Bayesian approach to electron correlation in density functional theory
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In the present communication the Bayesian conditional probability ap-
proach is applied to the wave function of a many-electron system that results in
appearance of a quantum vector potential in the DFT Schrodinger equation due
to electron correlation, apart from the correlation energy term. Mathematically,
the effect of this vector potential is equivalent to a magnetic field that corre-
sponds in particular to a conservative irrotational one if it is considered in con-
nection with the correlation potential. An analysis of the effect of the correlation
momentum on the electronic transitions suggested that the electron correlation
increases the transition probability.

One of the critical points in the quantum chemical methods based either on post Har-
tree-Fock (HF) approaches or on density functional theory (DFT) is connected with proper ac-
counting for the electron correlation™*>. In many-electron systems this correlation has crucial
short- and long-range effects; it influences the electronic state of the system* and contributes
to the intra- and inter-molecular van der Walls interactions.>®’ Traditionally, the electron corre-
lation is considered to affect the total electronic energy of the system and is measured by the
correlation energy8 defined as the decrease of the total energy with respect to the energy ob-
tained with the HF approximation. The correlation energy is estimated by different types of

multi-determinant post HF methods,**°

e.g. the Hartree-Fock-Bogolyubov approach, or by cor-
11,12,13 In the

present communication using the Bayesian probability approach we have shown that the elec-

relation component of the exchange correlation functional within the frame of DFT.

tron correlation modifies not only the potential energy terms in the Schrédinger equation but is
also responsible for a vector potential in this equation which originates from the electron kinet-
ic energy operator. The effects of this vector potential in some simplified cases are discussed. In
particular, the vector potential is equivalent to a collective magnetic-like field, being responsi-
ble for quantum non-locality and entanglement. Hence, the latter possesses no monopole car-
riers, similar to magnetic interactions.

Let us consider now an atom, molecule or body possessing N electrons. The stationary
Schrodinger equation for the N-electron wave function ¥ reads

N N
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where {p, =—iiV, } are the momentum operators of the electrons with mass m, {U, } are the
potentials of the electron-nuclei interactions, {V, } are the potentials of the electron-electron

interactions, and E is the total electronic energy. The wave function can be presented general-
ly in a Bayesian form™

\P(rl""’ rN):d)(rz""’ ' |r1)\|f(r1) (2)

where v is a single electron wave function and ¢ is the conditional wave function of the rest
N-1 electrons. The square of the latter represents the conditional probability to find a configu-
ration of the rest electrons if the first electron is fixed at the point r,. The many-particle func-
tion ¢ bears all the necessary symmetric properties of the wave function W . In the present pa-

per spin variables are not considered; they are solely applied via the Pauli Exclusion Principle to
orbital occupation. The presentation (2) can be straightforward transformed to a density type
representation since according to the Bogolyubov hierarchy™ the dependence of the condition-

2 .
, i.e. the con-

al probability density on 1, goes principally via the single electron density p =|\|J
ditional wave function ¢(r,,--- Iy |rl) =4¢(r,, - 1 |\|/(r1)) is a functional of v .

Introducing Eqg. (2) in Eqg. (1), multiplying the resulting equation by the complex-
conjugated conditional wave function and integrating along the coordinates of the rest N-1
electrons lead to

N N
ﬁfw/2m+<¢| ﬁl|¢> ﬁlW/m+z<¢| f)f/2m+Uj + Z Vi |¢>\V =Ey (3)
j=1 k=j+1
From the obvious consequence f)l<(|)|¢>:0 of the conditional wave function normalization

<¢|(|)> =1 it follows that the term p_,, E—<¢| f)1|(|)> is a real function of r,. It possesses a pure

correlation origin since in the case of independent electrons the conditional wave function ¢
does not depend on r; and, hence, p, =0. Introducing this notation, Eq. (3) can be rewritten

in the form
(ﬁl - pcorr)zw / 2m + (Ul +VH +Wcorr)\|] = 81\“ (4)

where U, is the Coulomb electrostatic energy of interaction of the target electron by the nu-

clei, V,, is the Hartree potential describing uncorrelated electron-electron interactions, {aj}

are the partial electron energies (E = ZSJ. ), and the correlation potential



Wcorr E<¢|(ﬁl+ pcorr)2|¢>/2m+<¢|zvlk _VH |¢>+Z<¢| ﬁjz /2m+Uj + Z ij _Sj |¢> (5)

j=2 k=j+1

is a real function of r,. As is seen, W_ (I,) consists of three distinguished terms: kinetic, elec-

trostatic and entropic ones. The latter represents the energy changes of the separate N-1 elec-
tron system, influenced by the target first electron merely via the conditional distribution densi-

ty.'* The correlation term W, (p) plays the role of an effective DFT exchange scalar potential,

while the correlation momentum p,,, (p) is an effective DFT vector potential. The key feature

of Eq. (4) is the appearance of correlation effects not only in as component of the potential en-
ergy but also in the vector potential. Mathematically, the effect of the vector potential p_,, is

equivalent to a magnetic-like field. This analogy suggests that the correlation vector potential
induces circular motion of the electrons and slows them down. Note that the gradient-

corrected exchange-correlation functional in DFT**%13

already includes gradients of the elec-
tron density but due to different reasons.®
Following the Onsager flow-force relationships from the non-equilibrium thermodynam-

ics, it seems reasonable to accept that the correlation momentum p,, is due to the correla-

tion force —=V,W,

corr ’

since they vanish simultaneously at large distance between the electrons.
The correlation momentum describes an effective friction force yp.,,, where y is a specific

friction coefficient among electrons.'’ In order the whole system to be stationary it is required
that this force is compensated by the correlation one, which provides the linear relationship

YPeorr ==V W, . In this case p,, corresponds to an irrotational vector field, i.e. V,xp_,, =0.

Introducing in Eq. (4) of the expression p,,, =—V,W_,, /7 one can rewrite it in the form

f)f(p/2m+(U1 +VH +Wcorr)(p:81q) (6)

where the new wave function is defined by ¢ =wyexp(iW,,, / fiy) . Equation (6) represents an

orr

ordinary Kohn-Sham-like equation and providing a model for the correlation potential W__ one

corr
can solve it via traditional ways. What is important is that the complete wave function should
be reconstructed from this solution via

V= (Pexp(_iwcorr /hY) (7)

by the use of the employed model for W___ and the ‘empirical’ coefficient vy. It is significant to

corr

note that the transformation (7) affects neither the electron density p = |\|/|2 :|(p|2 nor the en-



ergy spectrum {glyn} of the system, which can be calculated from Eq. (6). Moreover, the follow-

ing laws of conservation of momentum and energy hold as well

(w| B |w)=(0|(B, + Peorr)| @) (W] (B = Peore) | W) = (0] By | )
(w| BZ|w) = (| (P, + Peorr)’| ) (W] (B = Peore)? | W) = (| B | )

The effect of the exponential term in Eq. (7) is simply a shift of the wave function phase,
which causes an Aharonov-Bohm effect,® being related in general to superconductive currents.
The quantum phase plays an important role in quantum systems and, for this reason, the classi-
cal gauge transformation is not applicable. The correlation momentum has no impact on classi-
cal systems according to the Bohr—van Leeuwen theorem. Hence, the effect of p_,, is expected
to affect the electronic transitions via off-diagonal terms in the Fermi golden rule, Weisskopf-
Wigner approximation, Landau-Zener formula, etc. For instance, using Eq. (7) the standard os-
cillator strength can be written in the form

fnm = (2m/3h2)(81,m _81,n)<wm | h |W”>2

(8)
= (Zm / 3h2)(81,m - gl,n)<(Pm | rl eXp[i (\Ncorr,m _Wcorr,n) / hY]|(Pn>2

If the phase shift is small the exponential term can be expanded in series to obtain
eXp[i(\/\lcorr,m _Wcorr,n) / hY] ~1+ i(\Ncorr,m _Wcorr,n) / hy (9)

which introduced in Eq. (8) results in the approximation

fnm = (2m / 3h2)(81,m - 8l,n)[<(Pn | rl|(Pm>2 +<(Pn | rl(\Ncorr,m _Wcorr,n) / hY|(Pm>2] (10)

Hence, the correlation effect increases the transition probability, as expected since the correla-
tions increase the wave functions overlap. For instance, the simple Ohmic expression14 for the

correlation momentum p,,, =Mmyr corresponds to effective harmonic correlation repulsion

W, =-my’r? /2 between electrons, trying to expand the electronic shell. Considering an ioni-

zation process with ¢, , =0 and W, =0 Eq. (10) acquires the form

corr,o

f. = =@M/ 30°)ey [(on ], ) + (my/ 20) (0, ||, ) 1= f,. (v = 0L+ (myr? 1 27)"] (1)



The characteristic radius I, = (<(pn|rf”|(poo>/<(pn|r1|(poc>)1’2 is of the order of the atomic radius.
The term 2myl’a2 | h can be interpreted as the ratio between the frequencies of the electron-
electron ‘collisions” y and of the electron orbital rotations 7 /2mr? in the atom or, alternative-
ly, as the ratio between the atomic radius and the electron mean-free-path A =7/2mr,y . Using
the standard formula L =1’ /3r’N where r, is an effective radius for the electron-electron col-

lisions, Eq. (11) can be rewritten in the form f_(y)/ f _(0) =1+ (3Nr?/4r?)*. Thus, the corre-
lations between the electrons assist the ionization process and the oscillator strength increases
by square on the number of electrons in the atom. An estimate for the effective specific friction
coefficientis y =7/ 2mr L =3N#ar? /2mr} .

Alternatively, in accordance to the Bogolyubov ansatz™ the correlation momentum can
be expressed by the electron density gradient via p,,,, = <¢| ith|¢> = <¢|8p |¢> IV ,p, where the

new statistical moment can be roughly estimated as <¢|6p |¢> =i/p. The corresponding vector
field p.,, =—AV,Inp is conservative indeed and, in the case of a Gaussian density p, it is pro-
portional to I, as modeled before. The mean value of p_, is zero, while its dispersion equals
to the Fisher information. The correlation electric current j.,, =epp,,, /M=—(ekr/m)V.p is

diffusive. The vector potential p,,, =—%V,Inp corresponds to a logarithmic scalar correlation

potential W__=7#yInp,*

sorr which is also purely entropic, reflecting the Shannon information

density. Considering the latter as Boltzmann entropy™* one can interpret the term Iy Ky as an
effective temperature of colliding electrons, e.g. y=Kk;T /% according to the Eyring-Polanyi

equation. The previously introduced harmonic model W, =-my’r’ /2 corresponds now to

W,_,, =#AyInp with a normal probability density. It is known that a logarithmic nonlinearity in

the Schrodinger equation leads to appearance of Gaussian solitons,”® which are of interest to
the contemporary quantum chemistry, physics and information theory. In the case of

W, =#hylnp the wave function from Eq. (7) reduces simply to a rescaling ratio v =(p/|(p|2i

corr
with imaginary fractal dimension.

As the only rigorous example one can mention here the Hooke atom (harmonium),
which possesses two electrons interacting with the core via harmonic potentials. In this case
the Schrédinger equation is analytically solved and the corresponding ground-state wave func-
tion reads” (the coordinates are presented in atomic units)

¥ = (L+|r, —1,|/ 2) exp(-r? / 4—r] [ 4) | (8+5n"?)"* (12)



It is easy to calculate from this equation the single electron density p, which is related to sin-

1/2

gle-particle wave function via y =p~“. Thus, one can calculate analytically the conditional wave

function ¢(r2|rl)=‘P(r1,r2)/\y(rl) and the corresponding p.,, and W,

e IN this simple case. As
was shown,”* however, the correlation corrections in helium are negligible and the Hartree-
Fock method works well. We expect important contributions of electron correlations in many-
electron systems, which are, however, difficult to solve and require phenomenological models
as shown above.

In conclusion, the paper presents an approach to the many-electron problem based on
decomposing the many-electron wave function into a conditional probability and marginal
probability; the square of the latter represents the one-body density. We have shown that the
accounting for the electron correlation via straight forward application of the Bayesian condi-
tional probability to the wave function of the system resulted in appearance of a vector poten-
tial in the Kohn-Sham equation. Hence, the correlation is represented not only by a scalar po-
tential, in usual approaches, but also by a vector potential. The effect of this vector potential is
mathematically equivalent to a magnetic-like field that corresponds to a solenoidal vector field
if it is considered in relation to the correlation energy. Additional analysis of the effect of the
correlation momentum on the electronic transitions suggested that the electron correlation
increases the transition probability.

1 G. Sansone, T. Pfeifer, K. Simeonidis and A.l. Kuleff, ChemPhysChem 13, 661 (2012)
2 E.A. Carter, Science 321, 800 (2008)

3 K.H. Marti and M. Reiher, Phys. Chem. Chem. Phys. 13, 6750 (2011)

4 H.W.Jang, D.A. Felker, C.W. Bark, Y. Wang, M.K. Niranjan, C.T. Nelson, Y. Zhang, D. Su, C.M.
Folkman, S.H. Baek, S. Lee, K. Janicka, Y. Zhu, X.Q. Pan, D.D. Fong, E.Y. Tsymbal, M.S.
Rzchowski and C.B. Eom, Science 331, 886 (2011)

P. Huang and E.A. Carter, Ann. Rev. Phys. Chem. 59, 261 (2008)

Y. Zhao and D.G. Truhlar, Acc. Chem. Res. 41, 157 (2008)

X. Ren, A. Tkatchenko, P. Rinke and M. Scheffler, Phys. Rev. Lett. 106, 153003 (2011)
P.-O. Lowdin, Phys. Rev. 97, 1509 (1955)

T. Helgaker, W. Klopper and D.T. Tew, Mol. Phys. 106, 2107 (2008)

10 R.J. Bartlett and M. Musial, Rev. Mod. Phys. 79, 291 (2007)

11 A.D. Becke, Phys. Rev. A 38, 3098 (1988)

12 J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

13 W. Kohn, A.D. Becke and R.G. Parr, J. Phys. Chem. 100, 12974 (1996)

14 R. Tsekov, Int. J. Theor. Phys. 48, 85 (2009)

15 N.N. Bogolyubov, Collected Papers (Nauka, Moscow, 2009)

16 M. Levy, J.P. Perdew, and V. Sahni, Phys. Rev. A. 30, 2745 (1984)

O 00 N o U»n



17 R. Tsekov and G.N. Vayssilov, Chem. Phys. Lett. 195, 423 (1992)

18 Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959)

19 1. Bialynicki-Birula and J. Mycielski, Ann. Phys. 100, 62 (1976)

20 1. Bialynicki-Birula and J. Mycielski, Phys. Scr. 20, 539 (1979)

21 S. Kais, D.R. Herschbach, N.C. Handy, C.W. Murray and G.J. Laming, J. Chem. Phys. 99, 417
(1993)



