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Superluminal spin-1/2 particles are analyzed under the assumption that the equation of motion
is compatible with Lorentz invariance (tachyonic particles). It is found that tachyonic spin-1/2
particles can only be observed in left-handed helicity states, and that tachyonic spin-1/2 antiparticles
are always right-handed. This result is independent of the numerical value of the tachyonic mass
term, holds even for a tiny tachyonic mass of a few eV and may eventually be verified or falsified
by experiments in the long-term future. We propose a superluminal character of the neutrino as an
alternative explanation for the lack of a right-handed helicity state. This conclusion is connected with
the superluminal Dirac algebra (Gordon identities) for spin-1/2 tachyonic particles. In particular,
we derive the decomposition of the superluminal vector and axial vector current into convective and
spin parts. Finally, we complement the discussion by giving bispinor solutions for generalized Dirac
equations with mixed tachyonic and tardyonic mass terms, of the form m1+γ5 m2, and m1+i γ5 m2.
These solutions and corresponding sums over the fundamental spinor solutions may be useful in a
wider context.

PACS numbers: 95.85.Ry, 11.10.-z, 03.70.+k

I. INTRODUCTION AND OVERVIEW

A. Name of the Game

Over the last three decades, measurements of the neu-
trino mass square [1–7] have consistently resulted in neg-
ative values for m2

ν , but within their error bars, all of the
measurements are consistent with the hypothesism2

ν = 0.
Likewise, a number of direct measurements of the neu-
trino velocity have resulted in experimental results with
vν > c (best estimate), but again, within error bars [8–
11], the result have been consistent with the hypothesis
vν = c. It is likely that the issue of the superluminal
character of the neutrino will not be conclusively settled
in the near future.
Simultaneously, the question lingers why neutrinos are

only observed in left-handed helicity states, whereas an-
tineutrinos are exclusively observed in right-handed he-
licity states. We here show that superluminal spin-1/2
particles must always be left-handed, under very natural
assumptions, and show that this conclusion is connected
with superluminal Gordon identities that are shown to
have a very natural representation in terms of convective
and spin currents. Furthermore, the suppression of the
right-handed component holds independent of the con-
crete form of the Hamiltonian used to describe the par-
ticles (the tachyonic mass term can either be inserted as
an explicit imaginary mass or via a matrix representation
of the imaginary unit).

B. Experimental Sensitivity and Neutrino Mass

Recently, the OPERA experiment [10] has indicated
a possible deviation of the (muon) neutrino velocity vν
from c on the level of δ = 2.37×10−5 for neutrinos in the

17 GeV range. It is noteworthy that such a large devia-
tion from the speed of light at such a large energy seems
very surprising, irrespective of the sign of the deviation,
and recent statements of the OPERA collaboration come
very close to a retraction of the result. Assuming that
Lorentz invariance holds, we would have to conclude from
the tentative OPERA data that m2

ν = −(117MeV)2 for
neutrinos in the 17 GeV energy range [12]. The minus
sign holds for the OPERA tentative result of vν = c+ δ,
where δ > 0 is the deviation from the speed of light (units
with ~ = c = ǫ0 = 1 are used throughout this article).
The mass square m2

ν would shift to a positive sign (same
magnitude) for a hypothetical result of vν = c − δ. The
reported OPERA result of v = c+δ requires the effective
neutrino mass to run from a few eV for neutrinos in the
keV range [1–7] to a mass in the MeV range for neutri-
nos in the GeV range. It has been argued in Refs. [12–14]
that such a running would require a rather sophisticated
fine-tuning of the parameters that enter a conceivable
renormalization-group running of the neutrino mass.

Let us assume for a moment that the neutrino mass
does not run (this needs to be confirmed), that the
OPERA [10] result will soon be conclusively falsified, and
that the neutrino mass square is in the range of a few pos-
itive or negative eV2. In that case, the sensitivity of the
OPERA [10] and ICARUS experiments [11] is too low to
see any significant deviation from vν = c using current
technology. The recent ICARUS result [11] is consistent
with the trend [1–7] reported above: the best estimate
for the neutrino velocity is superluminal, but the devia-
tion from vν = c is insignificant on the level of current
technology. Again, the final answer to the question of
whether the neutrino is superluminal might not be given
in the short-term future.

In any case, recent claims [10] have triggered a lot of
theoretical interest in superluminal neutrino physics, and
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a number of interesting mechanisms have been proposed
to incorporate a superluminal neutrino into the field-
theoretical formalism without breaking any of the fun-
damental symmetries of nature. These proposed mech-
anisms include a dynamically created tachyonic neu-
trino mass [15], neutrino interactions with background
fields [16, 17] and neutrino mass running [12–14]. As a
byproduct of these investigations, a closer look at the
spin-1/2 representation of tachyonic particles [18–20] has
revealed that on a very fundamental level, the tachyonic
spin-1/2 field theory is perhaps not quite as problem-
atic as previously thought, and leads to rather interest-
ing conclusions regarding the suppression of helicity com-
ponents, independent of the magnitude of the tachyonic
mass term.

C. Relativity Theory and Superluminality

Contrary to other, somewhat catchy, claims, the ex-
istence of superluminal particles would not falsify Ein-
stein’s theory of special relativity, which according to
common wisdom is based on the following postulates:
(i) The principle of relativity states that the laws of
physics are the same for all observers in uniform mo-
tion relative to one another. (ii) The speed of light in a
vacuum is the same for all observers, regardless of their
relative motion or of the motion of the source of the light.
Predictions of relativity theory regarding the relativity of
simultaneity, time dilation and length contraction would
not change if superluminal particles did exist. Further-
more, as shown by Sudarshan et al. (Refs. [21–24]) and
Feinberg (Refs. [25, 26]), the existence of tachyons, which
are superluminal particles fulfilling a Lorentz-invariant
dispersion relation E2 = ~p2 − m2

ν , is fully compatible
with special relativity and Lorentz invariance. According
to special relativity, it is forbidden to accelerate a particle
“through” the light barrier (because E = m/

√
1− v2 →

∞ for v → 1), but a genuinely superluminal particle re-
mains superluminal upon Lorentz transformation. Sig-
nificant problems are encountered when one attempts to
quantize the tachyonic theories, but again, as shown in
Ref. [18], these problems may not be as serious as previ-
ously thought. In particular, the so-called reinterpreta-
tion of solutions propagating into the past according to
the Feynman prescription [24] is a cornerstone of modern
field theory. Furthermore, it has been shown in Ref. [18]
that tachyonic particles can be localized, and equal-time
anticommutators of the spin-1/2 tachyonic field involve
an unfiltered Dirac-δ [see Eq. (37) of Ref. [18]]. The spec-
trum of the tachyonic Hamiltonian involves resonances
and anti-resonances [18] which give rise to evanescent
waves. Otherwise, these evanescent waves correspond to
exponentially suppressed tardyonic components of a gen-
uinely tachyonic wave packet (i.e., components from the
“wrong side” of the “light barrier”). Interestingly, super-
luminal propagation of electromagnetic waves is claimed
to have been observed in double-prism experiments [27–

29], at the cost of introducing non-unitary time evolu-
tion (evanescent waves). The quantum tunneling regime
is not described by classical special relativity.
The paper is organized in the following sense: The

tachyonic Lagrangian is discussed in Sec. II, and the chi-
ral adjoint is introduced. Gordon identities are given in
Sec. III for both vector and axial vector currents, and
the suppression mechanism of the “wrong” helicity com-
ponent is illustrated in Sec. IV in a number of example
cases and physically relevant limits. Finally, conclusions
are drawn in Sec. V.

II. TACHYONIC LAGRANGIAN AND CHIRAL
ADJOINT

A. Notation and Reference to Previous Works

Throughout this paper, let us denote by ψ(x) or φ(x) a
solution to a tachyonic equation. If ψ(x) is a plane-wave
solution for positive energy, and φ(x) goes for negative
energy, then we have the structures

ψ(x) = Uσ(~k) exp(−ik · x) , φ(x) = Vσ(~k) exp(ik · x) ,
(1)

where Uσ(k) and Vσ(k) are general bispinors character-
izing positive-energy and negative-energy solutions, re-
spectively. Furthermore, x = (t, ~x) is a space-time vector

and k = (E,~k) is the energy-momentum four-vector with

E =
√
~k2 −m2 being equal to the (absolute value of the)

energy of the superluminal particle. Here, k·x = E t−~k·~x
is the scalar product in space-time. The subscript σ in
Uσ(k) denotes the helicity (positive energy) and the nega-
tive of the helicity in Vσ(k) (negative energy). The states
are normalized according to Eq. (15) of Ref. [18],

U+

σ (~k)Uσ(~k) = 1 , V +

σ (~k)Vσ(~k) = 1 . (2)

Here, σ is a quantum number which is equal to the
eigenvalue of the helicity operator for positive-energy
solutions, and equal to the negative of the helicity
for negative-energy solutions. Furthermore, by Uσ(k)
and Vσ(k) we denote solutions normalized according to
Eq. (25) of Ref. [18],

Uσ(~k)Uσ(~k) = σ , Vσ(~k)Vσ(~k) = −σ . (3)

The explicit form of the solutions is recalled here in Ap-
pendix A. Under a Lorentz transformation Λ, a bispinor
U(k) transforms according to Eq. (2.14) of Ref. [30],

ψ′(x′) = S(Λ)ψ(x) , (4)

where S(Λ) is the bispinor Lorentz transformation that
fulfills Eq. (2.15) of Ref. [30],

S(Λ) γµ S−1(Λ) =
(
Λ−1

)µ
ν
γν . (5)
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In view of the identity γ0 S+(Λ) γ0 = S−1(Λ), the Dirac
adjoint which has been used in Eqs. (2) and (3),

ψ(x) = ψ+(x) γ0 (6)

transforms with the inverse bispinor transformation
S−1(Λ),

ψ
′
(x′) = ψ(x)S−1(Λ) . (7)

In the following, we anticipate that the chiral adjoint

ψ̃(x) = ψ+(x) γ0 γ5 = ψ(x) γ5 (8)

will be a useful concept for the description of tachyonic
spin-1/2 particles. It is rather straightforward to show
that the chiral adjoint transforms as

ψ̃′(x′) = ψ̃(x)S−1(Λ) det(Λ) , (9)

which differs from the transformation property of the
Dirac adjoint by a sign if the determinant of the Lorentz
transformation is negative (e.g., for a parity transforma-
tion).
Dirac matrices are used in the standard representation

γ0 =

(
12×2 0
0 −12×2

)
, ~γ =

(
0 ~σ
−~σ 0

)
,

~α =

(
0 ~σ
~σ 0

)
, γ5 =

(
0 12×2

12×2 0

)
, (10)

as it was done in Ref. [18].

B. Tachyonic Lagrangian

When using the standard representation of the Dirac
matrices as in Ref. [18], it is natural to induce superlumi-
nality of the spin-1/2 particle by a multiplication of the
mass term in the Dirac equation by γ5,

(
iγµ∂µ − γ5m

)
ψ(x) = 0 , (11)

and the solutions can be found in Ref. [18]. So, for
positive-energy plane waves of the form

ψ(x) = U±(~k) exp(−ik · x), (12)

the bispinor solution fulfills

(
✁k − γ5m

)
U±(~k) = 0 , (13)

where we use the common notation ✁k = γµkµ. The cor-
responding equation for the Dirac adjoint follows from
the above using the identities γ0(γµ)+γ0 = γµ and

γ0
(
γ5
)+
γ0 = −γ5 and reads

U±(~k)
(
✁k + γ5m

)
= 0 . (14)

By analogy with the ordinary Dirac equation, one
might assume that

L(x)
?
= ψ(x)

(
iγµ∂µ − γ5m

)
ψ(x) (15)

should be a convenient ansatz for the Lagrangian. How-
ever, varying L(x) with respect to ψ(x), we find the vari-
ational equation for the Dirac adjoint

∂µ
δL

δ∂µψ
− δL

δψ

?
= i

(
∂µψ(x)

)
γµ +mψ(x)γ5 = 0 . (16)

For a positive energy solution of the form ψ(x) =

U±(~k) exp(−ik · x), the resulting bispinor equation is

U±(~k)
(
−✁k + γ5m

) ?
= 0 , (17)

which is incompatible with Eq. (14). Indeed, there is
an additional problem with L(x): For solutions ψ(x) of
the tachyonic Dirac equation, each of the its two terms
reduces to zero. A similar problem has already been en-
countered by Feinberg for the tachyonic scalar particle,
as explained in the text in between Eqs. (4.19) and (4.20)
of Ref. [25].
With Ref. [31], we thus investigate the Lagrangian

L(x) = ψ(x)
(
iγ5γµ∂µ −m

)
ψ(x) , (18)

which upon variation with respect to ψ(x) yields a tachy-
onic Dirac equation which follows from Eq. (11) by mul-
tiplication with γ5 from the left,

(
iγ5γµ∂µ −m

)
ψ(x) = 0 . (19)

The equation of motion for ψ(x) then is

∂µ
δL
δ∂µψ

− δL
δψ

= i
(
∂µψ(x)

)
γ5γµ +mψ(x) = 0 , (20)

which for a positive-energy solution of the form (12) re-
duces to the equation

U±(~k)
(
−γ5✁k +m

)
= 0 . (21)

We multiply with γ5 from the right and find

U±(~k)
(
✁k + γ5m

)
= 0 , (22)

which is equivalent to Eq. (14) and thus consistent. Ad-
ditionally, it is interesting to note that both the kinetic
energy as well as the mass term are nonvanishing for
plane-wave solutions of the tachyonic Dirac equation.
The latter point is fully clarified below in the context
of tachyonic Gordon identities (see Sec. III).
For completeness, we also indicate the plane-wave so-

lution for negative energy in the form

φ(x) = V±(k) exp(ik · x) , (23)

where V±(k) solves the equation
(
✁k + γ5m

)
V±(~k) = 0 , (24)

with the adjoint

V ±(~k)
(
✁k − γ5m

)
= 0 . (25)
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C. Chiral Adjoint

With the definition of the chiral adjoint given in
Eq. (8), the Lagrangian (18) can trivially be rewritten
as

L(x) = ψ̃(x)
(
i γµ∂µ − γ5m

)
ψ(x) . (26)

Variation with respect to ψ̃(x) and ψ(x) then leads to
consistent dynamical equations for the two independent
variables. Specifically, the resulting variational equation

for ψ̃(x) is identical to the one obtained by taking the
conjugate of Eq. (11) and multiplying with γ5 from the
right. In the form (26), the γ5 term stands with the
mass of the particle as suggested by intuition. Here, one
could rightfully ask the question about any further ben-
efits from the introduction of the chiral adjoint.
A part of the answer is provided by the seemingly nat-

ural emergence of the chiral adjoint in equations describ-
ing superluminal spin-1/2 particles. Let us consider the
imaginary-mass Dirac equation

(i γµ ∂µ − im)ψ(x) = 0 , (27)

which is obtained from the ordinary Dirac equation by
the substitution m → im. Complex conjugation and
insertion of γ0 leads to

ψ+(x) γ0
(
−i γ0 (γµ)

+
γ0
←−
∂ µ + im

)
= 0 , (28)

which is equivalent to

ψ(x)
(
−i γµ←−∂ µ + im

)
= 0 . (29)

The result is not consistent with the Lagrangian

L′(x)
?
= ψ(x) (i γµ∂µ − im)ψ(x) . (30)

because variation with respect to ψ would lead to

ψ(x)
(
−i γµ←−∂ µ − im

)
?
= 0 . (31)

However, if we insert a γ5 matrix in Eq. (29),

ψ(x) γ5
(
−i γ5 γµ γ5←−∂ µ + i(γ5)2m

)
= 0 , (32)

this leads to

ψ̃(x)
(
iγµ
←−
∂ µ + im

)
= 0 , (33)

consistent with the Lagrangian

L′(x) = ψ̃(x) (i γµ∂µ − im)ψ(x) (34)

for the imaginary-mass Dirac equation. For superluminal
particles, the chiral adjoint naturally takes the role of
the Dirac adjoint in the Lagrangian, and in the Gordon
decomposition, as well as the spin sums over eigenspinors,
which will be studied next.

D. Relations for the Tachyonic Dirac Equation

We study the emergence of the chiral adjoint in a num-
ber of expressions that pertain to the tachyonic Dirac
equation (11). These are related to Eqs. (33)–(38) of
Ref. [18]. Indeed, with the chiral adjoint, the field anti-
commutator for the tachyonic Dirac equation takes the
form

{ψ(x), ψ̃(y)} =
〈
0
∣∣∣{ψ(x), ψ̃(y)}

∣∣∣ 0
〉

(35)

=

∫
d3k

(2π)3
m

E

∑

σ=±

{
e−ik·(x−y) (−σ) Uσ(~k)⊗ Ũσ(~k)

+eik·(x−y) (−σ) Vσ(~k)⊗ Ṽσ(~k)
}
,

where σ is the chirality, ⊗ denotes the tensor product in
bispinor space, and we use the definitions for the field
ψ(x), the bispinors Uσ, Vσ as well as the creation and
annihilation operators as defined Ref. [18]. The spin sum
relations for the bispinor and its chiral adjoint are given
as

∑

σ

(−σ) Uσ(~k)⊗ Ũσ(~k) = ✁k − γ5m
2m

, (36a)

∑

σ

(−σ) Vσ(~k)⊗ Ṽσ(~k) = ✁k + γ5m

2m
. (36b)

The presence of the factor (−σ) is explained in Ref. [18].
Using Eq. (36), the field anti-commutator can be brought
into a compact form,

{ψ(x), ψ̃(y)} =
(
i ✁∂ − γ5m

)
i ∆(x− y) , (37)

where ∆(x− y) is given by

i∆(x− y) =
∫

d3k

(2π)3
1

2E

[
e−ik·(x−y) − eik·(x−y)

]
, (38)

which is centered on the tachyonic mass shell.

E. Relations for the Imaginary–Mass Dirac
Equation

We now study solutions of the imaginary-mass Dirac
equation (27) using the definitions of Ref. [20], in agree-
ment with the normalizations given in Eqs. (2) and (3).
The spin sums reduce to

∑

σ

(−σ) U ′
σ(
~k)⊗ Ũ ′

σ(
~k) =

✁k + im

2m
, (39a)

∑

σ

(−σ) V ′
σ(
~k)⊗ Ṽ ′

σ(
~k) =

✁k − im

2m
, (39b)

where the U ′
σ(
~k) and V ′

σ(
~k) are the solutions of the

bispinors in the plane-wave solutions of the imaginary-
mass Dirac equation as defined in Ref. [20]. These are
the desired projectors onto positive- and negative-energy
solutions for the imaginary-mass Dirac equation (27).
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III. TACHYONIC GORDON IDENTITIES

A. Vector Current

We study the tachyonic Dirac equation (11) and inves-
tigate the matrix element of the vector current

J µ = U±(~k
′) γµ U±(~k) . (40)

It is instructive to consider the derivation of the Gordon
decomposition in detail,

J µ =
1

2m

(
U±(~k

′)mγµU±(~k) + U±(~k
′)γµmU±(~k)

)

=
1

2m

(
U±(~k

′)γ5✁k
′γµU±(~k) + U±(~k

′)γµγ5✁kU±(~k)
)

=
1

2m
U±(~k

′)γ5 (γνγµk′ν − γµγνkν)U±(~k) .

Using the familiar identity

γνγµ =
1

2
{γµ, γν} − 1

2
[γµ, γν ] = gµν + iσµν (41)

with σµν = i
2 [γ

µ, γν ] = −σνµ, we find

J µ =
1

2m
Ũ±(~k

′) [(k′µ − kµ) + iσµν (k′ν + kν)]U±(~k) ,

(42)
where we use the chiral adjoint in order to simplify the
notation. The vector current has been decomposed into
convective and spin parts. For k′ = k, the current J µ

specializes to

jµ = U±(~k)γ
µU±(~k) =

i

m
Ũ±(~k)σ

µνkν U±(~k) , (43)

which is divergence-free, i.e., kµ j
µ = 0. For negative-

energy solutions, the identity reads as

J̄ µ = V ±(~k
′)γµV±(~k) (44)

= − 1

2m
Ṽ±(~k

′) [(k′µ − kµ) + iσµν (k′ν + kν)] V±(~k)

which differs from Eq. (42) by a minus sign.

B. Axial Current

For the tachyonic Dirac equation (11), the matrix ele-
ment of the axial current reads

J 5,µ = U±(~k
′) γ5 γµ U±(~k) = Ũ±(~k

′) γµ U±(~k) . (45)

A straightforward calculation reveals that

J 5,µ = U±(~k
′)γ5γµU±(~k) (46)

=
1

2m
U±(~k

′)
[
γ5✁k

′γ5γµ + γ5γµγ5✁k
]
U±(~k)

= − 1

2m
U±(~k

′) (γνγµk′ν + γµγνkν)U±(~k)

= − 1

2m
U±(~k

′) [(k′µ + kµ) + iσµν (k′ν − kν)]U±(~k) .

For k′ = k, this simplifies to

j5,µ = U±(~k)γ
5γµU±(~k) = −

1

m
U±(~k) k

µ U±(~k) . (47)

The results (46) and (47) for the tachyonic axial vector

current have a similar structure as the Gordon decompo-
sition for the tardyonic vector current obtained with the
ordinary Dirac equation [see Eq. (2.54) of Ref. [30]]. This
finding illustrates once more that to a certain degree, the
role of the Dirac adjoint for the tardyonic case is taken
over by the chiral adjoint for the tachyonic particle.
From Eqs. (43) and (47), together with the identity

σµν kµ kν = 0 and the result U±(~p)γ
5U±(~p) = 0, imply

that for a plane-wave solution ψ(x) = U±(~p) exp(−ip ·x),
each term in the trial LagrangianL [see Eq. (15)] vanishes
separately. For the correct choice of the Lagrangian given
in Eq. (26), this is not the case.
For negative-energy solutions, we have

J̄ 5,µ = V ±(~k
′) γ5γµ V±(~k) = Ṽ±(~k

′) γµ V±(~k) (48)

=
1

2m
V ±(~k

′) [(k′µ + kµ) + iσµν (k′ν − kν)]V±(~k) .

The structure differs from Eq. (46) by an overall minus
sign.

C. Parity in Gordon Identities

We recall Eqs. (43) and (47) in the form

jµ = U±(~k)γ
µU±(~k) =

i

m
U±(~k

′)γ5 σµνkνU±(~k) (49)

and

j5,µ = U±(~k)γ
5γµU±(~k) = −

1

m
U±(~k)k

µU±(~k) . (50)

There seems to be something peculiar concerning the
transformation features in these identities. In Eq. (49),
an apparent vector current jµ on the left-hand side ap-
pears to transform into an axial current on the right-hand
side, whereas in Eq. (50), an apparent axial vector on the
left-hand side of the equation becomes what appears to
be a vector on the right-hand side. The reason lies in the
more complicated behavior of the tachyonic Dirac equa-
tion under parity as investigated in Ref. [19]. Namely,
the tachyonic Dirac equation (11) contains a term which
transforms as a scalar under parity,

i γν ∂µ
P−→ γ0

(
i γ0 ∂0 + i γi (−∂i)

)
γ0 = i γν ∂µ (51)

as well as a term which transforms as a pseudoscalar,

γ5m
P−→ γ0

(
γ5m

)
γ0 = −γ5m. (52)

The mass term in the tachyonic Dirac equation is not
parity invariant, and indeed, in Ref. [19], the tachyonic
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Dirac equation has been shown to be separately CP in-
variant, and T invariant, but not P invariant, due to the
change in the mass term.
The transformation (52) can be interpreted as a trans-

formation m → −m under parity. Thus, if we interpret
the mass m as a pseudoscalar quantity, then the right-
hand sides of (49) and (50) transform as a vector and an
axial vector, respectively. It is the parity non-invariance
of the mass term in the tachyonic Dirac equation which
leads to the somewhat peculiar structure of Eqs. (49)
and (50).

IV. SUPPRESSION OF RIGHT-HANDED
STATES

A. Spin Sums and Tachyonic Gordon Identities

Let us explore the connection of the bispinor sums
given in Eq. (36) with the tachyonic Gordon identities.
We start with the left-hand side of Eq. (36a). The
bispinor trace (with a γ0 multiplied from the right) is
given as

tr

(
∑

σ

(−σ) Uσ(~k)⊗ Ũσ(~k)γ0
)

=
∑

σ

(−σ) Uσ(~k) γ
5 γµ=0 Uσ(~k)

=
∑

σ

(−σ)
(
−k

0

m

)
Uσ(~k)Uσ(~k) = 2

E

m
. (53a)

Here, E = k0 is the energy and the tachyonic Gordon
decomposition (47) as well as the normalization (3) have
been used. The bispinor trace of the right-hand side of
Eq. (36a) is

tr

(
γ0

✁k − γ5m
2m

)
= tr

(
γ0

✁k

2m

)
= 4

E

2m
= 2

E

m
, (54)

which shows the consistency of the bispinor sum (36a)
with the Gordon decomposition (47).
The bispinor trace of the left-hand side of Eq. (36b) is

tr

(
∑

σ

(−σ) Vσ(~k)⊗ Ṽσ(~k)γ0
)

=
∑

σ

(−σ) Vσ(~k) γ5 γµ=0 Vσ(~k)

=
∑

σ

(−σ)
(
k0

m

)
Vσ(~k)Vσ(~k) = 2

E

m
. (55a)

We have used the Gordon decomposition for negative-
energy states as given in Eq. (48) as well as the normal-
ization (3). From the right-hand side of Eq. (36b), we
have

tr

(
γ0

✁k + γ5m

2m

)
= tr

(
γ0

✁k

2m

)
= 2

E

m
, (56)

which again is fully consistent. From these considerations
it is obvious that the appearance of the factor (−σ) in
the spin sums in Eqs. (36a) and (36b) is consistent with
the tachyonic Gordon decomposition.
The factor (−σ) also occurs in the nonvanishing anti-

commutators of the particle and antiparticle annihilation
and creation operators bσ(k), b

+

σ (k) dσ(k), and d
+

σ (k),

{
bσ(k), b

+

ρ (k
′)
}
= (−σ) (2π)3 E

m
δ3(~k − ~k′) δσρ , (57a)

{
dσ(k), d

+

ρ (k
′)
}
= (−σ) (2π)3 E

m
δ3(~k − ~k′) δσρ . (57b)

As shown in Ref. [18], the factor (−σ) induces a negative
norm for right-handed particle and left-handed antipar-
ticle states (σ is equal to the helicity for positive-energy
states and equal to minus the helicity for negative-energy
states). The suppression of the right-handed particle
states is thus consistent with the bispinor sums and the
tachyonic Gordon decompositions.

B. Spin Sums and Massless Limit

It is very instructive to study the massless limit of the
spin sums (36). In the limit m → 0, the denominator of
the spin sums vanishes, and a finite limit is obtained as

lim
m→0

∑

σ

2m (−σ) Uσ(~k)⊗ Ũσ(~k) = lim
m→0

✁k − γ5m = ✁k ,

(58a)

lim
m→0

∑

σ

2m (−σ) Vσ(~k)⊗ Ṽσ(~k) = lim
m→0

✁k + γ5m = ✁k .

(58b)

In the massless limit, the solutions to the Dirac equation
are given as (see Chap. 2 of Ref. [30])

u+(~k) =
1√
2

(
a+(~k)

a+(~k)

)
, u−(~k) =

1√
2

(
a−(~k)

−a−(~k)

)
,

(59a)

v+(~k) =
1√
2

(
−a+(~k)
−a+(~k)

)
, v−(~k) =

1√
2

(
−a−(~k)
a−(~k)

)
,

(59b)

The helicity bispinors are given as

a+(~k) =

(
cos
(
θ
2

)

sin
(
θ
2

)
eiϕ

)
, a−(~k) =

(
− sin

(
θ
2

)
e−iϕ

cos
(
θ
2

)
)
.

(60)

These fulfill the fundamental relations (~σ · ~̂k) aσ(~k) =

σ aσ(~k), as well as
∑

σ aσ(
~k) ⊗ a+

σ (
~k) = 12, and

∑
σ σ aσ(~k) ⊗ a+

σ (
~k) = ~σ · ~̂k, where ~̂k = ~k/|~k| and the

sum over σ is over the values ±1. The u and v bispinors
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fulfill the relations
∑

σ

2 |~k|uσ(~k)⊗ uσ(~k) = ✁k , (61a)

∑

σ

2 |~k| vσ(~k)⊗ vσ(~k) = ✁k , (61b)

A quick calculation also shows that in the massless limit,
we have

uσ(~k)γ
5 =

(
γ5 γ0 uσ(~k)

)+

= (−σ)uσ(~k) , (62a)

vσ(~k)γ
5 =

(
γ5 γ0 vσ(~k)

)+

= (−σ) vσ(~k) , (62b)

We can thus introduce a factor (−σ)2 = 1 in the sum
over spins in Eq. (61) and replace one of the factors (−σ)
by a multiplication from the right by the fifth current,
which turns Eq. (61) into

∑

σ

2 |~k| (−σ)uσ(~k)⊗ uσ(~k) γ5 = ✁k , (63a)

∑

σ

2 |~k| (−σ) vσ(~k)⊗ vσ(~k) γ5 = ✁k . (63b)

We can thus verify the consistency of Eq. (58) with
Eq. (63) upon the following identification of the normal-
ization in the massless limit. Namely, an elementary cal-
culation yields the results

uσ(~k) γ
5 γ0 uσ(~k) = σ , (64a)

vσ(~k) γ
5 γ0 vσ(~k) = − σ , (64b)

and we also have

Uσ(~k) γ
5 γ0 Uσ(~k) = σ

E

m
, (64c)

Vσ(~k) γ
5 γ0 Vσ(~k) = − σ

E

m
, (64d)

by virtue of the tachyonic Gordon decomposition (47) for
the axial current and the normalization (3). Observing

that E = |~k| in the massless limit, the identifications
√
mUσ(~k) →

√
|~k|uσ(~k) and

√
mVσ(~k) →

√
|~k| vσ(~k)

in the massless limit follow immediately. The massless
limit of the tachyonic bispinor sums, which connects the
tachyonic spin-1/2 equation with the luminal (massless)
and tardyonic Dirac equations, is thus verified.

C. Why Particles are Left–Handed

The appearance of the factor (−σ) in the spin sums
in the massless case [see Eqs. (63)], as well as the tachy-
onic Dirac case [see Eqs. (36)] and the imaginary-mass
Dirac equation [Eq. (39)] is fully consistent with the anti-
commutators of the tachyonic field operators in Eq. (57).

These in turn induce negative norm for particles with
right-handed helicity. The factor (−σ) also appears un-
der the spin sum if one reverses the sign of the tachyonic
mass term in Eq. (11) or Eq. (27) and constructs bispinor
solutions according to the procedure outlined in Ref. [18].
For the imaginary-mass Dirac equation, this is explicitly
shown in Sec. 4 of Ref. [20]. The factor (−σ) needs to
appear because any consistent massive tachyonic equa-
tion has to reproduce the massless limit (63). This raises
the pertinent question why the right-handed component
of the tachyonic Dirac field is suppressed rather than the
left-handed component.
Because a reversal of the sign of the mass term in

the tachyonic equation (tachyonic Dirac Hamiltonian)
does not change the suppression mechanism, the origin
of the suppression of states of definite helicity has to be
searched somewhere else. Indeed, the reason is to be
found in the fundamental properties of the massless Dirac
Hamiltonian. This can be seen as follows. First, in view
of Eq. (59), the wave functions

u+(~k) exp(i~k · ~r) , u−(~k) exp(i~k · ~r) , (65)

are eigenstates of the massless Hamiltonian H0 = ~α · ~p
with the helicity being equal to the chirality. The cor-
responding eigenvalue is indicated in the subscript. The
wave functions

v+(~k) exp(−i~k · ~r) , v−(~k) exp(−i~k · ~r) , (66)

are eigenstates of the massless Hamiltonian with the he-
licity being equal to the negative of the chirality. The
subscript indicates the eigenvalue of the chirality opera-
tor γ5.
Eigenstates of the massless HamiltonianH0 = ~α·~p have

to be eigenstates of the chirality operator γ5 because the
chirality commutes with the Hamiltonian, in the sense
that

[
γ5, H0

]
= 0. Furthermore,

H0 = ~α · ~p = |~p| γ5
~Σ · ~p
|~p| , (67)

where ~Σ = γ5 ~α is the vector of 4× 4 spin matrices, and

the helicity operator is identified as ~Σ · ~p/|~p|. Let λ1 be
the eigenvalue of chirality and λ2 be the eigenvalue of
the helicity operator. Then, the eigenvalue of the Hamil-
tonian is E0 = |~p|λ1 λ2. Since λ1 = ±1 and λ2 = ±1,
we conclude that helicity equals chirality for positive en-
ergy, whereas the relation is reversed for negative-energy
states. So far, we have recalled common wisdom [30].
All tachyonic spin-1/2 equations must correctly repro-

duce the spin sums in the massless limit (63). In this
limit, the γ5 γ0 factor from Eq. (62) must necessarily be
equal to (−σ) because of the discussed eigenvalue proper-

ties of the states uσ(~k) and vσ(~k) with respect to chiral-
ity and helicity. E.g., for positive energy, helicity must
equal chirality, and eigenstates of chirality with eigen-
value unity have the bispinor form χ = (a, a) where a
is a spinor. But for these states, γ5 γ0 χ = −χ, etc.
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Indeed, γ0 reverses the eigenvalue of γ5, as an elemen-
tary calculations immediately shows. The factor (−σ)
also occurs in Eq. (57) and is necessary for a consistent
formulation of the propagator; it is responsible for the
suppression of the right-handed particle states [18]. We
conclude that indeed, superluminal particles always have
to be left-handed, whereas antiparticles are right-handed.

V. CONCLUSIONS

In this paper, we continue the analysis [18] of tachy-
onic spin-1/2 particles which are described by superlu-
minal extensions of the Dirac equation. After recalling
basic definitions in Sec. II A, we investigate the struc-
ture of the tachyonic Lagrangian in Sec. II B. The chiral
adjoint ψ(x) γ5 is defined in Sec. II C and leads to a con-
sistent structure for the spin-1/2 Lagrangians of both the
tachyonic [18] as well as the imaginary-mass Dirac equa-
tion [20]. In Secs. II D and II E, we find that a number
of bispinor sums relevant to the analysis of the tachyonic
Dirac states find a particularly simple form if the chiral
adjoint is used.
We then continue with the analysis of the tachyonic

Gordon identities in Secs. III A (vector current) and III B
(axial vector current). Parity transformations and the
mixing of scalar and pseudoscalar quantities in the tachy-
onic identities are analyzed in Sec. III C. The main results
are as follows: The tachyonic vector current for positive-
energy bispinors is decomposed into convective and spin
parts in Eq. (42), and for negative-energy bispinors we
refer to Eq. (44). The tachyonic axial vector current
for positive-energy bispinors is found in Eq. (46) and for
negative-energy bispinors in Eq. (48).
The suppression of right-handed states is analyzed in

Sec. IV. The structure of the bispinor sum (36) together
with the fundamental anticommutators (57) imply the
suppression of right-handed particle states. However, ex-
tra scrutiny is indicated in verifying certain properties
and limits of the fundamental relations (36a) and (36b).
In Sec. IVA, we verify that the relations (36a) and (36b)
are consistent with the tachyonic Gordon identities. We
then continue to verify in Sec. IVB that the massless
limit is correctly reproduced. Indeed, the fundamental
relations of parity and chirality for the massless Dirac
Hamiltonian (chirality equals helicity for positive energy,
etc.) imply that the massless limit involves factors (−σ)
and γ5 matrices as indicated in Eq. (63). As shown in
Sec. IVC, these properties imply the suppression of the
right-handed particle and left-handed antiparticle states.
The appearance of the factor (−σ) in the spin sums in
the massless case [see Eqs. (63)], as well as the tachyonic
Dirac case [see Eqs. (36)] and the imaginary-mass Dirac
equation [Eq. (39)] is thus fully clarified.
Two slightly different equations have been discussed in

the literature for the description of superluminal spin-1/2
particles, namely, the tachyonic Dirac equation [18, 31]
and the imaginary-mass Dirac equation [20, 32]. One

may generalize the Dirac equation even further. In Ap-
pendix A, we investigate both tachyonic as well as tardy-
onic mass terms of the form m1, γ

5m2, and iγ5m2. The
plane-wave solutions of the mixed equations are derived
in Appendix A. These may be useful in a more general
context because the unitarity of the S matrix implies
the existence of useful relations [33] for the even powers
(m2)

2n obtained upon expanding a one-loop amplitude,
formulated with a mass term m1 + i γ5m2, in powers
of m2. Connections to the classical-force mechanism for
baryogenesis [34] and to lattice gauge theory [35, 36] also
motivate an investigation of generalized mass terms.

To conclude, let us recall that our arguments lead
to the conclusion that superluminal spin-1/2 particles
always are left-handed, and that superluminal anti-
particles are right-handed, no matter whether the tachy-
onic Dirac equation or the imaginary-mass Dirac equa-
tions is used in the description of the superluminal parti-
cles, and no matter how small the tachyonic mass term is.
An experimental confirmation or refutation of the theo-
retical considerations reported here therefore remains to
be completed in the long-term future, when experimen-
tal sensitivity will conclusively allow us to distinguish
between a conceivable tachyonic and tardyonic nature of
the neutrino.
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Appendix A: (Appendix:) Dirac Equation with
Tachyonic and Tardyonic Mass Terms

We wish to discuss solutions for generalized Dirac
equations. In the helicity basis, we start from the mass-
less spinors given in Eq. (59) and search for solutions of
the form

ψ(x) = U±(~k) exp(−ik · x) , φ(x) = V±(~k) exp(ik · x) ,
(A1)

The algebraic relations that have to be fulfilled by the

bispinor amplitudes U±(~k) and V±(~k) reads as follows,

(
✁k −m1

)
U

(1)
± (~k) = 0 ,

(
✁k +m1

)
V

(1)
± (~k) = 0 , (A2)

for the tardyonic Dirac equation with mass m1. For the
tachyonic equation,

(
✁k − γ5m2

)
U±(~k) = 0 ,

(
✁k + γ5m2

)
V±(~k) = 0 .

(A3)
In previous sections of this article, we have denoted m2

by m. For a mixed tachyonic/tardyonic Dirac equation
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with masses m1 and m2, we have
(
✁k −m1 − γ5m2

)
U

(m)
± (~k) = 0 , (A4a)

(
−✁k −m1 − γ5m2

)
V

(m)
± (~k) = 0 , (A4b)

for the positive- and negative-energy solutions of a mixed
equation with tardyonic and tachyonic mass terms,

(
iγµ∂µ −m1 − γ5m2

)
ψ(m)(x) = 0 . (A5)

Using the algebraic identity
(
✁k −m1 − γ5m2

) (
✁k +m1 − γ5m2

)
= k2 −m2

1 +m2
2 ,

(A6)
we find the dispersion relation

E(m) =

√
~k2 +m2

1 −m2
2 . (A7)

For m1 = m2, the particle travels with the speed of light.
The solutions of the mixed equation are thus given as

U
(m)
+ (~k) =

γ5m2 −m1 − ✁k√
(E(m) − |~k|)2 + (m2 −m1)2

u+(~k) (A8a)

=




m2 −m1 − E(m) + |~k|
√
2

√
(E(m) − |~k|)2 + (m2 −m1)2

a+(~k)

m2 −m1 + E(m) − |~k|
√
2

√
(E(m) − |~k|)2 + (m2 −m1)2

a+(~k)



,

U
(m)
− (~k) =

✁k +m1 − γ5m2√
(E(m) − |~k|)2 + (m2 +m1)2

u−(~k) (A8b)

=




m2 +m1 + E(m) − |~k|
√
2

√
(E(m) − |~k|)2 + (m2 +m1)2

a−(~k)

−m2 −m1 + E(m) − |~k|
√
2

√
(E(m) − |~k|)2 + (m2 +m1)2

a−(~k)



.

The negative-energy eigenstates of the mixed equation
are given as

V
(m)
+ (~k) =

γ5m2 −m1 + ✁k√
(E(m) − |~k|)2 + (m2 −m1)2

v+(~k) (A9a)

=




−m2 +m1 − E(m) + |~k|
√
2

√
(E(m) − |~k|)2 + (m2 −m1)2

a+(~k)

−m2 +m1 + E(m) − |~k|
√
2

√
(E(m) − |~k|)2 + (m2 −m1)2

a+(~k)



,

V
(m)
− (~k) =

−✁k − γ5m2 +m1√
(E(m) − |~k|)2 + (m1 +m2)2

v−(~k) (A9b)

=




−m2 −m1 + E(m) − |~k|
√
2

√
(E(m) − |~k|)2 + (m1 +m2)2

a−(~k)

m2 +m1 + E(m) − |~k|
√
2

√
(E(m) − |~k|)2 + (m1 +m2)2

a−(~k)



.

In the massless limit (first E(m) → |~k|, then m1 → 0, and

then m2 → 0), we have U
(m)
+ (~k) → u+(~k), U

(m)
− (~k) →

u−(~k), V
(m)
+ (~k) → v+(~k) and V

(m)
− (~k) → v−(~k). The

states are normalized with respect to the condition

U
(m)+
± (~k)U

(m)
± (~k) = V

(m)+
± (~k)V

(m)
± (~k) = 1 . (A10)

The normalization denominators in Eqs. (A8) and (A9)
can be written as

Nσ =

√
(E(m) − |~k|)2 + (m1 − σm2)2 (A11)

where σ = ± is the helicity subscript in the solution. The
normalization of the solutions with respect to the Dirac
adjoint is given by

U
(m)

± (~k)U
(m)
± (~k) =

±|~k|m2 + E(m)m1

~k2 +m2
1

, (A12a)

V
(m)

± (~k)V
(m)
± (~k) = − ±|

~k|m2 + E(m)m1

~k2 +m2
1

, (A12b)

where E(m) is given in Eq. (A7). For the purely tachy-
onic case, one sets m2 → m and m1 → 0. We have
not been able to find compact representations for the
sums over bispinors generalizing Eq. (39) to the mixed
tachyonic-tardyonic case, indicating that a fully consis-
tent formulation of a mixture of tachyonic and tardyonic
mass terms may be problematic.

A further mixed equation with two tardyonic mass
terms can be written down as

(
iγµ∂µ −m1 − i γ5m2

)
ψ(t)(x) = 0 . (A13)

For the corresponding bispinor solutions, this implies
that

(
✁k −m1 − iγ5m2

)
U

(t)
± (~k) = 0 , (A14a)

(
−✁k −m1 − iγ5m2

)
V

(t)
± (~k) = 0 . (A14b)

The appropriate normalization factor now changes to

N =

√
(E(t) − |~k|)2 +m2

1 +m2
2 , (A15)

and the energy is

E(t) =

√
~k2 +m2

1 +m2
2 . (A16)

The positive-energy bispinors for the equation with two
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tardyonic mass terms read as follows,

U
(t)
+ (~k) =

iγ5m2 −m1 − ✁k

i

√
(E(t) − |~k|)2 +m2

1 +m2
2

u+(~k) (A17a)

=




im2 −m1 − E(t) + |~k|
√
2 i

√
(E(t) − |~k|)2 +m2

1 +m2
2

a+(~k)

im2 −m1 + E(t) − |~k|
√
2 i

√
(E(t) − |~k|)2 +m2

1 +m2
2

a+(~k)



,

U
(t)
− (~k) =

✁k +m1 − iγ5m2

i

√
(E(t) − |~k|)2 +m2

1 +m2
2

u−(~k) (A17b)

=




im2 +m1 + E(t) − |~k|
√
2 i

√
(E(t) − |~k|)2 +m2

1 +m2
2

a−(~k)

−im2 −m1 + E(t) − |~k|
√
2 i

√
(E(t) − |~k|)2 +m2

1 +m2
2

a−(~k)



.

The negative-energy eigenstates of the mixed equation
with two tardyonic mass terms are given as

V
(t)
+ (~k) =

iγ5m2 −m1 + ✁k

i

√
(E(t) − |~k|)2 +m2

1 +m2
2

v+(~k) (A18a)

=




−im2 +m1 − E(t) + |~k|
√
2 i

√
(E(t) − |~k|)2 +m2

1 +m2
2

a+(~k)

−im2 +m1 + E(t) − |~k|
√
2 i

√
(E(t) − |~k|)2 +m2

1 +m2
2

a+(~k)



,

V
(t)
− (~k) =

−✁k − iγ5m2 +m1

i

√
(E(t) − |~k|)2 +m2

1 +m2
2

v−(~k) (A18b)

=




−im2 −m1 + E(t) − |~k|
√
2 i

√
(E(t) − |~k|)2 +m2

1 +m2
2

a−(~k)

im2 +m1 + E(t) − |~k|
√
2 i

√
(E(t) − |~k|)2 +m2

1 +m2
2

a−(~k)



.

In the massless limit (first E(t) → |~k|, then m1 → 0, and
thenm2 → 0), we again reproduce the massless solutions,

U
(t)
+ (~k)→ u+(~k), U

(t)
− (~k)→ u−(~k), V

(t)
+ (~k)→ v+(~k) and

V
(t)
− (~k)→ v−(~k). The states are normalized with respect

to the condition

U
(t)+
± (~k)U

(t)
± (~k) = V

(t)+
± (~k)V

(t)
± (~k) = 1 . (A19)

The normalizations with respect to the Dirac adjoint are
given as

U
(t)

± (~k)U
(t)
± (~k) =

m1

E(t)
, (A20a)

V
(t)

± (~k)V
(t)
± (~k) = − m1

E(t)
. (A20b)

The solutions (A17) and (A18) approach the massless
solutions if one replaces m1 → 0 first; and then lets
m2 → 0. They are thus useful for systems where the
m2 mass is greater than m1. For m1 ≫ m2, one would
like to calculate solutions that approach the massless case
for the sequence m2 → 0, then m1 → 0. These are al-
most identical to the solutions (A17) and (A18) but they
acquire a nontrivial phase factor. We shall denote them
with a prime,

U ′(t)
σ (~k) = − iσ U (t)

σ (~k) , (A21a)

V ′(t)
σ (~k) = − iσ V (t)

σ (~k) . (A21b)

Of course, in the limit m2 → 0, one also has to expand
the normalization denominators in powers of m2. In the
normalization

U (t)
σ (~k) =

(
E(t)

m

)1/2

U
(t)
+ (~k) , (A22a)

V(t)
σ (~k) =

(
E(t)

m

)1/2

V
(t)
+ (~k) , (A22b)

we can derive the following sums over bispinors,

∑

σ

U (t)
σ (~k)⊗ U (t)

σ (~k) =
✁k +m1 − i γ5m2

2m1
, (A23a)

∑

σ

V(t)
σ (~k)⊗ V(t)

σ (~k) =
✁k −m1 + i γ5m2

2m1
. (A23b)

In accordance with general wisdom about the tardyonic
case, these do not involve helicity-dependent prefactors.
The Feynman propagator is then easily found as

S(t)(k) =
1

✁k −m1 + iǫ− i γ5 (m2 − i η)

=
✁k +m1 − i γ5m2

k2 −m2
1 −m2

2 + i ǫ
, (A24)

where ǫ and η are infinitesimal imaginary parts.
There is a connection of the tardyonic γ5 mass term to

lattice calculations. Let us consider the Dirac–Wilson
operator DW = γ̃µ∂µ + m2 on a lattice in the limit
a → 0 where a is the lattice spacing [36]. The γ̃µ ful-
fill {γ̃µ, γ̃ν} = 2 δµν with a Euclidean space-time met-
ric, and therefore (γ̃µ∂µ +m2) (γ̃

ν∂ν −m2) = −~p2 −
Ẽ2 − m2

2 where Ẽ2 = −E2 is the Euclidean energy.
A possible representation is γ̃0 = γ0 and γ̃i = αi.
Then, with γ̃5 = i γ̃0 γ̃1 γ̃2 γ̃3 = −i γ0 γ5, we have
DW = γ̃5D+

W γ̃5, which is called γ5–Hermiticity in lat-
tice theory [35, 36], or pseudo-Hermiticity in Refs. [37–

47]. Then, γ̃5DW = i γ5 γ0 (γ0 γi ∂i + γ0 ∂̃0 + m2) ≃
−
(
γ5 γi

)
(−i∂i)− i γ0 γ5m2 = −α̃i pi − i γ0 γ5m2 where

we have neglected the Euclidean time derivative after the
≃ sign. The α̃i = γ5 γi fulfill the relation {α̃i, α̃j} = δij ,
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and we have a mass term of the form i γ0 γ5m2. Further-
more, as pointed out in Ref. [36], the operator γ̃5DW is
Hermitian. Indeed, our tardyonic Hamiltonian operator
H(t) = ~α · ~p + γ0m1 + i γ0 γ5m2 is Hermitian, i.e., we
have explicitly H(t)+ = H(t).
Finally, we notice that imaginary mass terms, and

mass terms involving the γ5 matrix, have been studied
in the context of the classical force mechanism (CFM)
for baryogenesis [34]. In Ref. [34], it is shown that for a
mass term of the form γ0m1 → γ0m1 + iγ0γ5m2 (in the
Hamiltonian), the fermion propagator may get nontrivial
gradient corrections already at the first order in deriva-
tive expansion. A complex, position-dependent mass (in-
volving γ5) in the fermion self-energy may contribute to
a conceivable explanation for CP-violation during elec-
troweak baryogenesis [34].
The well-known Feynman propagator for a tardyonic

spin-1/2 field is given by letting m2 → 0 in Eq. (A24),
and only retaining the mass m1,

S(1)(k) =
1

✁k −m1 + iǫ
=

✁k +m1

k2 −m2
1 + i ǫ

. (A25)

The energy in this case is

E(1) =

√
~k2 +m2

1 . (A26)

In the helicity basis, the solutions of the equation (A2)
with a tardyonic m1 mass term are easily written down.
For positive energy, they are given as

U
(1)
+ (~k) =

✁k +m1√
(E(1) − |~k|)2 +m2

1

u+(~k) (A27a)

=




m1 + E(1) − |~k|
√
2

√
(E(1) − |~k|)2 +m2

1

a+(~k)

m1 − E(1) + |~k|
√
2

√
(E(1) − |~k|)2 +m2

1

a+(~k)



,

U
(1)
− (~k) =

✁k +m1√
(E(1) − |~k|)2 +m2

1

u−(~k) (A27b)

=




m1 + E(1) − |~k|
√
2

√
(E(1) − |~k|)2 +m2

1

a−(~k)

−m1 + E(1) − |~k|
√
2

√
(E(m) − |~k|)2 +m2

1

a−(~k)



.

The negative-energy eigenstates of the tardyonic equa-
tions in the helicity basis are given as

V
(1)
+ (~k) =

m1 − ✁k√
(E(1) − |~k|)2 +m2

1

v+(~k) (A28a)

=




−m1 + E(1) − |~k|
√
2

√
(E(1) − |~k|)2 +m2

1

a+(~k)

m1 + E(1) − |~k|
√
2

√
(E(m) − |~k|)2 +m2

1

a+(~k)



,

V
(m)
− (~k) =

m1 − ✁k√
(E(1) − |~k|)2 +m2

1

v−(~k) (A28b)

=




−m1 + E(1) − |~k|
√
2

√
(E(1) − |~k|)2 +m2

1

a−(~k)

m1 + E(1) − |~k|
√
2

√
(E(1) − |~k|)2 +m2

1

a−(~k)



.

The normalization with respect to the Dirac adjoint in-
volves the factorm1/E

(1) and −m1/E
(1), respectively, in

full analogy to Eq. (A20). In the normalization

U (1)
σ (~k) =

(
E(1)

m

)1/2

U
(1)
+ (~k) , (A29a)

V(1)
σ (~k) =

(
E(1)

m

)1/2

V
(1)
+ (~k) . (A29b)

We reproduce the following known sums over bispinors,

∑

σ

U (1)
σ (~k)⊗ U (1)

σ (~k) =
✁k +m1

2m1
, (A30a)

∑

σ

V(1)
σ (~k)⊗ V(1)σ (~k) =

✁k −m1

2m1
. (A30b)

In accordance with general wisdom about the tardyonic
case, these do not involve helicity-dependent prefactors.
This concludes our discussion of generalized Dirac equa-
tions with tardyonic and tachyonic mass terms.
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