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In this paper three things are done. (i) We investigate the analogues of Cerenkov radiation for
the decay of a superluminal neutrino and calculate the Cerenkov angles for the emission of a photon
through a W loop, and for a collinear electron-positron pair, assuming the tachyonic dispersion
relation for the superluminal neutrino. The decay rate of a freely propagating neutrino is found to
depend on the shape of the assumed dispersion relation, and is found to decrease with decreasing
tachyonic mass of the neutrino. (ii) We discuss a few properties of the tachyonic Dirac equation
(symmetries and plane-wave solutions), which may be relevant for the description of superluminal
neutrinos seen by the OPERA experiment, and discuss the calculation of the tachyonic propagator.
(iii) In the absence of a commonly accepted tachyonic field theory, and in view of an apparent
“running” of the observed neutrino mass with the energy, we write down a model Lagrangian,
which describes a Yukawa-type interaction of a neutrino coupling to a scalar background field via a
scalar-minus-pseudoscalar interaction. This constitutes an extension of the standard model. If the
interaction is strong, then it leads to a substantial renormalization-group “running” of the neutrino
mass and could potentially explain the experimental observations.

PACS numbers: 95.85.Ry, 11.15.-q, 03.70.+k, 05.10.Cc, 03.65.Pm

I. INTRODUCTION

For subluminal particles (“tardyons”), the dispersion relation for the energy E in terms of the velocity v is given

by E = m/
√

1− v2 (with v < 1), and for superluminal particles (“tachyons”), it reads as E = m/
√
v2 − 1 with v > 1.

Therefore, the “light barrier” at v = 1 (we set the speed of light equal to one) looks like an (infinitely) elevated
mountain in terms of the energy of a relativistic particle. Recami [1] quotes Sudarshan with reference to an imaginary
demographer who studies population patterns on the Indian subcontinent: “Suppose a demographer calmly asserts
that there are no people North of the Himalayas, since none could climb over the mountain ranges! That would be
an absurd conclusion. People of central Asia are born there and live there: they did not have to be born in India and
cross the mountain range. So with faster-than-light particles.”

In the early morning hours of 23 February 1987 (at 2’52’36”), an unexpected neutrino bunch arrived at the LSD
detector under the Mont Blanc roughly 4.5 hours before the rest of the neutrinos from SN1987A, and before the
supernova became visible [2]. We are currently facing mounting evidence that neutrinos may be genuinely superluminal
particles (“tachyons”). The MINOS experiment [3] has measured superluminal neutrino propagation velocities which
differ from the speed of light by a relative factor of (5.1±2.9)×10−5 at an energy of about Eν ≈ 3 GeV, supporting an
earlier FERMILAB experiment where the trend of the data also pointed toward superluminal neutrinos [4]. This result
has recently been confirmed by OPERA [5] with better statistics and in a wider energy interval, as detailed below.
One of the prime candidates for a genuinely superluminal particle is the neutrino, which has never been observed at
rest. A number of experimental groups have measured negative mass squares for the electron neutrino from tritium
beta decay endpoints [6–9] with mean values in the interval −147 eV2 < m2

ν < 0 for the electron neutrino mass square,
at an energy of the order of Eν ≈ 18 keV. While some recent measurements indicate values consistent with a vanishing
neutrino mass [10–12] at even lower energies, the mean value of the experimental data for m2

ν (electron neutrino) still
is negative and of the order of a few negative eV2 (for an excellent overview, see Ref. [13]). The idea that neutrinos
might be of tachyonic character is not new [14–17]. Tachyonic neutrinos fulfill the dispersion relation E2

ν − ~p 2 = −m2
ν

with an (initially) constant parameter mν . The quantity −m2
ν can be interpreted as the negative mass square of the

neutrino. The current situation indicates the need for a convenient descriptions of tachyonic fermions.
Ever since the early days of relativity, the notion of superluminal propagation has intrigued physicists [18], and the

name “tachyon” was eventually coined in Ref. [19]. The main problem in the description of a quantum field theory
with superluminal propagation is not the superluminal velocity itself [20], but the construction of field operators and
the time ordering, which is in disarray because the time ordering of two space-time points which are separated by a
space-like interval is not invariant under (subluminal) Lorentz boosts. Generally, it has been assumed that any particle
in relativistic quantum theory should be described by a unitary irreducible representation of the Poincaré algebra or
its supersymmetric generalization. It may be necessary to relax this restriction somewhat in order to accommodate
for a field theory of supersymmetric tachyons [21–23]. Three recent review articles [1, 24, 25] provide rather detailed
background information on the development of the theory of superluminal particles.

The recent OPERA experiment [5] uses a baseline of L = (731278.0± 0.2) m. Two clocks used in the measurement
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are accurately synchronized by a technique used to compare atomic clocks [26, 27]. It is of particular importance that
the synchronization of the two systems was calibrated by the Federal Swiss Metrology Institute METAS (Bundesamt
für Metrologie) in 2008 and verified in 2011 by the Federal German Metrology Institute PTB (Physikalisch-Technische
Bundesanstalt). As reported in Ref. [5], the difference between the time base of the CERN and OPERA receivers was
measured to be (2.3± 0.9) ns and is taken into account in the evaluation of the measurement. The four data bins are

Eν = 13.8 GeV , δt = (54.7± 18.4± 7.1) ns , ∆ =
v − c
c

= (2.24± 0.75± 0.29)× 10−5 , (1a)

Eν = 28.2 GeV , δt = (61.1± 13.2± 7.1) ns , ∆ =
v − c
c

= (2.50± 0.54± 0.29)× 10−5 , (1b)

Eν = 40.7 GeV , δt = (68.1± 19.1± 7.1) ns , ∆ =
v − c
c

= (2.53± 0.78± 0.29)× 10−5 , (1c)

and the overall average is

Eν = 17 GeV , δt = (57.8± 7.2± 7.1) ns , ∆ =
v − c
c

= (2.37± 0.32± 0.29)× 10−5 . (1d)

While the OPERA data rather point to a slight increase in the ratio ∆ = (v− c)/c with the neutrino energy, than to
a trend in the opposite direction, the data are generally consistent with a constant ratio ∆ = (v − c)/c in the entire
energy interval 13.8 GeV < Eν < 40.7 GeV.

Tachyonic neutrinos fulfill the space-like dispersion relation E2
ν − ~p 2 = −m2

ν and travel faster than light. Super-
luminality is conserved under Lorentz boosts (see Ref. [20] and Fig. 2 below). It has been argued that neutrinos
traveling at velocities consistent with the recent OPERA data should decay by neutral massive analogues of Cerenkov
radiation [28]. The noncovariant dispersion relation Eν = |~p| vν has been used in recent work on the subject [28] (here,
vν denotes the neutrino velocity). Freely propagating subluminal relativistic particles as well as tachyons [1, 24, 25]
fulfill the “opposite” relation |~p| = Eν vν . Both relations Eν = |~p| vν and |~p| = Eν vν lead to a large virtuality
|E2
ν − ~p 2| on the order of (117 MeV)2 when applied to the recently measured OPERA data [see Eqs. (12) and (13)

below]. These observations are inconsistent with beta decay end point measurements [6–12] which have led to values
of a few eV2, for neutrinos in the keV energy range. This confusing situation raises a number of questions. Starting
from the tachyonic Dirac equation, we conclude that additional interactions, hitherto not accounted for, are required
in order to explain the OPERA data which exhibit a larger-than-expected virtuality at higher energies, or, expressed
differently, an energy-dependent mass.

At the current, early stage in the development of theoretical models describing superluminal particles, a certain
degree of speculation cannot be avoided. For completeness, we should note that we neither consider models based
on deformed special relativity [29–32] nor kinematic constraints resulting from such models [28, 33–35] in any greater
detail. Lorentz symmetry is conserved in our approach.

We start with a digression on the kinematic constraints to the observation of neutrinos along the OPERA baseline
in Sec. II. The tachyonic Dirac equation and its solutions are being reviewed in Sec. III. Chiral Yukawa interactions,
which induce a neutrino mass running via the renormalization group (RG), are studied in Sec. IV. Conclusions are
reserved for Sec. V. We always carefully distinguish between |~p| and the four-vector p, and we use natural units with
~ = c = ε0 = 1.

II. KINEMATIC CONSTRAINTS

The recent OPERA experiment has analyzed the propagation of muon neutrinos. If neutrinos propagate faster
than the speed of light, then a number of decay processes are kinematically allowed which are otherwise forbidden.
These include the following decays (see Fig. 1),

νµ → νµ + γ , (2a)

νµ → νµ + e+ + e− , (2b)

νµ → νµ + νe + ν̄e . (2c)

In Ref. [28], these decay processes are analyzed under the assumption of the Lorentz-violating dispersion relation

dEν
d|~pν |

= const. , Eν = |~pν | vν , vν ≈ 1 + ∆ , (3)
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FIG. 1: Feynman diagrams for the decay processes of a tachyonic superluminal neutrino, as given in Eq. (2). The tachyonic
neutrino may emit of photon via a W loop [Fig. (a)], or an electron-positron pair, [Fig. (b)], or a neutrino-antineutrino pair
[Fig. (c)]. The processes scale with the quantum electrodynamic (QED) coupling constant α and the weak coupling constant
GF as follows, (a) is proportional to αG2

F , (b) is proportional to αGF , and (c) is proportional to α2G2
F .

where ∆ = 2.37× 10−5 corresponds to the value given in Ref. [5]. Processes (a) and (c) are parametrically suppressed
with respect to process (b), and therefore process (b) is deemed to constitute the dominant decay channel.

One may observe that the dispersion relation Eν = |~pν | vν is at variance with both the subluminal (also called
tardyonic, see Ref. [19]) dispersion relation for freely propagating massive neutrinos,

Eν =
mν√
1− v2ν

, |~pν | =
mvν√
1− v2ν

= Eν vν , vν < 1 , (4)

as well as with the dispersion relation for superluminal (tachyonic) particles [1, 24, 25, 36–38], which reads

Eν =
mν√
v2ν − 1

, |~pν | =
mν vν√
v2ν − 1

= Eν vν , vν > 1 . (5)

In both cases (4) and (5), one obtains |~pν | = Eν vν , not the opposite relation Eν = |~pν | vν used in Ref. [28]. Under
Lorentz transformations, superluminality of tachyonic particles is conserved (see Fig. 2). In two recent papers [39, 40],
it has been observed that the conclusions of [28] would change if the dispersion relation were different. Here, we are
concerned with a more general question: Namely, to investigate how the kinematic constraints change when we
assume a tachyonic dispersion relation for the neutrino, and whether the process (2) is still kinematically allowed
when E2

ν − ~p 2
ν < 0.

For the process (2a), an easy calculation based on the energy and momentum conservation conditions reveals that

Eν = E′ν + Eγ , ~pν = ~p′ν + ~kγ , Eν =
√
~p 2
ν −m2

ν , E′ν =
√
~p′ 2ν −m2

ν , Eγ = |~kγ | . (6)

Squaring the energy conservation condition, one obtains

E2
ν =

(
~p′ν + ~kγ

) 2

−m2
ν = ~p′ 2ν + ~k 2

γ −m2
ν + 2 ~p′ν · ~kγ , (7a)

E2
ν = (E′ν + Eγ)2 = ~p′ 2ν + ~k 2

γ −m2
ν + 2 |~kγ |

√
~p′ 2ν −m2

ν , (7b)

~p′ν · ~kγ = |~kγ |
√
~p′ 2ν −m2

ν . (7c)

We conclude that under the assumption of the Lorentz-covariant, tachyonic dispersion relation (5), weak-interaction
Cerenkov radiation is allowed. In view of Eq. (7c), the photon is radiated off at a Cerenkov angle

cos θγ =
~p′ν · ~kγ
|~kγ | |~p′ν |

=

√
~p′2ν −m2

ν

|~p′ν |
=

E′ν
|~p′ν |

=
1

v′ν
< 1 , (8)

under the assumption of a tachyonic neutrino with dispersion (7a). One may add that the kinematic consideration
is somewhat analogous to that for the emission of ordinary Cerenkov radiation. The important observation is that
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FIG. 2: (Color online.) Illustration of the Einstein velocity addition theorem w = (u+v)/(1+u v), in the superluminal domain
with u ∈ (−1, 1) and v ∈ (1, 3). For superluminal v, the range w ∈ [−1, 1] of values is excluded, as shown by the rectangular
box.

under the tachyonic dispersion relation (5), the emission of a photon by the neutrino is always allowed, i.e., there is no
threshold energy for the neutrino and there is no threshold for the tachyonic mass −m2

ν . Once the particle becomes
tachyonic, weak Cerenkov radiation is kinematically allowed, but the Cerenkov cone narrows as −m2

ν → 0. For a
particle fulfilling the noncovariant dispersion relation Eν = |~p′ν | vν , with vν > 1, the modified Cerenkov angle cos θ′γ
is easily computed as

cos θ′γ =
1

v′ν
+

(v′2ν − 1)|~kγ |
2v′ν E

′
ν

≈ 1

v′ν
< 1 , (9)

assuming a neutrino with the dispersion E′ν = p′ν v
′
ν and v′ν > 1. This is very well approximated by cos θ′γ ≈ 1/v′ν for

v′ν ≈ 1.
As a second step, let us consider a process in which a tachyonic neutrino fulfilling Eq. (5) emits a massive neutral

vector meson of mass m0. This is not depicted in Fig. (1) but still instructive. The kinematic conditions change,

Eν = E′ν + E0 , ~pν = ~p′ν + ~k0 , Eν =
√
~p 2
ν −m2

ν , E′ν =
√
~p′ 2ν −m2

ν , E0 =

√
~k 2
0 +m2

0 . (10)

The Cerenkov angle then becomes

cos θ0 =
m2

0 + 2

√
~k20 +m2

0

√
~p′2ν −m2

ν

2 |~k0| |~p′ν |
≈

√
~k20 +m2

0

√
~p′2ν −m2

ν

|~k0| |~p′ν |
, (11)

where the last expression is valid in the high-energy limit, i.e, for |~k0| � m0, and |~p′ν | � mν . If the vector meson
carries away the bulk of the energy, i.e. E0 = xEν and E′ν = (1−x)Eν , with x . 1, then for highly energetic incoming
superluminal neutrinos, one can always find a narrow cone near θ0 ≈ 0 in which vector meson emission is possible.
Again, for highly energetic tachyonic superluminal neutrinos, we conclude that there is no kinematic constraint on the
size of the tachyonic mass term −m2

ν which would restrict massive vector meson emission. Once the particle becomes
tachyonic and the energy of the tachyonic particle is large enough, massive vector emission becomes kinematically
allowed in a narrow angular region. By contrast, if we replace in Eq. (11) −m2

ν → +m2
ν , we would have cos θ0 > 1,

forbidding vector meson emission. Also, the Cerenkov angle θ0 vanishes in the limit mν → 0. Using more extensive
calculations, we have checked that the same statement applies to the light fermion pair emission given in Eq. (2b)
and depicted in Fig. 1(b). Cerenkov-type pair emission becomes kinematically possible for highly energetic neutrinos,
in a narrow angular region.

In the application of the tachyonic dispersion relation (5) to the OPERA data, we face a dilemma which also plagues
the application of the Lorentz-noncovariant dispersion relation (3). Namely, we have for the OPERA data according
to Eq. (1d),

−m2
ν = E2

ν − ~p 2
ν = E2

ν

[
1− (1 + ∆)2

]
= − (117 MeV)

2
[dispersion relation (5)] (12)
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which is at least six orders of magnitude larger than the neutrino masses at low energy [6–12]. Likewise, assuming
the dispersion relation (3) implies that

E2
ν − ~p 2

ν = ~p 2
ν

[
(1 + ∆)2 − 1

]
≈ E2

ν

[
(1 + ∆)2 − 1

]
= (117 MeV)

2
[dispersion relation (3)] . (13)

If we define the expression |E2
ν − ~p 2

ν | as the “virtuality” of the neutrino which measures the deviation of the neutrino
propagation velocity from the speed of light, then we can say that at the high OPERA energies, the neutrino velocity
was not expected to deviate so much from the speed of light, neither in the superluminal nor in the subluminal
direction. For example, if OPERA had hypothetically found a result of

∆̃ = −2.37× 10−5 [opposite sign as compared to Eq. (1d)] , (14)

then this would have been equally surprising. In the latter case, one would probably have concluded immediately
that the neutrino must be subject to a hitherto unknown interaction at high energy, modifying its effective (running)
mass. We here advocate the viewpoint that the same conclusion should be drawn from the OPERA data: namely, the
neutrino is genuinely tachyonic and subject to an unknown interaction at high energy which modifies its mass and its
decay channels. Otherwise, it seems that the high-energy OPERA data [5] (in the GeV range) cannot be reconciled
with the low-energy experimental results (in the keV range) of Refs. [6–12]. Of course, this statement holds provided
the OPERA data are not subject to a hitherto undiscovered systematic error.

The data bins given in Eq. (1) are consistent with an energy-independent propagation velocity. While the quantity
∆ need not be energy independent over large energy intervals, it appears to be so in in the energy interval 13.8 GeV <
Eν < 40.7 GeV. Therefore, in this energy interval observed by OPERA [5], the dispersion relation is assumed to be
close to a linear relationship

mν = m(Eν) ≈ η Eν , 13.8 GeV < Eν < 40.7 GeV , η =
√

(1 + ∆)2 − 1 = 6.88× 10−3 ≈ 1

145
. (15)

The unknown interaction leading to the energy-dependent mass must now be investigated. When calculating de-
cay rates, the existence of the additional interaction implies that one should use eigenstates of the neutrino in the
additional, hitherto unknown interaction potential (i.e., taking into account the running mass) rather than freely
propagating tachyonic states, with an effective energy-dependent tachyonic mass mν = mν(Eν) ∝ Eν .

III. TACHYONIC DIRAC EQUATION

Given the obvious inconsistency of the OPERA data [5] with low-energy neutrino data [6–12], as manifest in the
energy-dependent effective mass (15), one may ask why an equation that describes a genuinely tachyonic neutrino
with an energy-independent, fixed tachyonic mass mν should be considered at all in the following. The reason is that
if the neutrino is genuinely tachyonic, then one has to start from an equation which describes a genuinely tachyonic
particle, with the possibility to describe additional perturbative interactions that modify the high-energy behaviour.
Expressed differently, we would expect the tachyonic Dirac equation given below to describe the low-energy behaviour
of neutrinos [6–12], while the large deviation from the light cone seen at high energies [3, 5] should be ascribed to
additional interactions. We briefly recall here that the Lorentz-covariant tachyonic Dirac equation reads

(
iγµ∂µ − γ5mν

)
ψ(x) = 0 , γ0 =

(
12×2 0

0 −12×2

)
, ~γ =

(
0 ~σ
−~σ 0

)
, γ5 =

(
0 12×2

12×2 0

)
. (16)

Here, x = (t, ~x), and we use the Dirac matrices in the Dirac representation [17]. The partial derivatives are ∂µ = ∂/∂xµ,
while γ5 = i γ0 γ1 γ2 γ3 is the fifth current matrix. The tachyonic Dirac equation has been briefly discussed in Ref. [14–
16]. It has recently been verified that this equation is CP, as well as T invariant [17]. These symmetry properties
apply to neutrinos. The positive-energy plane-wave solutions [17] of the tachyonic Dirac equation have the properties

Ψ(x) =
1√
V
U±(~kν) e−ikν ·x , kν = (Eν ,~kν) , Eν =

√
~k2ν −m2

ν , |~kν | ≥ mν . (17)

The negative-energy solutions [17] are given by

Φ(x) =
1√
V
V±(~kν) eikν ·x , kν = (Eν ,~kν) , Eν =

√
~k2ν −m2

ν , |~kν | ≥ mν , (18)
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where V is the normalization volume. These states are normalized, with U+

+ (~kν)U+(~kν) = U+

−(~kν)U−(~kν) =

V +

+ (~kν)V+(~kν) = V +

− (~kν)V−(~kν) = 1. The spinors entering these expressions read as

U+(~kν) =


mν − Eν + |~kν |

√
2

√
(Eν − |~kν |)2 +m2

ν

a+(~kν)

mν + Eν − |~kν |
√

2

√
(Eν − |~kν |)2 +m2

ν

a+(~kν)

 , U−(~kν) =


mν + Eν − |~kν |

√
2

√
(Eν − |~kν |)2 +m2

ν

a−(~kν)

−mν + Eν − |~kν |
√

2

√
(Eν − |~kν |)2 +m2

ν

a−(~kν)

 , (19)

where the helicity spinors a±(~kν) are given below in Eq. (21). If we are interested in the massless limit, then we
should first take into account the fact that massless particles propagate at velocities very close to the light cone. For

v = 1 + ∆, we have E − |~kν | ≈ −m∆/2 � m. Therefore, letting ∆ → 0, the dominant term for the massless limit

actually is the mass m � E − |~kν |. This implies, e.g., that U+(~kν) → 1√
2

(
a+(~kν)

a+(~kν)

)
for the massless case. The

negative-energy eigenstates are given by

V+(~kν) =


−mν − Eν + |~kν |

√
2

√
(Eν − |~kν |)2 +m2

ν

a+(~kν)

−mν + Eν − |~kν |
√

2

√
(Eν − |~kν |)2 +m2

ν

a+(~kν)

 , V−(~kν) =


−mν + Eν − |~kν |

√
2

√
(Eν − |~kν |)2 +m2

ν

a−(~kν)

mν + Eν − |~kν |
√

2

√
(Eν − |~kν |)2 +m2

ν

a−(~kν)

 . (20)

The helicity spinors entering these expressions are given in terms of the polar and azimuthal angles θ and ϕ of the

three-vector ~kν ,

a+(~kν) =

(
cos
(
θ
2

)
sin
(
θ
2

)
eiϕ

)
, a−(~kν) =

(
− sin

(
θ
2

)
e−iϕ

cos
(
θ
2

) )
, (21)

and fulfill

~σ · ~kν
|~kν |

a+(~kν) = a+(~kν) ,
~σ · ~kν
|~kν |

a−(~kν) = −a+(~kν) . (22)

For plane waves, Eν =

√
~k 2
ν −m2

ν and ~pν = ~kν fulfill the tachyonic dispersion relation (5), which we recall for

convenience,

Eν =
mν√
v2ν − 1

, |~kν | =
mvν√
v2ν − 1

= Eν vν , vν > 1 , (23)

so that

√
~k 2
ν −m2

ν never becomes imaginary. For ~k 2
ν < m2

ν , we have resonance and antiresonance energies. We start

with the resonances, whose energies have a negative imaginary part,

R+(~kν) =


mν + i

2Γν + |~kν |
√

2
√
~k 2
ν +m2

ν + 1
4 Γ2

ν

a+(~kν)

mν − i
2Γν − |~kν |

√
2
√
~k 2
ν +m2

ν + 1
4 Γ2

ν

a+(~kν)

 , R−(~kν) =


mν − i

2Γν − |~kν |
√

2
√
~k 2
ν +m2

ν + 1
4 Γ2

ν

a−(~kν)

−mν − i
2Γν − |~kν |

√
2
√
~k 2
ν +m2

ν + 1
4 Γ2

ν

a−(~kν)

 , (24a)

Eν = − i
2 Γν = −i

√
m2
ν − ~k2ν , ~k 2

ν < m2
ν . (24b)
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The antiresonance energies have a positive imaginary part,

S+(~kν) =


−mν − i

2Γν + |~kν |
√

2
√
~k 2
ν +m2

ν + 1
4 Γ2

ν

a+(~kν)

−mν + i
2Γν − |~kν |

√
2
√
~k 2
ν +m2

ν + 1
4 Γ2

ν

a+(~kν)

 , S−(~kν) =


−mν + i

2Γν − |~kν |
√

2
√
~k 2
ν +m2

ν + 1
4 Γ2

ν

a−(~kν)

mν + i
2Γν − |~kν |

√
2
√
~k 2
ν +m2

ν + 1
4 Γ2

ν

a−(~kν)

 , (25a)

Eν = i
2 Γν = i

√
m2
ν − ~k2ν , ~k 2

ν < m2
ν . (25b)

These states are also normalized, with R+

+(~kν)R+(~kν) = R+

−(~kν)R−(~kν) = S+

+(~kν)S+(~kν) = S+

−(~kν)S−(~kν) = 1.
The term “resonances” is used in the physics literature in two contexts: (i) in order to designate the complex energy
eigenvalue of a Hamiltonian, and (ii) in order to designate the peak in a cross section or a quantum state which
can decay into a final state with a different particle content. In the current case, the interpretation (i) is relevant.
The resonances have complex resonance energies; the waves are evanescent (exponentially damped) just like the
diffracted wave under total reflection, or a wave in a waveguide below the minimum frequency for the TE1,0 mode
necessary for propagation, and the resonance energies are complex just as in the case of a resonance energy of the
Stark effect [41]. Resonances are damped for propagation forward in time, antiresonances for propagation backward
in time, in accordance with the Feynman prescription. The wavelength of the resonance states is too long to be
supported in a genuinely superluminal wave packet of tachyonic mass m2

ν .
The noncovariant, Hamiltonian form of Eq. (16) reads as

H5ψ(~x) =
(
~α · ~p+ β γ5mν

)
ψ(~x) = Eν ψ(~x) , (26)

where β = γ0, and ~α = γ0 ~γ. The Hamiltonian H5 has the pseudo-Hermitian [42–50] property

H = PH+

5 (~x)P−1 = P H+

5 (−~x)P−1 , (27)

where P is the full parity transformation and P is the parity matrix P = γ0. The eigenvalues of a pseudo-Hermitian
operator come in complex-conjugate pairs and are real if the tachyonic dispersion relations (5) are fulfilled. This
can be seen as follows. Because the spectrum of a Hermitian adjoint operator consists of the complex conjugate
eigenvalues, we have an eigenvector φ(~x) with eigenvalue E∗ provided there exists an eigenvector ψ(~x) with eigenvalue
E,

H5(~x)ψ(~x) = E ψ(~x) , H+

5 (~x)φ(~x) = E∗ φ(~x) . (28)

Then, the transformation ~x→ −~x and the introduction of the P = γ0 parity matrix leads to

H+
5 (−~x)φ(−~x) = E∗ φ(−~x) , PH+

5 (−~x)P−1 (Pφ(−~x)) = E∗ Pφ(−~x) . (29)

By assumption, PH+
5 (−~x)P−1 = H5(~x) and thus

H5(~x)Pφ(−~x) = E∗ Pφ(−~x) , H5(~x) ψ̃(~x) = E∗ψ̃(~x) , ψ̃(~x) = Pφ(−~x) . (30)

This implies that ψ̃(~x) = Pψ(−~x) is an eigenvector with eigenvalue E∗. The eigenvalues of H5 thus come in complex-
conjugate pairs, and furthermore, they are real for plane waves fulfilling the dispersion relation (5).

The covariant Green function corresponding to the Hamiltonian H5 thus reads as

ST (p) = γ0
1

E −H5
= �p+ γ5mν

p2 +m2
ν

. (31)

The tachyonic poles at E2
ν−~p 2 = −m2

ν have to be encircled in a way consistent with the boundary conditions imposed
on the Green function. Eigenvalues with E2

ν = ~p 2 −m2
ν < 0 represent evanescent waves. If one encircles the poles of

the Green function according to the Feynman prescription,

ST (p) =
1

�p− γ5 (mν + i ε)
= �p− γ

5mν

p2 +m2
ν + i ε

, (32)

then the energy-momentum dispersion relation is infinitesimally displaced to read Eν = ±
√
~p 2 −m2

ν − i ε. This is

consistent with the evanescent wave picture because positive-energy solutions have the form Eν = ε − i
√
|~p 2 −m2

ν |
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and are thus exponentially damped for the propagation into the future, whereas negative-energy solutions have the
form Eν = −ε + i

√
|~p 2 −m2

ν | and are thus exponentially damped for the propagation into the past. In general, the
Feynman prescription assigns an infinitesimal negative imaginary part to energies whose real part is positive, and vice
versa.

Thus, while the time propagation of strictly tachyonic wave packets (superpositions of the tachyonic plane-wave
solutions) is fully unitary (they have real eigenvalues), a slight violation of unitarity cannot be avoided if one allows
eigenstates with E2

ν = ~p 2 −m2
ν < 0. The complex resonance energies (the real part is only infinitesimal)

Eν = ε− i
√
|~p 2 −m2

ν | , Eν = −ε+ i
√
|~p 2 −m2

ν | , ~p 2 < m2
ν , (33)

describe the suppression of subluminal components of a superluminal wave packet under time evolution. One has to
allow these solutions in the propagator (32) if one would like to carry out the Fourier transformation consistently, i.e.,
over the entire range pµ ∈ R4, or describe the time evolution of a general wave packet under the Green function (32).
It seems that a slight violation of unitarity, relevant to the small sector ~p 2 < m2

ν , where mν initially is on the order
of a few eV, is a price for the introduction of tachyonic particles [23]. Note that full unitarity cannot be preserved
anyway in a tachyonic theory if one goes beyond tree-level amplitudes, as shown in Ref. [51]. The time propagation
of wave packets in potentials with manifestly complex resonance energies has been described in Refs. [52, 53]. The
evanescence of the subluminal neutrino wave function components, which are excluded from the real neutrino plane-
wave eigenstates but included in the propagator, is somewhat analogous to the photon propagator, where one includes
the so-called scalar and longitudinal photons in the photon propagator but leaves them out from the real, physical
states of the photon field, which are composed of transverse photons.

In Ref. [17], the tachyonic propagator (32) is derived not by inversion of the Hamiltonian, but by a quantization of
the tachyonic field operators. We briefly sketch the essential elements of the derivation. The field operator is written
as

ψ̂(x) =

∫
d3kν
(2π)3

mν

Eν

∑
σ=±

[
bσ(kν)Uσ(~kν) e−i kν ·x + bσ(−kν)Vσ(~kν) ei kν ·x

]

=

∫
d3kν
(2π)3

m

Eν

∑
σ=±

[
bσ(kν)Uσ(~kν) e−i kν ·x + d+

σ (kν)Vσ(~kν) ei kν ·x
]
, (34)

where Eν =

√
~k2ν −m2

ν − i ε is the tachyonic energy and the four-vector kν equals kν = (Eν ,~kν). Here, the b operators

annihilate particle, whereas the d+ create antiparticles. We here explicitly accept a Lorentz-covariant vacuum state,
which transforms according to Ref. [19]. The Lorentz-transformed vacuum is filled with all particle and antiparticle
states whose energy changes sign under a Lorentz transformation (Lorentz boost), as outlined in Eqs. (5.6) and (5.7)
of Ref. [19]. The spinors U and V are given by

U+(~kν) =


mν − Eν + |~kν |

2
√
mν

√
|~kν | −mν

a+(~kν)

mν + Eν − |~kν |

2
√
mν

√
|~kν | −mν

a+(~kν)

 , U−(~kν) =


mν + Eν − |~kν |

2
√
mν

√
|~kν | −mν

a−(~kν)

−mν + Eν − |~kν |

2
√
mν

√
|~kν | −mν

a−(~kν)

 (35a)

for positive energy, and by

V+(~kν) =


−mν − Eν + |~kν |

2
√
mν

√
|~kν | −mν

a+(~kν)

−mν + Eν − |~kν |

2
√
mν

√
|~kν | −mν

a+(~kν)

 , V−(~kν) =


−mν + Eν − |~kν |

2
√
mν

√
|~kν | −mν

a−(~kν)

mν + Eν − |~kν |

2
√
mν

√
|~kν | −mν

a−(~kν)

 (35b)

for negative energy (in both cases, we assume that |~kν | > m). The normalization conditions are given by

Uσ(~kν) Uσ(~kν) = U+

σ (~kν)γ0Uσ(~kν) = σ , Vσ(~kν) Vσ(~kν) = V+

σ (~kν)γ0Vσ(~kν) = −σ . (35c)

Quantizing the theory according to Fermi–Dirac statistics,

{bσ(kν), bρ(k
′
ν)} =

{
a+

σ (kν), a+

ρ (k′ν)
}

= {dσ(kν), dρ(k
′
ν)} =

{
d+

σ (kν), d+

ρ (k′ν)
}

= 0 , (36a){
bσ(kν), b+ρ (k′ν)

}
= (−σ) (2π)3

E

m
δ3(~kν − ~k′ν) δσρ ,

{
dσ(kν), d+

ρ (k′ν)
}

= (−σ) (2π)3
E

m
δ3(~kν − ~k′ν) δσρ , (36b)
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one can easily show that∑
σ

(−σ) Uσ(~kν)⊗ Uσ(~kν) γ5 =
�kν − γ5m

2m
,

∑
σ

(−σ) Vσ(~kν)⊗ Vσ(~kν) γ5 =
�kν + γ5m

2m
. (37)

The field anticommutator is

{ψ̂ξ(x), ψ̂ξ′(y)} =
〈

0
∣∣∣{ψ̂ξ(x), ψ̂ξ′(y)}

∣∣∣ 0〉
=

∫
d3kν
(2π)3

mν

Eν

∑
σ=±

{
e−ikν ·(x−y) (−σ)

[
Uσ(~kν)

]
ξ

[
Uσ(~kν)

]
ξ′

+ eikν ·(x−y) (−σ)
[
Vσ(~kν)

]
ξ

[
Vσ(~kν)

]
ξ′

}
, (38)

where ξ denotes the spinor index. It follows that

{ψ̂ξ(x), ψ̂ξ′(y)} γ5 =
(
i �∂ − γ5mν

)
ξξ′

i ∆(x− y) , ∆(x− y) = −i

∫
d3kν
(2π)3

1

2Eν

(
e−ikν ·(x−y) − eikν ·(x−y)

)
,

(39)
where ∆(x− y) is introduced as in Chap. 3 of Ref. [54]. Furthermore, Eq. (3.170) of [54] finds the generalization

{ψ̂ξ(x), ψ̂ξ′(y)} γ5
∣∣∣
x0=y0

= −
(
γ0
)
ξξ′

∂0 ∆(x− y)
∣∣∣
x0=y0

=
(
γ0
)
ξξ′

δ3(~x− ~y) . (40)

In full analogy with Eq. (3.174) of Ref. [54] and in agreement with Ref. [55], the tachyonic (T ) propagator is then
found as 〈

0
∣∣∣T ψ̂ξ(x) ψ̂ξ′(y)γ5

∣∣∣ 0〉 = iST (x− y)ξξ′ , ST (x− y) =

∫
d4kν
(2π)4

e−ikν ·(x−y)
�kν − γ5mν

k2ν +m2
ν + i ε

, (41)

which confirms Eq. (32). Indeed, the propagator obtained from the quantized theory is equal to the propagator
obtained from the inversion of the Hamiltonian in the Lorentz-covariant formulation, as it should. The couplings of the
neutrino involve the chirality projector (1−γ5)/2, and in view of γ5 (1±γ5)/2 = ±(1±γ5)/2, the introduction of the γ5

matrix in Eq. (32) is reabsorbed into the interaction Lagrangian. The non-unitarity is small because m2
ν is very small.

For a tachyonic particle, the evanescence of non-tachyonic wave packet components is natural because its tachyonic
components remain tachyonic upon Lorentz transformation (see Fig. 2). The tachyonic Dirac equation provides for a
convenient framework to describe freely propagating, superluminal, electromagnetically neutral, particles.

IV. NEUTRINO MASS RUNNING

In Secs. II and III, we have seen that a running neutrino mass (with the energy) is able to conceivably suppress
Cerenkov-type decay processes, and the quantization of the tachyonic Dirac equation has been discussed as a convenient
description for tachyonic spin-1/2 particles; it naturally implies the suppression of the right-handed neutrino. If current
experimental data [5] are confirmed, then we now have to explain why the effective mass of the neutrino, which needs
to be inserted into the tachyonic Dirac equation, changes from a few eV in the keV neutrino energy range, to a mass
on the order of MeV in the GeV energy range. We note that neutrino mass running is usually assumed to initiate
on the energy scales of Grand Unification (see-saw mechanism). However, the experimental data [2, 3, 5–9] all point
to a neutrino mass running which sets in at much lower energy scales. We assume that the mass term is genuinely
tachyonic.

The scenario that we would like to propose is as follows: We conjecture that the neutrino mass running is due
to an interaction with a hitherto unknown field that modifies its effective mass with the energy. At low energy, the
interaction with the unknown field is weak, so that the apparent neutrino mass is in the eV range, whereas at higher
energies, the interaction becomes stronger and leads to the observed [5] large tachyonic masses. We thus assume that
the (bulk of the) neutrino mass is created dynamically [56]. Possibly, there is some threshold region where the effective
mass of the neutrino intersects with the mass of the field it interacts with, and this might help explain consistency
with astrophysical data [2]. In the following, we would like to present a semi-quantitative analysis which supports
these conjectures.

We investigate a scalar-minus-pseudoscalar (S − P ) interaction Lagrangian of the form

Lint = G φ̂X ψ̂ (1− γ5) ψ̂ . (42)
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Here, φ̂X is a scalar field operator, G is a dimensionless coupling, and the fermionic field operators for the neutrino

are denoted as ψ̂. The operator is of dimension 4 and therefore renormalizable; it describes a Yukawa interaction
with a chirality projector. The complete Lagrangian of the tachyonic neutrino field, the scalar field plus the S − P
interaction reads

L(x) =
i

2

[
ψ̂(x)γµ

(
∂µψ̂(x)

)
−
(
∂µψ̂(x)

)
γµψ̂(x)

]
− ψ̂(x) γ5mν ψ̂(x)

− 1

2
φ̂X(x)

(
�+M2

X

)
φ̂X(x) +G φ̂X(x) ψ̂(x) (1− γ5) ψ̂(x) . (43)

At low energy, from dimensional analysis alone, the induced one-loop neutrino mass running via the renormalization
group (RG) can be written down as

dmν

d ln(µ)
= µ

dmν

dµ
∝ [mν(µ)]

3
[GX(µ)]

2
, [GX(µ)]

2
= G2

X ln(µ) =
G2

M2
X

ln(µ) , (44)

where we assume a logarithmic running of the coupling constant with the scale µ. Integrating the RG evolution
equation,

∫
dmν

m3
ν

= G2
X

∫
dµ

µ
,

mν(17GeV)∫
mν(18 keV)

dmν

m3
ν

= G2
X

∫ 17GeV

18 keV

dµ

µ
ln(µ), (45)

with mν(18 keV) ≈ 100 eV (see Ref. [6]) and mν(17 GeV) ≈ 117 MeV (see Ref. [5]), we find that an X particle of mass
in the range MX ≈ 1.4 keV could potentially induce a neutrino mass running from about 100 eV at 18 keV energies [6]
to 117 MeV at energies of 17 GeV [5]. Here, we assume that G ≈ 1 and a universal running of the electron neutrino
mass [6] and the muon neutrino mass [5] with the energy. The difference in the observed OPERA neutrino mass [5]
of 117 MeV with low-energy neutrino data Refs. [6–12], where masses in the eV range were observed, suggests that
significant neutrino mass running has to set in at energies much below 17 GeV, so that we can safely assume that
MX � 17 GeV. This finding and the interaction (42) is not described by any known particle in the standard model,
and thus, our model constitutes a pertinent extension. However, one may object that this treatment amounts to an
application of a one-loop running of the mass in a domain which in view of G ≈ 1 clearly is nonperturbative.

This high-energy limit could be analyzed as follows. We first recall that in the high-energy domain, where the
effective neutrino mass is in the MeV range (see Refs. [4, 5]) we assume that the neutrino mass is (almost) exclusively
generated by the strong (nonperturbative) self-interaction with the X field. It is interesting to observe that polynomial
behaviour of RG functions in the strong-coupling domain has recently been obtained by a sophisticated analysis of
higher-order perturbative terms, for the β functions of φ4 theories and of quantum electrodynamics [57, 58]. If the
mass of the X particle is negligible as compared to the mass of the neutrino in the high-energy domain, then the
mass scaling must be independent of MX , and again, from dimensional analysis alone, we may conjecture that in the
high-energy, strong-coupling limit,

µ
dmν

dµ
∝ G2mν ,

∫
dmν

mν
= KG2

∫
dµ

µ
, mν(µ) = mν(µ0)

(
µ

µ0

)KG2

, (46)

where K is a constant of order unity. In view of Eq. (15), if we assume that G ≈ 1/
√
K, then

mν = mν(Eν) = η (Eν)
KG2

≈ η Eν , G ≈ 1√
K
, η ≈ 1

145
, (47)

where the value of η is chosen such as to be consistent with Eq. (15).
We are now in the position to add some more, somewhat speculative, remarks on the experimental findings of

Refs. [3–5]. Based on the numerical entries in Table II and Fig. 3 of Ref. [4], one may investigate the observed
neutrino velocities as a function of the propagation energy. The authors of the somewhat inconclusive 1979 paper
(Ref. [4]) suggest to ascribe a path length correction of ∆path = −0.5+0.2

−0.1 × 10−4 to their data, because the muons
that were “racing” against the neutrinos in the experiment were assumed to be artificially delayed due to multiple
scattering events, which extend the muon path length in comparison to the muon neutrino path length. The path
length correction was assumed to be constant over the energy range analyzed in Ref. [4], uniformly affecting neutrinos
in the energy range of 32 GeV < Eν < 195 GeV in an experiment over a relatively short baseline of about 900 m
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(a) (b)

FIG. 3: (Color online.) Measured neutrino velocities in the range Eν = 3 GeV (Ref. [3]) up to Eν = 195 GeV (Ref. [4]). The
OPERA data are given in Eq. (1) and correspond to the data bins at E = 13.8 GeV, E = 28.2 GeV, and E = 40.7 GeV (circles).
The data point at Eν = 3 GeV is from Ref. [3] (square). All remaining data points (triangles) are from Ref. [4]. Panel (a)
corresponds to the data plotted in Fig. 3 of Ref. [3], while panel (b) applies a path length correction of ∆path = −0.5× 10−4 to
the data (triangles) of Ref. [3], as discussed near the end of Ref. [3]. Here, ∆ is the relative deviation from the speed of light in
vacuum, which we multiply by a scaling factor 104 on y axis. The solid line at ∆ = 2.4× 10−4 corresponds to the result (48)
based on our model.

(which is smaller than the OPERA baseline by a factor of roughly 103). We find that the discussion on the derivation
of the path length correction in Ref. [4] is rather short and therefore present data with and without this correction
in Fig. 3; the same approach was recently taken in Figs. 1 and 2 of Ref. [31]. The model (47) leads to a constant
deviation of the neutrino velocity of

∆ =
v − c
c

=
√

1 + η2 − 1 = 2.4× 10−5 , (48)

independent of the neutrino energy. This result is compared to the available experimental data [3–5] in Fig. 3. While
our model is somewhat speculative at the current stage, it is intriguing to observe that the solution of the simple-
minded RG equation (47) is in good agreement with the observed neutrino velocities over a wide energy interval
(see Fig. 3). We also recall that the concomitant significant neutrino mass running will suppress decays because the
tachyonic mass in the exit channel is much lower than in the incoming channel (see Sec. II).

V. CONCLUSIONS

Tachyons have a potential of fundamentally altering our view of physical law, but they can be incorporated into the
framework of Lorentz transformations, despite obvious problems with the causality principle. In Ref. [36], the authors
argue that a “sensible” theory is obtained if one insists that the only physical quantities are transition amplitudes,
and a negative-energy in (out) state is understood to be a positive-energy out (in) state. This statement is in need
of further explanation. Suppose that observer A sees event E before E′, and observer A′ sees event E′ before E,
because the two events are separated by a space-like interval, and the Lorentz transform for the frames A and A′

reverses the time-ordering of events E and E′. According to Ref. [20], the reversed time ordering occurs if and only if
the energy between the two frames also changes sign. So, provided one reinterprets the negative-energy eigenstates of
tachyonic Dirac Hamiltonian propagating backward in time (the antiresonances included) as positive-energy solutions
propagating forward in time, the creation and absorption of a particle can be consistently reinterpreted if only the
transition amplitude is unaffected by the reinterpretation. This point has also been stressed in Refs. [20, 59].

One problem, though, in the consistency of observations of tachyons lies in conceivable decay processes [28]. In this
paper, we investigate threshold conditions for the emission (see Sec. II) of real particles by analogues of Cerenkov
radiation emitted by superluminal, tachyonic neutrinos that fulfill the dispersion relation (5). We find that such
emissions, as shown in Fig. 1, are possible at high energies for small Cerenkov angles in a narrow cone of emission
angles θ [see Eqs. (8) and (11)]. Furthermore, at sufficiently large energy, a nonvanishing emission probability exists
for even very small tachyonic mass squares −m2

ν . However, the calculation of the corresponding decay rates crucially
depends on the dispersion relation used in the calculation. The tachyonic relation (5) is Lorentz-invariant, and the
effective mass mν crucially influences the decay rate. We then investigate, based on the tachyonic Dirac equation (see



12

Sec. III), how the effective neutrino mass mν could possibly change from a few eV at low energies in the keV range
to energies of a hundred MeV in the GeV range [see Eqs. (12), (13) and (15)].

We here come to the conclusion that a viable explanation for the large virtuality E2
ν − ~p 2 of the OPERA neutrinos

could be due to an additional interaction that modifies the neutrino propagation at high energies. At an energy in the
GeV range, as measured by OPERA, the propagation velocity of a particle with a rest mass on the order of a few eV
is not expected to deviate from the speed of light by a factor on the order of 10−5. It does not really matter in this
case that the OPERA experiment has measured a deviation of vν from c in the superluminal direction. A hypothetical
experimental result for vν−c < 0 in the subluminal direction, of the same order-of-magnitude, as indicated in Eq. (14),
would have been equally surprising. According to previous neutrino data [6–12], OPERA was not expected to find a
deviation |vν−c| in the neutrino propagation velocity of the order-of-magnitude given in Eq. (15). In light of Eqs. (12)
and (13), the OPERA signal would otherwise correspond to a particle with a rest mass in the range of a hundred
MeV, or, with an effective mass of the neutrino that grows linearly with the energy. Unfortunately, neither the Higgs
mechanism nor the Gross-Neveu model, induce a mass that depends on the energy. Once the vacuum expectation
value of the background field that generates the mass is fixed, the mass of the constituent particle is also fixed. We
find that it is indicated to investigate genuine neutrino mass running due to interactions which have hitherto not been
introduced into the standard model. In Sec. IV of this paper, we write down a chiral Yukawa interaction which might
induce a neutrino mass running with the experimentally observed parameters.
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