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A non-conservative kinetic exchange model of opinion dynamics with randomness and

bounded confidence
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The concept of a bounded confidence level is incorporated in a nonconservative kinetic exchange
model of opinion dynamics model where opinions have continuous values ∈ [−1, 1]. The characteris-
tics of the unrestricted model, which has one parameter λ representing conviction, undergo drastic
changes with the introduction of bounded confidence parametrised by δ. Three distinct regions are
identified in the phase diagram in the δ−λ plane and the evidences of a first order phase transition
for δ ≥ 0.3 are presented. A neutral state with all opinions equal to zero occurs for λ ≤ λc1

≃ 2/3,
independent of δ, while for λc1

≤ λ ≤ λc2
(δ), an ordered region is seen to exist where opinions of

only one sign prevail. At λc2
(δ), a transition to a disordered state is observed, where individual

opinions of both signs coexist and move closer to the extreme values (±1) as λ is increased. For
confidence level δ < 0.3, the ordered phase exists for a narrow range of λ only. The line δ = 0 is
apparently a line of discontinuity and this limit is discussed in some detail.

PACS numbers: 87.23.Ge,64.60.De,64.60.F-

Recently, several opinion dynamics models with con-
tinuous opinion have been proposed in which the opin-
ions are updated after a pair of individuals interact in a
manner similar to gas molecules in kinetic theory. Def-
fuant et al [1] introduced a simple model (DNAW model
hereafter) in which opinion exchanges between two agents
take place only when the difference in the original opin-
ions is less than or equal to a preassigned quantity δ. If
oi(t) is the opinion of the ith agent interacting with the
jth agent at time t (with |oi−oj | ≤ δ), then in this model
the opinions evolve according to:

oi(t+ 1) = oi(t) + γ(oj(t)− oi(t))

oj(t+ 1) = oj(t) + γ(oi(t)− oj(t)). (1)

Here γ is a constant (0 ≤ γ ≤ 0.5) called the convergence
parameter and oi lies in the interval [0,1]. The dynamics
is such that the opinions tend to come closer after in-
teraction. Hence as the dynamics proceeds, convergence
to a finite number of opinions happens; opinions cluster
around a few values and individuals belonging to different
clusters no longer interact. The initial distribution of the
individual opinions is uniform and therefore symmetric.
This symmetry is broken as the time evolved distribu-
tion has a multipeaked delta function form. When there
is only one peak in the final distribution, it is said to
be a case of consensus, two peaks imply polarisation and
the existence of a larger (finite) number of peaks signifies
fragmentation in the society.

The model is conservative as total opinion is con-
served in each interaction. Obviously, in this conservative
model, consensus would imply that opinions converge to
the value 1/2. Several models have been formulated in-
corporating the idea of bounded confidence later [2–4]
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and a general form of kinetic exchange type model pro-
posed in [5].
More recently, a model in which kinetic exchanges take

place with randomness, and where there is no conserva-
tion, has been introduced by Lallouache et al [6] (LCCC
model hereafter). Any two agents can interact in this
unrestricted model. The opinion evolution here follows
the rule:

oi(t+ 1) = λ[oi(t) + ǫoj(t)]

oj(t+ 1) = λ[oj(t) + ǫ′oi(t)]; (2)

where ǫ, ǫ′ are drawn randomly from uniform distribu-
tions in [0, 1]. In this model λ is a parameter which is
interpreted as ‘conviction’. The opinions are bounded,
i.e., −1 ≤ oi(t) ≤ 1; in case oi exceeds 1 or becomes less
than −1, it is set to 1 and −1 in the respective cases.
It is possible to rescale the opinions in the DNAW

model so that they lie in the interval [−1, 1]. Continu-
ous opinions are relevant in cases like supporting a issue,
rating a movie etc. Thus setting the interval as [−1, 1]
appears to be more meaningful since a positive (negative)
value of the opinion will mean liking (disliking) the mo-
tion. The magnitude of the opinion would then simply
correspond to the amount of liking or disliking. For the
rest of the paper, we thus consider opinions ∈ [−1 : 1].
As there is no conservation in the LCCC model, the

average opinion given by m = |
∑

i oi|/N for a pop-
ulation of N agents, evolves in time and m can play
the role of an order parameter, and is analogous to
magnetisation in magnetic systems. One can say that
there is order/disorder when m(t → ∞) converges to
a nonzero/zero value. The model shows a unique be-
haviour: below a critical value of λ ≃ 2/3, all opinions
identically turn out to be zero while above it, there is a
nonzero value of the average opinion. Thus for λ > 2/3,
an ordered phase exists. Interestingly, the opinions in the
ordered phase have either all positive or all negative val-
ues. Generalisation and variations of the LCCC model
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have been considered in some subsequent works [7–9].
Symmetry breaking has different connotations in the

conserved DNAW model and the nonconserved LCCC
model. In the former, if opinions are initially in the
interval [−1, 1], a consensus implies convergence of all
opinions to zero value and this is regarded as symmetry
breaking as mentioned earlier. In LCCC, the identical
state of all zeros is also obtained below λ ≃ 2/3 even
without putting any restriction on the interactions. How-
ever, this state has been interpreted as a symmetric state
[6]. This is following the idea that as m = 0 here, it is
like a paramagnetic state (which is a symmetric state in
magnetic systems). But obviously, this is a very special
paramagnetic state which also has zero fluctuation.
To avoid confusion, we adopt the following terminol-

ogy for nonconserved systems: when m = 0 and also the
individual opinion distribution is a delta function peaked
at zero, we call it a neutral state. If it is not a delta
function at zero, the state will be termed a disordered

state. When m 6= 0, it is an ordered state; further if all
individuals have identical opinion (which is perhaps only
ideological as opinions are continuously distributed), it
is a consensus state. Hence consensus is not merely an
agreement in this terminology. Obviously, in the con-
served system, the nomenclature of order and disorder is
irrelevant.
Having conservation in the opinions is rather unrealis-

tic but the concept of having a bounded confidence level
is relevant in many cases. We thus combine the LCCC
model and the DNAW model by putting the restriction
of the bounded confidence in the former.
Hence in the model proposed in the present paper, we

follow eq (2) for the evolution of opinions but put the
restriction that agents interact only when |oi − oj | ≤ 2δ.
δ is once again the parameter representing the confidence
level and can vary from zero to 1.

We therefore have two parameters in the model, λ and
δ. δ = 1 is identical to the original LCCC model. δ = 0
is an interesting limit. Here, agents interact only when
their opinions are exactly same. We will discuss this limit
in greater detail later.

Results and numerical analysis:
We take a population of N agents and let it evolve

according to the dynamical rules defined above (i.e., eq
2 with a bounded confidence level δ). The behaviour of
the order parameter after the system reaches equilibrium
is presented in Fig. 1. As a function of λ, we find that
the order parameter first assumes non-zero values at a
threshold value of λ = λc1 which is independent of δ;
λc1 ≃ 2/3 as in the original LCCC model. The order
parameter increases with λ beyond λc1 up to a certain
value of λ and decreases to zero as λ is increased further.
The decrease becomes steeper with δ and more so when
the system size is increased. The results indicate that
there are three distinct regions: one ordered region for
intermediate values of λ and two regions at low and high
values of λ where the order parameter vanishes. These
two regions may be either disordered or neutral.
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FIG. 1: (Color online) Variation of the order parameter m
with λ for δ = 0.6 for N = 1048 and 4096. Inset shows m and
s for δ = 0.2 and 0.4 against λ for N = 1048.
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FIG. 2: (Color online) The distribution of individual opin-
ions shown for N = 2048 different values of λ for δ = 0.4
averaged over different configurations. Inset shows the same
for a single realisation of the system. For λ < λc1

≃ 2/3,
the average distribution is a delta function at zero. For
λc1

< λ < λc2
≃ 0.7183 (for δ = 0.4), for a single con-

figuration, opinions are all of one particular sign, while for
averages over all configuration, the distribution is symmetric.
For λ > λc2

, the distribution is symmetric even for the single
configuration.

To understand the nature of the phases, the distribu-
tion of individual opinions may be studied. Such studies
are known to lead to a correct speculation about phase
transitions [10]. This study shows (Fig. 2) that the
probability for zero opinion is nearly equal to 1 below
λc1 ≃ 2/3 as in the LCCC model for all δ. Hence a neu-
tral state exists here as well and the confidence level is
absolutely irrelevant as λc1 is independent of δ.

As λ is increased beyond λc1 , in a single configuration,
only all positive or all negative values are obtained as
N → ∞, while the average over all configurations is sym-
metric about zero as expected. However, as λ is increased
further, the opinions, even in a single configuration, as-
sume both negative and positive values symmetrically
(Fig. 2 inset). Hence we infer that an order-disorder
transition is taking place at a value λc2 > λc1 which is
later confirmed from more detailed analysis. For δ = 1,
the LCCC model, λc2 is equal to 1 as expected.

Consistent with the above observation is the behaviour
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of another quantity

s = 〈|f+ − f−|〉, (3)

where f+ denotes the fraction of population with opinion
greater than zero and f− = 1 − f+ in a particular con-
figuration. 〈· · ·〉 denotes average over all configurations.
It can be easily seen that s is equal to unity both in the
neutral state and ordered state of LCCC. Deviation of
s from unity will indicate that opinions with both signs
are present in general. We notice that s remains close to
unity as λ is increased from zero before showing a sharp
fall close to a value of λ where the order parameter also
starts to fall (Fig. 1 inset). Evidently, as the system
enters the disordered state, individual opinions are > 0
and ≤ 0 with equal probability. Comparison of s and m
shows that these two measures become closer and tend
to merge as λ is increased further. This indicates that
as one moves deeper into the disordered region, opinions
become more and more close to the extreme values ±1,
leading to a polarisation tendency in the opinions. This
is also evident from the data shown in Fig. 2.
The ordered, disordered and neutral regions may be

identified in a phase diagram in the δ − λ plane. To
obtain the phase boundaries in this plane, we estimate
the phase transition points by traditional methods, i.e.,
attempt finite size scaling for the relevant physical vari-
ables, if possible. Among these variables is the fourth
order Binder cumulant (BC) defined as

U = 1−
〈m4〉

3〈m2〉2
. (4)

Here we discuss the case for δ < 0.3 and δ ≥ 0.3 sepa-
rately for reasons which will be clear later.
δ ≥ 0.3: Plotting U against λ, we find that there is

indeed a crossing point but interestingly, the BC shows a
negative dip (Fig. 3) for δ < 0.6 for the system sizes con-
sidered. In fact it becomes more negative as the system
size N is increased and the location of the negative dip
approaches the crossing point as well. These are typical
indications of a first order phase transition [11]. To con-
firm whether a first order transition is really taking place,
we also plot the distribution of the order parameter very
close to λc2 . One expects the distribution to have peaks
at nonzero values of m below the critical point (usually
the distribution is a double gaussian). For a continu-
ous phase transition, as the critical point is approached
from below, the peaks occur at smaller and smaller val-
ues of m, finally merging at m = 0 continuously at the
critical point. For a first order phase transition, on the
other hand, the peaks at nonzero values of the order pa-
rameter remain at more or less the same positions up to
the transition point [11–15]. Here we find exactly this
behaviour (Fig. 4); note that for finite systems, weak
peaks will still show at nonzero values of m just above
the transition point (instead of a perfect gaussian with
mean zero).
We attempt to obtain scaling forms for the BC (U),

order parameter (m) and a quantity analogous to sus-
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FIG. 3: (Color online) The Binder cumulant is shown for
different values of δ for N = 512, 1024, 2048 and 4096. Colour
code is same for all the figures.
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FIG. 4: (Color online) Distribution of the order parameter
close to the transition point λc2

≃ 0.7183 for δ = 0.4 (N =
2048).

ceptibility per spin (in magnetic systems) given by χ =
1
N
[〈M2〉 − 〈M〉2] where M is the total opinion, M =

|
∑

oi|. The expected behaviour are given by

U = f1((λ − λc2)N
µ)

m = N−af2((λ− λc2)N
µ)

χ = N bf3((λ − λc2)N
µ). (5)

For first order phase transitions in finite systems, one
expects that instead of a delta function behaviour at the
transition point, there will be a peak in the susceptibility
which will diverge with the system size. The order pa-
rameter exponent a is expected to be close to zero. We
find that the above scaling forms are indeed appropriate
in the present case, the data collapse to a single curve
for specific values of a, b and µ (shown for m and χ in
Fig. 5). The value of a is indeed very close to zero and
b ≃ 1 for all values of δ ≥ 0.3. However, the value of µ
appears to have a systematic variation with δ. Since δ
effectively puts a restriction on the number of compatible
neighbours, it is not surprising that µ, which is associ-
ated with N , shows a dependence on δ. The values of
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TABLE I: The transition point and the values of the ex-
ponents for λ > 0.3. The typical errors in the data are
±1.0× 10−4 for λc2

; ±0.01 for µ, O(10−3) for a and O(10−2)
for b.

δ λc2
µ a b

0.30 0.6958 0.56 0.00 1.04

0.40 0.7183 0.53 0.00 1.05

0.50 0.7555 0.50 0.00 1.02

0.60 0.7980 0.43 0.00 0.90

0.70 0.8415 0.34 0.035 0.90

0.80 0.8850 0.26 0.00 1.00

0.90 0.9530 0.20 0.025 0.90

the transition point λc2 and the exponents are presented
in Table I.

All the above discussions are however, valid for δ > 0.3
only. The first order phase transition is most strongly
observed close to δ = 0.4. As for the negative dip, it is
not observed for δ ≥ 0.6 with N ≤ 4096, but the values of
the exponents indicate that the transition is first order-
like. The negative dip for δ ≥ 0.6 is thus expected to be
observed for even higher values of N [11].
δ < 0.3: When δ is decreased below 0.3, the results

do not give any clear indications about the nature of the
phase transition and shows some anomalous behaviour.
A rather uncharacteristic behaviour of the order param-
eter and the Binder cumulant is observed. The order pa-
rameter m shows a nonmonotonic behaviour when plot-
ted as a function of δ with fixed λ or vice versa (Fig. 6).
A hump appears in the m versus λ plots for δ < 0.3 and
λ ≥ 0.7 showing the existence of a local maximum value.

A closer examination reveals that this hump disappears,
albeit very slowly, when N is increased for λ > 0.71, For
δ < 0.3, there is large fluctuations and irregularities in
the BC as well which does not allow one to do a finite
size scaling analysis and get the exponents. The irreg-
ular behaviour of the BC and the order parameter may
be because of the fact that the interactions become less
likely to occur as the confidence level is decreased. For
this reason we restrict our study to δ ≥ 0.1. In the in-
set of Fig. 6, the m versus λ plot consistently shows a
hump occurring at large values of λ. This is most promi-
nently observed close to δ ∼ 0.25 where the local maxima
of the order parameter appear in the m versus δ plots.
This, however, turns out to be a finite size behaviour as
expected.
We have estimated, somewhat approximately, λc2 for

δ < 0.3 from the crossing point of the order parameter
curves for different sizes. The complete phase diagram in
the δ − λ plane is shown in Fig. 7.
Discussions: Let us try to understand the results by

analysing the role of the confidence level δ. Let the ith
agent with opinion oi interact with another agent with
opinion oi + x where |x| ≤ 2δ. Then,

oi(t+ 1) = λ(1 + ǫ)oi(t) + λǫx. (6)

Consider the case when δ is small. On an average,
when λ is smaller than 2/3, the first term will make oi
smaller in magnitude while the contribution of the second
term can be neglected. Then we find that oi(t) → 0 as
t → ∞ implying the convergence to a neutral state. Since
for δ = 1, it is already known that there is a transition to
the neutral state at λ ≃ 2/3, we conclude that for any δ
this is the case as is confirmed by the numerical results.
Actually, when individual opinions decrease towards zero
because of the effect of the first term, the difference in
opinions automatically becomes less (x → 0) so that large
and small δ values have the same effect; the second term
does not contribute eventually. Thus λc1 is independent
of δ.
What happens at higher values of λ? First consider

small values of δ again which means x is small too. Hence
the second term still contributes less compared to the
first and oi will retain its original sign in most cases if
λ is sufficiently large. So it is expected that there will
be a region where opinions of both signs are present and
m = 0, as originally opinions are uniformly distributed
with positive and negative signs.
However, if δ is large, there is no guarantee that the

second term is small and opinions will retain their original
signs, unless λ is also very high. This explains why we
observe the transition to the disordered state at a higher
value of λ as δ is increased. Also, it is not surprising that
there will be a ordered region between λc1 and λc2 (as
already it is known to be present for δ = 1.0) where the
LCCC property of all opinions assuming the same sign is
still valid.
Although we have restricted to δ ≥ 0.1 in the numeri-

cal simulations, the case when δ is exactly equal to zero



5

 0.8

 0.6

 0.4

 0.2

 0.9 0.5 0.1

m

δ

λ=0.68

λ=0.70

λ=0.80

N=1024
N=4096
N=8192

 0.4

 0.1

 1 0.9 0.8 0.7

λ

δ=0.25

512
1024
2048
4096

FIG. 6: (Color online) Variation of the order parameter m
with δ for fixed λ values. For each value of λ, data for two
system sizes shown. Inset shows variation of m with λ at
δ = 0.25.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

λ

δ

Neutral

Ordered

Disordered

FIG. 7: (Color online) The phase diagram in the δ − λ plane
shows the existence of the neutral region (for λ ≤ λc1 ≃ 2/3),
the ordered region and the disordered region. The ordered
and disordered regions are separated by a first order boundary
at least for λ ≥ 0.3 (see text).

can be discussed theoretically to some extent. If an inter-
action takes place, the opinion for the ith agent follows
the evolution equation

oi(t+ 1) = λ(1 + ǫ)oi(t). (7)

This equation is nothing but the dynamical equation ob-
tained for the LCCC model in the limit of a single pa-
rameter map [6, 16, 17], where the transition to an or-
dered state occurs at a value of λ = e/4. However, in
the present model the above is valid only when there is a

second agent with opinion equal to oi as well. Since this
will be extremely rare, effectively most of the opinions
remain frozen and the single parameter map is not rep-
resentative of all the agents’ opinion evolution. In fact,
δ = 0 may be regarded as a line of discontinuity in the
phase diagram of the model in the δ − λ plane as it will
neither have the neutral state nor the ordered state any-
where. The disordered state is also different in nature
for δ = 0; here the individual opinion distribution will be
flat while for δ 6= 0, however small, it is not so.
In summary, we have studied a model of continuous

opinion dynamics with an attempt to merge the concepts
of confidence level and conviction. We find the interest-
ing result that with a large value of conviction and with
any finite bound on the confidence level (i.e., δ < 1),
a disordered state exists with tendency to polarisation.
This is indeed justified, if agents are convinced to a large
extent in their opinions and interact with like minded
people only, the sign of the opinion, (representing lik-
ing/disliking) is likely to be maintained, giving rise to
a polarised society. The neutral state with all opinions
equal to zero remains unperturbed with the introduction
of the bounded confidence. It is found that at least for
δ > 0.3, the order-disorder transition is first order in na-
ture. For smaller confidence level, when δ < 0.3, the
ordered phase shrinks to a narrow region of the phase
diagram.
In conclusion, we obtain a phase diagram with many

features when the concept of bounded confidence is incor-
porated in the LCCC model of opinion dynamics. The
overall result is that when bounded confidence level is
large, there will be order in the society provided people
are not too rigid. In the original DNAW model also, it
had been shown that above a certain confidence level,
society behaves more homogeneously. We show that this
tendency remains true but only up to a certain level of
conviction. This seems to be a realistic scenario and thus
the combination of concepts from two different models in
the present model of opinion dynamics is successful in
reproducing this desired feature of a society.
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