happens to carry the system across the boundary (Ditlevsen and

Johnsen, 2010). Livina et al. (2012) indicate that such noise induced transitions cannot be predicted

through early warning signals – at least they are not expected to exhibit the same early warning patterns

of increased variance and increased autocorrelation anticipated in the case of a saddle-node bifurcation.

The third scenario is that the system does pass through a saddle-node bifurcation, but rather than

gradually and monotonically approaching the critical point, the bifurcation parameter moves in a rapid

or highly non-linear way, making the detection of any gradual trend impossible.

Arbitrary windows

In addition to the assumption of a saddle-node bifurcation, the calculation of statistics that would

be used to detect an impending transition is subject to several arbitrary choices. A basic difficulty arises

from the need to assume a time-series is ergodic: that averaging over time is equivalent to averaging over

replicate realizations, while trying to test if it is not. Theoretically, the increasing trend in variance,

autocorrelation, or other statistics is something that would be measured across an ensemble – across

replicates. As true replicates are seldom available in systems for which developing warning signals

would be most desirable, typical methods average across a single replicate using a moving window in

time. The selection of the size of this window and whether and by how much to overlap consecutive

windows varies across the literature. Lenton et al. (2012) demonstrates that these differences can

influence the results, and that the different choices each carry advantages and disadvantages.

In addition to introducing the challenge of selecting a window size, this ergodic assumption raises

further difficulties. While appropriate for a system that is stationary, or changing slowly enough in the

window that it may appear stationary, the assumption is at odds with the original hypothesis that the

system is approaching a saddle-node bifurcation.

Further, certain statistics such as the critical slowing down measured by autocorrelation require

data that is evenly sampled in time. Interpolating from existing data to create evenly spaced points is

particularly problematic, as this introduces an artificial autocorrelation into the data.
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No quantitative measures

Summary statistics typically invoke qualitative patterns such as an increase in statistic x, rather

than a quantitative measure of the early warning pattern. This makes it difficult to compare between

signals or to attribute a statistical significance to the detection. Some authors have suggested Kendall’s

correlation coefficient, τ , could be used to quantify an increase (Dakos et al., 2008, 2011a) in autocorre-

lation or variance. Other measures of increase, such as Pearson’s correlation coefficient have also been

proposed (Drake and Griffen, 2010), while most of the literature simply forgoes quantifying the increase

or estimating significance. While adequate in experimental systems that can compare patterns between

controls and replicates (e.g. Drake and Griffen, 2010; Carpenter, 2011), any real-world application of

these approaches must be useful on a single time-series of observations. In these cases a quantitative

definition of a statistically significant detection is essential. Without this, we have no assurance that

a purported detection is not, in fact, a false positive. By focusing primarily on examples known to

be approaching a transition when testing warning signals, the probability of false positives has largely

been overlooked.

Problematic null models

Specifying an appropriate null model is also difficult. Non-parametric null hypotheses seem to

require the fewest assumptions but in fact can be the most problematic. For instance, the standard

non-parametric hypothesis test with Kendall’s tau rank correlation coefficient assumes only that the

two variables are independent, but this is an assumption that is violated by the very experimental

design: temporal correlations will exist in any finely-enough sampled time series, and moving windows

introduce temporal correlations in the statistics. Under such a test any adequately large data set

will find a significant result, regardless of whether a warning signal exists. A similar problem arises

when the points in the time series are reordered to create a null hypothesis – this destroys the natural

autocorrelation in the time series. More promising parametric null models have been proposed, such as

autoregressive models in Dakos et al. (2008), bringing us closer to a model-based approach with explicit

assumptions. Others have looked for alternative summary statistics where reasonable null models are

more readily available, such as Seekell et al. (2011)’s proposal to test for conditional heteroscedasticity.

Summary-statistic approaches have less statistical power.

Methods for the detection of early warning signals are continually challenged by inadequate data (In-

man, 2011; Scheffer, 2010; Held, 2004; Dakos et al., 2008; Scheffer et al., 2009; Guttal and Jayaprakash,

2008b; Carpenter, 2011; Bestelmeyer et al., 2011). Despite the widespread recognition of the this
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need for large data sets, there has been very few studies quantitative studies of power to determine

at how much data is required (Contamin and Ellison, 2009), how often a particular method would

produce a false alarm or fail to detect a signal, and which tests will be the most powerful or sensitive.

The Neyman-Pearson Lemma demonstrates that the most powerful test between hypotheses compares

the likelihood that the data was produced under each (Neyman and Pearson, 1933). Such likelihood

calculations require a model-based approach.

3. A model based approach

Model-based approaches are beginning to play a larger role in early warning signal detection, though

we have not as yet seen the direct fitting and simulation of models to compare hypotheses. While choos-

ing appropriate models without system-specific knowledge is challenging, much can be accomplished

by framing the implicit assumptions into equations. Lade and Gross (2012) introduce the idea of

generalized models for early warning signals, and Kuehn (2011) presents normal forms for bifurcation

processes that can give rise to critical transitions. Carpenter and Brock (2011) and Dakos et al. (2011b)

start by assuming the dynamics obey a generic stochastic differential equation (SDE), but use this only

to derive or define the summary statistics of interest.

In this section we outline how the detection of early warning signals may be thought of as a

problem of model choice. We next show generic models can be constructed under the assumptions

discussed above and estimated from the data in a maximum likelihood framework. We highlight the

disadvantages of comparing these estimates by information criteria, and instead introduce a simulation

or bootstrapping approach rooted in Cox (1961) and McLachlan (1987) that characterizes the rate of

missed detections and false alarms expected in the estimate.

Early warning signals as model choice

It may be useful to think of the detection of early warning signals as a problem of model choice

rather than one of pattern recognition. The model choice approach attempts to frame each of the

possible scenarios as structurally different equations, each with unknown parameters that must be

estimated from the data. In any model choice problem, it is important to identify the goal of the

exercise – such as the ability to generalize, to imitate reality, or to predict (Levins, 1966). In this case

generality is more important than realism or predictive capability: we will write down a general model

that is capable of approximating a wide class of models in which regime shifts are characterized by

a saddle-node bifurcation, and a second generic model that is capable of representing the behavior of
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such systems when they are not approaching a bifurcation. These may be thought of as the hypothesis

and null hypothesis, though they are in fact compound hypotheses, as we must first estimate the model

parameters from the data. In this approach it is not assumed that “reality” is included in the models

being tested, but that one of the models is a better approximation of the true dynamics than the other.

System whose dynamics violate the assumptions common to both models, such as in the examples of

Hastings and Wysham (2010) where systems exhibit sudden transitions without warning, fall outside

the set of cases where this approach would be valid; though the inability of either model to match the

system dynamics could be an indication of such a violation.

Models

In the neighborhood of a bifurcation a system can be transformed into its normal form by a change

of variables to facilitate analysis (Guckenheimer and Holmes, 1983). The normal form (Guckenheimer

and Holmes, 1983; Kuehn, 2011) for the saddle-node bifurcation is

dx

dt
= rt − x2. (1)

where x is the state variable and rt our bifurcation parameter. We have added a subscript t to the

bifurcation parameter as a reminder that it is the value which may be slowly varying in time and

consequently moving the system closer to a critical transition or regime shift (Scheffer et al., 2009).

Transforming this canonical form to allow for an arbitrary mean in the state variable θ, the system

near the bifurcation looks like dx/dt = rt− (θ−x)2, with fixed point x̂ =
√
rt + θ =: φ(rt). We expand

around the fixed point and express as a stochastic differential equation (e.g. Gardiner, 2009):

dX =
√
rt(φ(rt)−Xt)dt+ σ

√
φ(rt)dBt (2)

where Bt is the standard Brownian motion. This expression captures the behavior of the system

near the stable point as it approaches the bifurcation. Allowing the stochastic term to scale with the

square root of φ follows from the assumption that of an internal-noise process, such as demographic

stochasticity, that arises in deriving the SDE from a Markov process, see Kampen (2007) or Black and

McKane (2012). The square root could be removed for an external noise process, such as environmental

noise. In practice it will be difficult to descriminate between the square root and linear scaling in these

applications, since the average value of the state changes little before the bifurcation.

As we discuss above, in this paradigm we must include an assumption on how the bifurcation

parameter, rt, is changing. We assume a gradual, monotonic change which we approximate to first

order:
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rt = r0 −mt. (3)

Detecting accelerating or otherwise nonlinear approaches to the bifurcation will generally require

more power. When the underlying system is not changing, rt is constant (m = 0) and Equation (2)

will reduce to a simple Ornstein-Uhlenbeck process,

dXt = r(θ −Xt)dt+ σdBt (4)

This is the continuous time analog of the first-order autoregressive model considered as a null model

elsewhere (e.g. Dakos et al., 2008; Guttal and Jayaprakash, 2008a).

Likelihood calculations

The probability P (X|M) of the data X given the model M is the product of the probability of

observing each point in the time series given the previous point and the length of the interval,

logP (X|M) =
∑
i

logP (xi|xi−1, ti) (5)

For (2) or (4) it is sufficient (Gardiner, 2009) to solve the moment equations for mean and variance

respectively:

d

dt
E(x|M) = f(x) (6)

d

dt
V (x|M) = −∂xf(x)V (x|M) + g(x)2 (7)

For the OU process, we can solve this in closed form over an interval of time ti between subsequent

observations:

E(xi|M = OU) = Xi−1e
−rti + θ

(
1− e−rti

)
(8)

V (xi|M = OU) =
σ2

2r

(
1− e−2rti

)
(9)

For the time dependent model, we have analytic forms only for the dynamical equations of these

moments from equation (7), which we must integrate numerically over each time interval. The moments

of Equation (2) are given by
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d

dt
E(xi|M = LSN) = 2

√
r(t)(

√
r(t) + θ − xi) (10)

d

dt
V (xi|M = LSN) = −2

√
r(t)V (xi) + σ2(

√
r(t) + θ) (11)

These are numerically integrated using lsoda routine available in R for the likelihood calculation.

Comparing Models

Likelihood methods form the basis of much of modern statistics in both Frequentist and Bayesian

paradigms. The ability to evaluate likelihoods directly by computation has made it possible to treat

cases that do not conform to traditional assumptions more directly. The basis of likelihood comparisons

has its roots in the Neyman-Pearson Lemma, which essentially asserts that comparing likelihoods is

the most powerful test of a choice between two hypotheses (Neyman and Pearson, 1933), and motivates

tests from the simple likelihood ratio test up through modern model adequacy methods.

The hypotheses considered here are more challenging then the original lemma provides for, as they

are composite in nature: they specify two model forms (stable and changing stability) but with model

parameters that must be first estimated from the data. Comparing models whose parameters have been

estimated by maximum likelihood is first treated by Cox (1961, 1962), and has since been developed

in this simulation estimation of the null distribution (McLachlan, 1987), by parametric bootstrap

estimate (Efron, 1987). Cox’s δ statistic (often called the deviance between models) is simply the

difference between the log likelihoods of these maximum likelihood estimates, defined as follows.

Let L0 be the likelihood function for model 0, let θ0 = arg max θ0 ∈ Ω0, (L0(θ0|X)) be the maximum

likelihood estimator for θ0 given X, and let L0 = L0(θ0|X); and define L1, θ1, L1 similarly for model

1. The statistic we will use is δ, defined to be twice the difference in log likelihood of observing the

data under the two MLE models,

δ = −2(logL0 − logL1). (12)

This approach has been applied to the problem of model adequacy (Goldman, 1993) and model

choice (Huelsenbeck and Bull, 1996) in other contexts. We have extended the approach by gener-

ating the test distribution as well as a null distribution of the statistic δ.

3.1. Simulation-based comparisons

We perform the identical analysis procedure described above on each of these three data sets. First,

we estimate parameters for the null and test model to each data set by maximum likelihood. Comparing
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the likelihood of these fits directly gives us only a minimal indication of which model fits better. To

identify if these differences are significant, and by what probability they could arise as a false alarm or

a missed event, we simulate 500 replicate time series from each estimated model.

The model parameters of both models are re-estimated on both families of replicates (the null and

test, i.e. 2×2×500 fits). The differences in the likelihood values between the model estimates produced

from the first set of simulations determines the null distribution for the deviance statistic δ. As the

constant OU process model is nested within the time-heterogeneous model, these values are always

positive, but tend to be not as large as those produced when the models are fit to the second family of

data.

The extent to which these distributions overlap indicates our inability to distinguish between these

scenarios. The tendency of the observed deviance to fall more clearly in the domain of one distribution

or the other indicates the probability our observed data corresponds best with that model – either

approaching a critical transition or remaining stable. While it trivial to assign a statistical significance

to this observation based on how far into the tail of the null distribution it falls, for the reasons we

discussed we prefer the more symmetric comparison of the probability that this value was observed in

either distribution. We visualize the trade-off between false alarms and failed detection using the ROC

curves introduced above.

Information criteria will not serve.

One will commonly observe models representing alternative processes being compared through the

use of various information criteria such as the Akaike information criterion. While tempting to apply

in this situation, such approaches are not suited to this problem for several reasons. The first is

that information criteria are not concerned with the model choice objective we have in mind, as they

are typically applied to find an adequate model description without too many parameters that the

system may be over-fit. More pointedly, information criteria have no inherent notion of uncertainty.

Information criteria tests alone will not tell us our chances of a false alarm, of missing a real signal, or

how much data we need to be confident in our ability to detect transitions.

Beyond hypothesis testing

It is possible to frame the question of sensitivity, reliability, and adequate data in the language

of hypothesis testing. This introduces the need for selecting a statistical significance criterion. In

the hypothesis testing framework, a false positive is a Type I error, which is defined relative to this

arbitrary statistical significance criterion, most commonly 0.05. By changing the criterion, one can
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increase or decrease the probability of the Type I error at the cost of decreasing or increasing false

negative or Type II error, which must also be defined relative to this criterion.

The language of hypothesis testing is built around a bias that false positives are worse than false

negatives, and consequently an emphasis on p-values rather than power. In the context of early warning

signals this is perilous – it suggests that we would rather fail to predict a catastrophe than to sound

a false alarm. To avoid this linguistic bias and the introduction of an nuisance parameter on which to

define statistical significance, we propose the use of receiver operating characteristic (ROC) curves.

ROC Curves

We illustrate the trade-off between false alarms and failed detection using receiver-operating char-

acteristic curves first developed in signal-processing literature (Green and Swets, 1989; Keller et al.,

2009). The curves represent the corresponding false alarm rate at any detection sensitivity (true pos-

itive rate), Fig 1. The closer these distributions are to one-another, the more severe the trade-off.

If the distributions overlap exactly, the ROC curve has a constant slope of unity. The ROC curve

demonstrates this trade-off between accuracy and sensitivity. Different early-warning indicators will

vary in their sensitivity to detect differences between stable systems and those approaching a critical

transition, making the ROC curves a natural way to compare their performance. Since the shape of

the curve will also depend on the duration and frequency of the time-series observations, we can use

these curves to illustrate by how much a given increase in sampling effort can decrease the rate of false

alarms or failed detections.

4. Example Results

We illustrate this approach on simulated data as well as several natural time-series that have been

previously analyzed for early warning signals. All data and code for simulations and analysis are found

in the accompanying R package, earlywarning.

Data

The simulation implements an individual, continuous-time stochastic birth-death process with rates

given by the master equation (Gardiner, 2009),
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Figure 1: Top row: The distributions of a hypothetical warning indicator are shown under the case of a stable system

(blue) and a system approaching a critical transition (red). Bottom row: Points along the ROC curve are calculated for

each possible threshold indicated in the top row. The false positive rate is the integral of the distribution of the test

statistic under the stable system right of the threshold (blue shaded area, corresponding to blue vertical line). The true

positive rate is the integral of the system approaching a transition left of the threshold (red shaded area, corresponds to

the red line). Successive columns show the threshold increasing, tracing out the ROC curve.
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dP (n, t)

dt
= bn−1P (n− 1, t) + dn+1P (n+ 1, t)− (bn + dn)P (n, t) (13)

bn =
eKn2

n2 + h2
(14)

dn = en+ at (15)

where P (n, t) is the probability of having n individuals at time t, bn is the probability of a birth

event occurring in a population of n individuals, dn the probability of a death. e,K, h and at are

parameters. This corresponds to the well-studied ecosystem model of over-exploitation (Noy-Meir,

1975; May, 1977), with stochasticity introduced directly through the demographic process. We select

this model since it is has discrete numbers of individuals, nonlinear processes, and the noise is driven

by Poisson process of births and deaths instead of a Gaussian, and thus provides an illustration that

our approach is robust to the violations of those assumptions in model (2).

This model is forced through a bifurcation by gradually increasing the a parameter, which increases

can be thought of as an increasing toxicity of the environment (from a0 = 100 increasing at constant

rate of 0.09 units/unit time). Other parameters are: Xo = 730, e = 0.5, K = 1000, h = 200. We run

this model over a time interval from 0 to 500 and sample at 40 evenly spaced time points, which were

used for subsequent analysis. This sampling frequency was chosen to be representative of reasonable

sampling in biological time-series, and provides enough points to detect a signal while not too many

that errors can be avoided entirely. For the convenience of the inquisitive reader, we have also provided

a simple function in the associated R package where the user can vary the sampling scheme and

parameter values and rerun this analysis. This time series is shown in the top panel of Figure 2.

The first empirical data set comes from the population dynamics of Daphnia living in the chemostat

“H6” in the experiments of Drake & Griffen (Drake and Griffen, 2010). This individual replicate was

chosen as an example that showed a pattern of increasing variance over the 16 data points where the

system was being manipulated towards a crash. This time series is shown in the top panel of Figure 3.

Our second empirical data set comes from the glaciation record seen in deuterium levels in Antarctic

ice cores (Petit et al., 1999), as analyzed by Dakos et al. (2008). The data are preprocessed by

linear interpolation and de-trending by Gaussian kernel smoothing to be as consistent as possible with

the original analysis. We focus on the third glaciation event, consisting of 121 sample points. The

match is not exact since Dakos et al. (2008) estimates the de-trending window size manually, but the

estimated correlations in the first-order auto-regression coefficients are in close agreement with that

analysis. De-trending is intended to make the data consistent with the assumptions of the warning
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Figure 2: A model-based calculation of warning signals for the simulated data example. Top panel: The original time series

data on which model parameters for Equations (4) and (2) are estimated. Middle panel: replicate simulations under the

maximum likelihood estimated (MLE) parameters of the null model, Equation (4) and test model, Equation (2). Bottom

panel: The distribution of deviances (differences in log likelihood, Equation (12)), when both null and test models are

fit to each of the replicates from the null model, “null,” in red, and these differences when estimating for each of the

replicates from the test model, in blue. The overlap of distributions indicate replicates that will be difficult to tell apart.

The observed differences in the original data are indicated by the vertical line.
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Chemostat timeseries data
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Figure 3: A model-based calculation of warning signals for the Daphnia data analyzed in Drake and Griffen (2010)

(Chemostat H6). Panels as in Figure 2.

15



signal detection (Dakos et al., 2008), which did not apply to the other data sets (Drake and Griffen,

2010). This time series is shown in the top panel of Figure 4.

Analysis

The deviances δ observed are 5.1, 6.0, 83.9 for the simulation, the chemostat data and the glaciation

data, respectively. Based on AIC score each is large enough to reject the null hypothesis of a stable

model with its one extra parameter, but this does not give the full picture of the anticipated error rates.

The size of these differences reflects not only the magnitude of the difference in fit between the models

but also the arbitrary units of the raw likelihoods, which are smaller for larger data-sets. Consequently

the glaciation score reflects as much the greater length of its time series as it does anything else.

Our simulation approach can provide a better sense of the relative trade-off in error rates associated

with these estimates. As described above (Section 3.1), we simulate 500 replicates under each model,

shown in the middle panels of Figures 2, 3 and 4, and determine the distributions in likelihood ratio

under each, shown in the lower panels. The observed deviance from the original data is also indicated

(vertical line).

The ROC curves for each of these data sets are plotted in Figure 5. While differences in the rate at

which the system approaches a transition will also improve the ratio of true positives to false positives,

here we see the best-sampled data set, Glaciation, with 121 points, also has the clearest signal with

no observed errors in the 500 replicates of each type. Comparing the chemostat and simulation curves

illustrate how the trade-off between false positives and true positives can vary between data. The

chemostat signal, which estimates a relatively rapid rate of change but has less data, captures a higher

rate of true positives for a given rate of false positives than the simulation data set with a weaker rate

of change but more data, for false positive rates above 20%. However, the simulated set with more

data performs better if lower false-positive rates are desired.

5. Comparing the performance of summary statistics and model-based approaches

Due to the variety of ways in which early warning signals based on summary statistics are im-

plemented and evaluated it is difficult to give a straight-forward comparison between them and the

performance of this model-based approach. However, by adopting one of one of the quantitative mea-

sures of a warning signal pattern, such as Kendall’s τ (Dakos et al., 2008, 2011a, 2009), we are able

to make a side-by-side comparison of the different summary statistics and the model based approach

in the context of false alarms and failed detections shown by the ROC curve. Values of τ near unity
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Figure 4: A model-based calculation of warning signals for the Glaciation data analyzed in Dakos et al. (2008) (Glaciation

III). Panels as in Figure 2.
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Figure 6: Early warning signals in simulated and empirical data sets. The first two columns are simulated data from

(a) a stable system (Stable), and (b) the same system approaching a saddle-node bifurcation (Deteriorating). Empirical

examples are from (c) Daphnia magna concentrations manipulated towards a critical transition (Daphnia), and (d)

deuterium concentrations previously cited as an early warning signal of a glaciation period (Glaciation). Increases in

summary statistics, computed over a moving window, have often been used to indicate if a system is moving towards

a critical transition. The increase is measured by the correlation coefficient τ . Note that positive correlation does not

guarantee the system is moving towards a transition, as seen in the stable system, first column.

indicate a strongly increasing trend in the warning indicator, which is supposed to be indicative of an

approaching transition. Values near zero suggest a lack of a trend, as expected in stable systems.

Figure 6 shows the time series for each data set in columns and the early warning indicators of

variance and autocorrelation computed over a sliding window for each. Kendall’s correlation coefficient

τ is calculated for each warning indicator and displayed on the graphs, inset. For comparison, the

left-most column includes data simulated under a stable system, which nevertheless shows a chance

increasing autocorrelation with a τ = 0.7 We can adapt the approach we have described above to

determine how often such a strong increase would appear by chance in a stable system as follows.

By estimating the stable and critical transition models from the data, and simulating 500 replicate

data sets under each as in the analysis above, we can then calculate the warning signals statistic over

a sliding window of size equal to one-half the length of the time series, and compute the correlation

coefficient τ measuring the degree to which the statistic shows an increasing trend. This results in
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Figure 7: Box-plots of the distributions of Kendall’s τ observed for the summary statistic methods variance and autocor-

relation, applied to three different data sets (from Figures 2, 3, 4). The distributions show extensive overlap, suggesting

that it will be difficult to distinguish early warning signals by the correlation coefficient in these summary statistics.

a distribution of τ values coming from a model of a stable system, and a corresponding distribution

of τ values coming from the model with an impending transition. These distributions are shown in

Figure 7. Contrary to the expectation that replicates of the null model (stable system, Equation (4))

would cluster around zero, while the test model, Equation (2), would cluster around larger positive

τ values, the observed τ values on the replicates extend evenly across the range. This results in

dramatic overlap and offers little ability to distinguish between the stable replicates and the replicates

approaching a transition.

The use of box plots in Figure 7 provide a convenient and familiar way to visualize the overlap

between more than two distributions, though they lack the resolution of the overlapping density dis-

tributions in Figures 2, 3, 4. The overlapping distributions are the natural representation from which

to introduce the ROC curve, as in Figure 1.

The ROC curves for these data (Fig. 8) show that the summary-statistic based indicators frequently

lack the sensitivity to distinguish reliably between observed patterns from a stable or unstable system.

The large correlations observed in the empirical examples (Fig. 6) are not uncommon in stable systems.

It is notable that in both empirical examples the summary statistics approach does little better than
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Figure 8: ROC curves compare the performance of the summary statistics variance and autocorrelation against the

likelihood-based approach from Figure 5 on each of three example data sets (Figures 2, 3, 4).

Variance Likelihood

Simulation 25 % 61%

Chemostat 5.0% 34%

Glaciation 5.4% 100%

Table 1: Fraction of crashes detected when the desired false alarm rate is fixed to 5%

chance in distinguishing replicates that have been simulated from models (2) and (4), despite the

fact that these models correspond to the assumptions of the summary statistics approaches. On the

simulated data, the variance based method approaches the true-positive rate of our likelihood method

at higher levels of false positives, but performs worse when the desired level of false positives is low.

The ROC curve helps us compare the performance of the different approaches at different tolerances.

For instance, Table 1 shows the fraction of true crashes caught at a 5% false positive rate. We can

instead set a desired True positive rate and read off the resulting number of false alarms, Table 2.

Variance Likelihood

Simulation 49 % 55%

Chemostat 81 % 35%

Glaciation 93 % 0%

Table 2: Fraction of false alarms when the desired detection rate is fixed to 90%
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6. Discussion

The challenge of determining early warning signs for impending possible regime shifts requires real

attention to the underlying statistical issues and other assumptions. Doing this, does, however, open up

new possibilities for asking what the goal of detection should be, and for clearly identifying underlying

assumptions. We consider alternative approaches based either on summary statistics or a likelihood

based model choice. By assuming the underlying model corresponds to a saddle-node bifurcation, our

analysis presents a “best-case scenario” for both summary statistic and likelihood-based approaches.

Other literature has already begun to address the additional challenges posed when the underlying

dynamics do not correspond to these models (Hastings and Wysham, 2010). Our results illustrate that

even in this best-case scenario, reliable identification of warning signals from summary statistics can

be difficult.

We have used three examples to illustrate the performance of this approach in data from simulation,

a chemostat experiment, and paleo-atmospheric record; examples differing in sampling intensity and

strength of signal of an approaching collapse. While the well-sampled geological data shows an unmis-

takable signal in this model-based approach, the uncertainty in the smaller simulated and experimental

data forces a trade-off between errors.

As a way to clearly illustrate the choices involved in looking for warning signals while avoiding

false alarms, we introduce an approach based on receiver operator curves. These curves illustrate the

extent to which an potential warning signal mitigates the trade-off between missed events and false

alarms. The extent of the difficulty in finding reliable indicators of impending regime shifts based on

summary statistics becomes clear from the ROC curves of these statistics, where a 5% false positive

rate often corresponds to only a 5% true positive rate, performing no better than the flip of a coin. By

estimating the ROC curve for a given set of data, we can better avoid applying warning signals in cases

of inadequate power. By taking advantage of the assumptions being made to write down a specific

likelihood function, we can develop approaches that get the most information from the data available.

In any application of early warning signals, it is essential to address the question of model adequacy.

Our approach formalizes the assumptions about the underlying process to match the assumptions of

the other warning signals. As the bifurcation results from the principle eigenvalue passing through

zero, the warning signal is expected in linear-order dynamics; estimation of the nonlinear model is

less powerful and less accurate. The performance of this approach in the simulated data – which is

nonlinear in its dynamics and driven with non-Gaussian noise introduced by the Poisson demographic

events – demonstrates the accuracy under violation of these assumptions.
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The conclusion is not simply that likelihood approaches are more reliable, but rather more broadly

that warning signals should consider the inherent trade-off between sensitivity and accuracy, and must

quantify how this trade-off depends on both the indicators used and the data available. The approach

developed here estimates the risk of both failed detection and false alarms; concepts which are critical

to prediction-based management. Using the methods we have outlined when designing early warning

strategies for natural systems can ensure that data collection has adequate power to offer a reasonable

chance of detection.
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Dakos, V., Kéfi, S., Rietkerk, M., Nes, E. H. V., Scheffer, M., 2011a. Slowing Down in Spatially

Patterned Ecosystems at the Brink of Collapse. The American Naturalist.

Dakos, V., Nes, E. H., Donangelo, R., Fort, H., Scheffer, M., Nov. 2009. Spatial correlation as leading

indicator of catastrophic shifts. Theoretical Ecology, 163–174.

URL http://www.springerlink.com/index/10.1007/s12080-009-0060-6

24

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2630060&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2630060&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/22406194
http://www.sciencemag.org/cgi/doi/10.1126/science.331.6018.698
http://www.esajournals.org/doi/abs/10.1890/11-0716.1
http://www.ncbi.nlm.nih.gov/pubmed/16958897
http://www.ncbi.nlm.nih.gov/pubmed/19425440
http://www.jstor.org/stable/2984232
http://www.springerlink.com/index/10.1007/s12080-009-0060-6


Dakos, V., Scheffer, M., van Nes, E. H., Brovkin, V., Petoukhov, V., Held, H., Sep. 2008. Slowing

down as an early warning signal for abrupt climate change. Proceedings of the National Academy of

Sciences 105 (38), 14308–12.

URL http://www.ncbi.nlm.nih.gov/pubmed/18787119

Dakos, V., van Nes, E. H., D’Odorico, P., Scheffer, M., Oct. 2011b. Robustness of variance and

autocorrelation as indicators of critical slowing down. Ecology, 111018130520007.

URL http://www.esajournals.org/doi/pdf/10.1890/11-0889.1http://www.esajournals.

org/doi/abs/10.1890/11-0889.1

Ditlevsen, P. D., Johnsen, S. J., Oct. 2010. Tipping points: Early warning and wishful thinking.

Geophysical Research Letters 37 (19), 2–5.

URL http://www.agu.org/pubs/crossref/2010/2010GL044486.shtml

Drake, J. M., Griffen, B. D., Sep. 2010. Early warning signals of extinction in deteriorating environ-

ments. Nature 467 (7314), 456–459.

URL http://www.nature.com/doifinder/10.1038/nature09389

Easterling, D. R., Peterson, T. C., Apr. 1995. A new method for detecting undocumented discontinuities

in climatological time series. International Journal of Climatology 15 (4), 369–377.

URL http://doi.wiley.com/10.1002/joc.3370150403

Efron, B., 1987. Better bootstrap confidence intervals. Journal of the American Statistical Association

82 (397), 171– 185.

URL http://www.jstor.org/stable/2289144

Folke, C., Carpenter, S. R., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., Holling, C.,

Dec. 2004. REGIME SHIFTS, RESILIENCE, AND BIODIVERSITY IN ECOSYSTEM MANAGE-

MENT. Annual Review of Ecology, Evolution, and Systematics 35 (1), 557–581.

URL http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.35.021103.105711

Gardiner, C., 2009. Stochastic Methods: A Handbook for the Natural and Social Sciences (Springer

Series in Synergetics). Springer.

URL http://www.amazon.com/Stochastic-Methods-Handbook-Sciences-Synergetics/dp/

3540707123

25

http://www.ncbi.nlm.nih.gov/pubmed/18787119
http://www.esajournals.org/doi/pdf/10.1890/11-0889.1 http://www.esajournals.org/doi/abs/10.1890/11-0889.1
http://www.esajournals.org/doi/pdf/10.1890/11-0889.1 http://www.esajournals.org/doi/abs/10.1890/11-0889.1
http://www.agu.org/pubs/crossref/2010/2010GL044486.shtml
http://www.nature.com/doifinder/10.1038/nature09389
http://doi.wiley.com/10.1002/joc.3370150403
http://www.jstor.org/stable/2289144
http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.35.021103.105711
http://www.amazon.com/Stochastic-Methods-Handbook-Sciences-Synergetics/dp/3540707123
http://www.amazon.com/Stochastic-Methods-Handbook-Sciences-Synergetics/dp/3540707123


Goldman, N., Feb. 1993. Statistical tests of models of DNA substitution. Journal of Molecular Evolution

36 (2), 182–198.

URL http://www.springerlink.com/index/10.1007/BF00166252

Green, D. M., Swets, J. A., 1989. Signal Detection Theory and Psychophysics. Peninsula Pub.

URL http://www.amazon.com/Signal-Detection-Theory-Psychophysics-Marvin/dp/

0932146236

Guckenheimer, J., Holmes, P., 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of

Vector Fields (Applied Mathematical Sciences Vol. 42). Springer.

URL http://www.amazon.com/Nonlinear-Oscillations-Dynamical-Bifurcations-Mathematical/

dp/0387908196

Guttal, V., Jayaprakash, C., May 2008a. Changing skewness: an early warning signal of regime shifts

in ecosystems. Ecology letters 11 (5), 450–60.

URL http://www.ncbi.nlm.nih.gov/pubmed/18279354

Guttal, V., Jayaprakash, C., Dec. 2008b. Spatial variance and spatial skewness: leading indicators of

regime shifts in spatial ecological systems. Theoretical Ecology 2 (1), 3–12.

URL http://www.springerlink.com/index/10.1007/s12080-008-0033-1

Hastings, A., Jan. 1991. Structured models of metapopulation dynamics. Biological Journal of the

Linnean Society 42 (1-2), 57–71.

URL http://doi.wiley.com/10.1111/j.1095-8312.1991.tb00551.x

Hastings, A., Wysham, D. B., 2010. Regime shifts in ecological systems can occur with no warning.

Ecology letters.

URL http://www.ncbi.nlm.nih.gov/pubmed/20148928

Held, H., 2004. Detection of climate system bifurcations by degenerate fingerprinting. Geophysical

Research Letters 31 (23), 1–4.

URL http://www.agu.org/pubs/crossref/2004/2004GL020972.shtml

Holling, C. S., Nov. 1973. Resilience and Stability of Ecological Systems. Annual Review of Ecology

and Systematics 4 (1), 1–23.

URL http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.es.04.110173.

000245

26

http://www.springerlink.com/index/10.1007/BF00166252
http://www.amazon.com/Signal-Detection-Theory-Psychophysics-Marvin/dp/0932146236
http://www.amazon.com/Signal-Detection-Theory-Psychophysics-Marvin/dp/0932146236
http://www.amazon.com/Nonlinear-Oscillations-Dynamical-Bifurcations-Mathematical/dp/0387908196
http://www.amazon.com/Nonlinear-Oscillations-Dynamical-Bifurcations-Mathematical/dp/0387908196
http://www.ncbi.nlm.nih.gov/pubmed/18279354
http://www.springerlink.com/index/10.1007/s12080-008-0033-1
http://doi.wiley.com/10.1111/j.1095-8312.1991.tb00551.x
http://www.ncbi.nlm.nih.gov/pubmed/20148928
http://www.agu.org/pubs/crossref/2004/2004GL020972.shtml
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.es.04.110173.000245
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.es.04.110173.000245


Huelsenbeck, J. P., Bull, J. J., Mar. 1996. A Likelihood Ratio Test to Detect Conflicting Phylogenetic

Signal. Systematic Biology 45 (1), 92–98.

URL http://sysbio.oxfordjournals.org/cgi/content/abstract/45/1/92

Inman, M., Jun. 2011. Sending out an SOS. Nature Climate Change, 1–4.

URL http://www.nature.com/doifinder/10.1038/nclimate1146

Kampen, N. V., 2007. Stochastic Processes in Physics and Chemistry, Third Edition (North-Holland

Personal Library). North Holland.

URL http://www.amazon.com/Stochastic-Processes-Chemistry-North-Holland-Personal/

dp/0444529659
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