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Multi-site order-disorder kinetics in crystalline solids: A generalized formulation

LIAN-KUN SHA AND BRUCE W. CHAPPELL

Key Centre for the Geochemistry and Metallogeny of the Continents (GEMOC), Department of Geology, Australian National
University, Canberra, ACT 0200, Australia

ABSTRACT

Many crystalline solids have multiple nonequivalent sites among which different atoms
show substitutional long-range order-disorder phenomena. The order-disorder kinetics of
an atom among any n nonequivalent sites in a crystal can be described by the equation

n

l tjx 5 c 1 c (t)eOi i1 ij
j52

where xi is the site occupancy of the atom at site si, n is the number of nonequivalent sites,
lj (l1 5 0) is constant at a given temperature, pressure, and total composition of the crystal,
and cij(t) is constant or polynomial in t. Four theorems governing a multi-site order-disorder
process have been proved, requiring that lj must be either zero (only l1 5 0), a negative
real number, or a complex-valued quantity with the real part being a nonpositive number.
The kinetic model becomes constrained and naturally complies with crystal-chemical con-
ditions when the mole number per formula unit is chosen as the unit of all site-occupancy
variables, or site multiplicities are explicitly incorporated into the model. When the mole
fraction is directly used as the unit, the model becomes unconstrained, but it is a valid
treatment that is as equally applicable to the multi-site order-disorder kinetics as the con-
strained model.

INTRODUCTION

Substitutional long-range ordering-disordering of dif-
ferent atoms or ions among two or more crystallograph-
ically nonequivalent sites (multi-site) is a common phe-
nomenon in many crystalline solids. Typical examples
include the ordering-disordering of Fe21, Mg21, Mn21, and
Ca21 among the four octahedral sites M1, M2, M3, and
M4 in amphibole, and Al31, B31, Ga31, Si41, and Ge41

among the four tetrahedral sites T1, T2, T3, and T4 in
natural and synthetic feldspar (Hafner and Ghose 1971;
Seifert and Virgo 1975; Dal Negro et al. 1978; Ungaretti
et al. 1981; Ghose and Ganguly 1982; Hawthorne 1983a;
Skogby 1987; Makino and Tomita 1989; Phillips et al.
1989; Burns and Fleet 1990; Fleet 1991, 1992; Kroll et
al. 1991; Hirschmann et al. 1994). Some order-disorder
processes involve even more than ten nonequivalent sites
(Takéuchi et al. 1984a, 1984b; Yao and Franzen 1990,
1991; Yao et al. 1992). For instance, Nb and Ta atoms
can undergo ordering-disordering among twelve distinct
sites in the synthetic crystal Ta6.74Nb5.26S4 (Yao and Fran-
zen 1991), and Bi31, Pb21, and Sb31 show strong order-
disorder phenomena among twenty-four nonequivalent
sites in izoklakeite (Makovicky and Mumme 1986; Arm-
bruster and Hummel 1987). Investigations into such or-
der-disorder phenomena are important to understand the
thermodynamic properties and intracrystalline mixing be-
havior of solid solutions as well as the thermal history of
geological processes (Saxena and Ghose 1970; Navrotsky

1971; Seifert and Virgo 1975; Ganguly 1982; Cohen
1986; Anovitz et al. 1988; Sack and Ghiorso 1991; Gan-
guly et al. 1994; Ghiorso et al. 1995; Ganguly and Do-
meneghetti 1996). Furthermore, differing site occupancies
and their resulting entropy of mixing can significantly
affect the formation and stability of some crystalline sol-
ids, particularly differential site-occupancy stabilized ma-
terials (Franzen and Köckerling 1995).

Several researchers made contributions to the kinetic
theories of order-disorder processes. Following the pio-
neering work of Dienes (1955), Mueller (1967) proposed
a model for order-disorder kinetics in quasibinary crystals
based on an exchange reaction of two different atoms or
ions between two nonequivalent sites. Ganguly (1982) re-
examined this model and made a rather comprehensive
review on the crystal chemistry, thermodynamics, and ki-
netics of order-disorder in ferromagnesian minerals. The
Mueller model has been widely used to fit experimental
data and estimate the kinetic coefficients (Besancon 1981;
Ganguly 1982; Saxena et al. 1987, 1989; Anovitz et al.
1988; Skogby 1992; Sykes-Nord and Molin 1993). De-
spite its success, Sha and Chappell (1996a) pointed out
that if a two-site order-disorder process involves three or
more atoms or ions, Mueller’s method gives no explicit
solution to the kinetic differential equations. Furthermore,
if two atoms or ions undergo ordering-disordering among
three or more nonequivalent sites, there is no explicit so-
lution to his model (Mueller 1969). Therefore, the Muel-
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ler model is applicable only to pure or nearly pure binary
ordering-disordering between two nonequivalent sites.

To solve the above problems, Sha and Chappell
(1996a) proposed an alternative kinetic model for two-
site multi-cation ordering-disordering, which can be used
to calculate the forward and reverse kinetic coefficients
of each individual cation. Sha and Chappell (1996b) also
presented an explicit solution for three-site ordering-dis-
ordering. However, there is no kinetic model available for
the ordering-disordering of atoms or ions among any n
nonequivalent sites. In this paper, we present such a gen-
eral model and prove some basic theorems that govern a
multi-site order-disorder process.

FORMULATION OF A MULTI-SITE ORDER-DISORDER

KINETIC MODEL

The formula of a crystalline phase can be written as

(s ) (s ) . . . (s ) . . . (s ) Z1 v 2 v i v n v1 2 i n

and

s 5 (e , e , . . ., e , . . ., e , W )i 1 2 l q i

where s1, s2, . . ., si, . . ., sn are n nonequivalent sites, and
e1, e2, . . ., el, . . ., eq are the constituent atoms (cations,
anions, or neutral atoms) showing order-disorder; Wi (i 5
1, 2, . . ., n) refers to all other atoms that only occur at
site si; vi is the multiplicity of the si site; Z represents the
rest of the chemical formula. Because an order-disorder
process can occur not only in ionic crystals but also in
metallic, covalent, and molecular crystals, in this paper,
whenever necessary we simply use the term atom instead
of cation or anion.

The kinetic reactions involved in an n-site order-dis-
order process can be written as

kij

→e (s ) e (s ) (i, j 5 1, 2, 3, · · ·, n; i ± j;l i l j←
kji

l 5 1, 2, 3, · · ·, q) (1)

where kij and kji are the kinetic coefficients for the forward
and backward reactions respectively. The kinetic equation
governing the order-disorder process is

ndxi 5 (k x 2 k x ) (2)O ji j ij idt j51
j±i

where xi and xj are the site occupancies of an atom el (l
5 1, 2, 3, . . ., q) at sites si and sj, respectively.

Expanding Equation 2 gives a group of equations

ndx1 5 2 k x 1 k x 1 k x 1 · · · 1 k x (3.1)O 1j 1 21 2 31 3 n1 ndt 1 2j52

ndx2 5 k x 2 k x 1 k x 1 · · · 1 k x (3.2)O12 1 2j 2 32 3 n2 ndt j511 2
j±2

ndx3 5 k x 1 k x 2 k x 1 · · · 1 k x (3.3)O13 1 23 2 3j 3 n3 ndt j511 2
j±3

. . .. . .. . .
n21dxn 5 k x 1 k x 1 k x 1 · · · 2 k x . (3.n)O1n 1 2n 2 3n 3 nj ndt 1 2j51

Writing A 5 {aij} where aij 5 kji(i ± j),

n

a 5 2 k ,O11 1j
j52

n

a 5 2 k (i 5 2, 3, · · · , n 2 1)Oii ij
j51
j±i

n21

Ta 5 2 k and X 5 {x } 5 [x x x · · · x ]Onn nj i 1 2 3 n
j51

where T represents a transpose operation of the vector, it
follows that

dX
5 AX (4)

dt

with the initial site-occupancy vector being X(t 5 t0) 5
X0 5 [x x x . . . x ]T.0 0 0 0

1 2 3 n

Summing the above equations from 3.1 to 3.n gives

n

d xO idx dx dx dx i511 2 i n
1 1 · · · 1 1 · · · 1 5 5 0 (5)

dt dt dt dt dt

which is equivalent to the condition

n n

0x 5 x 5 g (6)O Oi i 0
i51 i51

where x is the initial site occupancy of an atom at the si
0
i

site and g0 is a constant equal to the sum of the site
occupancies of the atom at all n nonequivalent sites.

Integrating Equation 4 from X0 to X for the site-occu-
pancy vector and from t0 to t for the time gives

At 2At A(t2t )0 0X 5 {x } 5 e e X(t 5 t ) 5 e X (7)i 0 0

where the function eAt 5 E 1 At 1 A2t2/2! 1 ··· 1 Aktk/
k! 1 . . . is an n 3 n fundamental matrix whose compo-
nents are functions of time, eigenvalues and their corre-
sponding eigenvectors; E is an n 3 n identity matrix.

The eigenvalues of the matrix A are the roots of the
following nth-degree algebraic equation
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G(l) 5 Det(A 2 lE)

n n215 b l 1 b l 1 · · · 1 b l 1 bn n21 1 0

f f f f1 2 r h5 (l 2 l ) (l 2 l ) · · · (l 2 l ) · · · (l 2 l )1 2 r h

5 0 (8)

where l1, l2, . . ., lr, . . ., lh (1 # h # n) are the h distinct
eigenvalues with corresponding multiplicities f1, f2, . . .,
fr, . . ., fh.

The explicit form of the matrix Solution 7 differs in
the following two cases:

(1) When all n eigenvalues l1, l2, . . ., lr, . . ., ln are
distinct [i.e., fr 5 1 (r 5 1, 2, . . ., n)], there exist n
linearly independent constant eigenvectors u1, u2, . . ., ur,
. . ., un, which are the nontrivial solutions of the equation

(A 2 liE)ui 5 0. (9)

In this case, the matrix exponential function becomes

At l t l t l t l t1 2 3 ne 5 [u e u e u e . . . u e ] (10)1 2 3 n

and . Equation2At 2l t 2l t 2l t 2l t0 1 0 2 0 3 0 n 0e 5 [u e u e u e . . . u e ]1 2 3 n

7 has the explicit form

n

l tjX 5 {x } 5 c e (11)Oi ij5 6
j51

where cij(i, j 5 1, 2, . . ., n) are constants that are deter-
mined by the eigenvalues, eigenvectors, and initial site
occupancies.

(2) When the kinetic coefficient matrix A has eigen-
values with their multiplicities greater than one, two sub-
cases may occur:

(a) There are still n linearly independent eigenvectors in
spite of the presence of repeated eigenvalues, and the ex-
plicit solution remains in the same form as Equation 11.

(b) The matrix A has less than n linearly independent
eigenvectors. In this case, if an eigenvalue lr with a mul-
tiplicity fr has gr linearly independent eigenvectors and gr

, fr, then these gr linearly independent solutions will be

l t l t l tr r ru e , u e , . . ., u e .r r r1 2 gr

The remaining fr 2 gr linearly independent solutions will
be of the form

l t l t l tr r ru e , u e , . . ., u er r fg 11 g 12 rr r

where

f ( f2d)t
u 5 v ( f 5 1, 2, · · · , u; u 5 f 2 g ),Or d r rg 1 fr ( f 2 d)!d51

and v1, v2, . . ., vd, . . ., vu are a group of generalised ei-
genvectors corresponding to the eigenvector lr and are
defined by

vd 5 (A 2 lrE)u2dv (d 5 1, 2, . . ., u)

where the vector v is called the generalised eigenvector
of rank u associated with the eigenvalue lr if

(A 2 lrE)uv 5 0 and (A 2 lrE)u21v ± 0.

From the above relations, we know that, in the second
subcase, Equation 7 will be of the form

n

l tjX 5 {x } 5 c (t)e (12)Oi ij5 6
j51

where cij(t) is the following polynomial in t

dij

ec (t) 5 p t (0 # d # n 2 1) (13)Oij ije ij
e50

in which dij is an integer for a given distinct eigenvalue
lj and their values depend on the multiplicity of the ei-
genvalue and the number of eigenvectors corresponding
to this eigenvalue. The coefficients pije are constants. Sub-
stituting Equation 13 into Equation 12 gives

n dij

e l tjX 5 {x } 5 p t e . (14)O Oi ije5 1 2 6
j51 e50

When all dij 5 0, then cij(t) 5 cij 5 pij0 5 constant,
which implies that Equations 11 and 14 have the same
form. Therefore, Equation 12 or 14 is the general kinetic
model of a multi-site order-disorder process. For order-
disorder processes involving multiple nonequivalent sites,
it is possible that some of the pre-exponential terms cij(t)
are polynomials in t.

SOME BASIC THEOREMS GOVERNING A MULTI-SITE

ORDER-DISORDER PROCESS

The kinetic coefficient matrix A completely controls
the characteristics of an order-disorder process for a given
initial site-occupancy vector. Here, we will prove some
basic theorems concerning the kinetic coefficient matrix
A, which is given by (see below)

n

2 k k k · · · kO 1j 21 31 n1
j52

n

a a a · · · a11 12 13 1n k 2 k k · · · kO12 2j 32 n2
j51a a a · · · a21 22 23 2n j±2 n

A 5 a a a · · · a 5 . (15)31 32 33 3n k k 2 k · · · kO13 23 3j n3
j51F GA A A A
j±3F G

a a a · · · a A A A An1 n2 n3 nn

n21

k k k · · · 2 kO1n 2n 3n nj
j51
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Each of the n(n 2 1) kinetic coefficients is a function of
temperature, and can be expressed by the Arrhenius
equation

2E /RTijk 5 Q eij ij

where Qij and Eij are the pre-exponential factor and acti-
vation energy, respectively. The kinetic coefficient matrix
A has some very important characteristics, which are stat-
ed in the following lemma and theorems.

Lemma 1
For an n 3 n kinetic coefficient matrix A, represented

by Matrix 15 of an n-site order-disorder process, each off-
diagonal entry is positive; each diagonal entry is nega-
tive, and its absolute value is equal to the sum of all other
off-diagonal entries in the same column as the diagonal
entry.

This lemma implies that Det(A) 5 0 and indicates that

there are only n 2 1 independent variables in the site-
occupancy vector X 5 {xi} 5 [x1 x2 x3 ··· xn]T; this is
consistent with Equation 6.

Theorem 1

Let Ar1, Ar2, Ar3, . . ., Aru (r 5 1, 2, 3, . . ., n 2 1) be
the principal submatrices of order r of the n 3 n kinetic
coefficient matrix A, where

n!nu 5 5 ;1 2r r!(n 2 r)!

all the determinants Det(Ari) (i 5 1, 2, 3, . . ., u) or the
principal minors of order r of A have the same sign (21)r,
and are nonzero real numbers.

Proof: to illustrate the general characteristics of the
principal minors, let us first examine the case n 5 4.
Consider the matrix (see below)

a a a a11 12 13 14

a a a a21 22 23 24A 5
a a a a31 32 33 34F G
a a a a41 42 43 44

2(k 1 k 1 k ) k k k12 13 14 21 31 41

k 2(k 1 k 1 k ) k k12 21 23 24 32 425 .
k k 2(k 1 k 1 k ) k13 23 31 32 34 43F G
k k k 2(k 1 k 1 k )14 24 34 41 42 43

For r 5 1, there are four principal submatrices of order one, and their determinants are

1 1Det(A ) 5 a 5 (21) (k 1 k 1 k ), Det(A ) 5 a 5 (21) (k 1 k 1 k ),11 11 12 13 14 12 22 21 23 24

1 1Det(A ) 5 a 5 (21) (k 1 k 1 k ), Det(A ) 5 a 5 (21) (k 1 k 1 k ),13 33 31 32 34 14 44 41 42 43

For r 5 2, there are six principal submatrices of order two, and their determinants are

4 4 4a aii ij 2 2Det(A ) 5 5 (21) k k 2 k k 5 (21) (k 1 k ) k 1 k (k 1 k )O O O2p il jl ij ji if ig jl ij jf jg) )a a F G F Gl51 l51 l51ji jj 1 21 2 1 2
l±i l±j l±j

where f, g 5 {1, 2, 3, 4} 2 {i, j}, and i, j 5 1, 2, 3, 4 and p 5 1, 2, 3, 4, 5, 6. For example,

a a11 12 2Det(A ) 5 5 (21) [(k 1 k )(k 1 k 1 k ) 1 k (k 1 k )]21 13 14 21 23 24 12 23 24) )a a21 22

a a22 23 2Det(A ) 5 5 (21) [(k 1 k )(k 1 k 1 k ) 1 k (k 1 k )].22 21 24 31 32 34 23 31 34) )a a32 33

For r 5 3, there are four principal submatrices, and their determinants are

a a a11 12 13

3Det(A ) 5 a a a 5 (21) [k (k k 1 k k 1 k k 1 k k 1 k k 1 k k 1 k k 1 k k )31 21 22 23 14 21 31 23 31 24 31 21 32 24 32 21 34 23 34 24 34) )
a a a31 32 33

1 k (k k 1 k k 1 k k 1 k k ) 1 k (k k 1 k k 1 k k 1 k k )]12 24 31 24 32 23 34 24 34 13 21 34 24 32 23 34 24 34
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a a a11 12 14

3Det(A ) 5 a a a 5 (21) [k (k k 1 k k 1 k k 1 k k 1 k k 1 k k 1 k k 1 k k )32 21 22 24 13 21 41 23 41 24 41 21 42 23 42 21 43 23 43 24 43) )
a a a41 42 44

1 k (k k 1 k k 1 k k 1 k k ) 1 k (k k 1 k k 1 k k 1 k k )]12 23 41 23 42 23 43 24 43 14 23 42 21 43 23 43 24 43

a a a11 13 14

3Det(A ) 5 a a a 5 (21) [k (k k 1 k k 1 k k 1 k k 1 k k 1 k k 1 k k 1 k k )33 31 33 34 12 31 41 32 41 34 41 31 42 32 42 34 42 31 43 32 43) )
a a a41 43 44

1 k (k k 1 k k 1 k k 1 k k ) 1 k (k k 1 k k 1 k k 1 k k )]13 32 41 32 42 34 42 32 43 14 31 42 32 42 34 42 32 43

a a a22 23 24

3Det(A ) 5 a a a 5 (21) [k (k k 1 k k 1 k k 1 k k 1 k k 1 k k 1 k k 1 k k )34 32 33 34 21 31 41 32 41 34 41 31 42 32 42 34 42 31 43 32 43) )
a a a42 43 44

1 k (k k 1 k k 1 k k 1 k k ) 1 k (k k 1 k k 1 k k 1 k k )].23 31 41 34 41 31 42 31 43 24 31 41 32 41 34 41 31 43

From the above example, it can be seen that (1) except
matrix A itself [Det(A) 5 0], all the determinants of the
principal submatrices of a given order r (r 5 1, 2, 3, . . .,
n 2 1) have the same sign (21)r and (2) apart from this
sign, each term within the expansion of each determinant
is a positive product of r kinetic coefficients that are pos-
itive real numbers in terms of their physical meaning.
These features are general to any principal submatrix, as
is proved below.

For any principal submatrix of order r of matrix A

a a a · · · af(1)f(1) f(1)f(2) f(1)f(3) f(1)f(r)

a a a · · · af(2)f(1) f(2)f(2) f(2)f(3) f(2)f(r)

A 5 a a a · · · ari f(3)f(1) f(3)f(2) f(3)f(3) f(3)f(r)GF A A A A
a a a · · · af(r)f(1) f(r)f(2) f(r)f(3) f(r)f(r)

where f(1), f(2), f(3), . . ., f(r) is a permutation without
inversion over {1, 2, 3, ···, n}, that is, f(1) , f(2) ,
f(3) , . . . ,f(r). The determinant of this principal sub-
matrix is given by

Det(A ) 5 {(signP)a a aOri f(1)P[f(1)] f(2)P[f(2)] f(3)P[f(3)]

· · · a :P∈F(r)} 5 Q 1 Rf(r)P[f(r)]

with Q 5 (signP)a a a · · · a , andf(1)f(1) f(2)f(2) f(3)f(3) f(r)f(r)

R 5 {(signP)a a aO f(1)P[f(1)] f(2)P[f(2)] f(3)P[f(3)]

· · · a :P∈S(r)}f(r)P[f(r)] (16)

where P is a permutation over F(r) 5 {f(1), f(2), f(3),
. . ., f(r)}, S(r) is the rest of F(r) which excludes only
the permutation f(1) f(2) f(3) . . . f(r), that is S(r) 5
F(r) 2 f(1) f(2) f(3) . . . f(r); signP 5 (21)h is the sign
of a given permutation and h is the number of inversions
in the permutation. Note that the sign function in the term
Q is signP 5 (21)h 5 (21)0 5 11 because there is no
inversion in the permutation f(1) f(2) f(3) . . . f(r).

Since
n

a 5 (21) k ,Of(i)f(i) f(i)j
j51

j±f(i)

it follows that

Q 5 (signP)a a a · · · af(1)f(1) f(2)f(2) f(3)f(3) f(r)f(r)

5 a a a · · · af(1)f(1) f(2)f(2) f(3)f(3) f(r)f(r)

n n n

(21) k (21) k (21) kO O Of(1)j f(2)j f(3)j5 · ·
j51 j51 j515 6 5 6 5 6

j±f(1) j±f(2) j±f(3)

n

(21) kO f(r)j· · ·
j515 6

j±f(r)

n n n

k k kO O Or f(1)j f(2)j f(3)j5 (21)
j51 j51 j511 21 21 2

j±f(1) j±f(2) j±f(3)

n

kO f(r)j· · · .
j511 2

j±f(r)

As the diagonal entry af(i)f(i) is the sum of all other off-
diagonal entries in the column f(i) of A, the expansion
of Q will include all the product terms that the kinetic
coefficients could possibly have for a given principal sub-
matrix of order r. As a result, in the expansion of R, each
term that has an opposite sign to (21)r will have a cor-
responding term in the expansion of Q, and these terms
with opposite signs will cancel out in the sum Det(Ari) 5
Q 1 R, leaving the determinant Det(Ari) with terms of
the same sign (21)r. Because the selection of the princi-
pal submatrix Ari is arbitrary and its sign depends only
on its order r, all submatrices with the same order have
the same sign. Hence, the determinant can be expressed
as

Det(Ari) 5 Q 1 R 5 (21)rzDet(Ari)z ± 0
(i 5 1, 2, 3, · · ·, u). (17)
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Theorem 2
All coefficients bi (i 5 1, 2, 3, ···, n) except b0 in the

characteristic Polynomial 8 of the kinetic coefficient ma-
trix A have the same sign; that is, they must be either all
positive when n is an even integer or all negative when
n is an odd integer; b0 is always zero. Proof: for the char-
acteristic polynomial of any n 3 n matrix, A 5 {aij},

G(l) 5 Det(A 2 lE)
n n21 s5 b l 1 b l 1 . . . 1 b ln n21 s

21 . . . 1 b l 1 b l 1 b2 1 0 (18)

it can be proved that, for any coefficient bi (i 5 0, 1, 2,
3, . . ., n) of G(l) (Schneider and Barker 1968),

b 5 Det(A) (19)0

nb 5 (21) (20)n

and for 0 , s , n, the coefficient bs in ls is given by
u

sb 5 (21) Det(A )Os (n2s)i
i51

u

s5 (21) (all principal minors of AO
i51

of order n 2 s)

n
s 5 1, 2, · · ·, n 2 1; i 5 1, 2, · · ·, u; u 5 (21)1 1 22n 2 s

where A(n2s)i is the principal submatrix of order (n 2 s),
and the sum includes all the determinants of principal
submatrices of order (n 2 s) of A. According to Theorem
1 and Equation 17, all principal minors of order r have
the same sign (21)r, and it follows that

u

s n2sb 5 (21) (21) zDet(A )zOs (n2s)i
i51

u

n5 (21) zDet(A )z ± 0. (22)O (n2s)i
i51

This indicates that all bs(s 5 1, 2, ···, n) have the same
sign: (21)n.

By Lemma 1, Det(A) 5 0; therefore, from Equation
19, it follows that b0 5 0. From Equations 20 and 22, we
know that, except b0 5 0, all coefficients of Polynomial
8 or 18 of the kinetic matrix A have the same sign (21)n,
and are nonzero real numbers. Therefore, Polynomial 8
or 18 can be expressed as

G(l) 5 Det(A 2 lE)

n n n21 s 25 (21) [l 1 d l 1 · · · 1 d l 1 · · · 1 d l 1 d l]n21 s 2 1

(23)

where
u

d 5 zb z 5 zDet(A )z . 0 (s 5 1, 2, 3, · · ·, n 2 1).Os s (n2s)i
i51

Theorem 3
For the characteristic Polynomial 8 of the n 3 n kinetic

coefficient matrix A, among the n eigenvalues, there is

one and only one zero eigenvalue, and all other n 2 1
eigenvalues are either negative or complex; for complex-
valued roots, the real part of each conjugate pair h 6 mi
must be either negative or zero.

Proof: according to Theorems 1 and 2, all the coeffi-
cients of the characteristic Polynomial 23 (or its equiva-
lent Polynomial 8 or 18) have the same sign (21)n. Be-
cause there is no change in signs, according to the
Descartes’ rule of signs, the number of positive roots is
zero. Therefore, all the n roots must be either negative,
zero, or complex-valued. On the other hand, if l is sub-
stituted with 2l in Polynomial 23, there are n 2 1 vari-
ations in the signs of the coefficients of the polynomial
G(2l). According to the Descartes’ rule of signs, the
number of negative real roots is either n 2 1 or less than
n 2 1 by an even integer. Such an even integer is just
the number of conjugate (complex-value) roots.

Existence and uniqueness of the zero root: according
to Polynomial 23, let G(l) 5 (21)nl[ln21 1 dn21ln22 1

. . . 1 dsls21 1 . . . 1 d2l 1 d1] 5 0.

It follows that

l1 5 0 (24)

and

ln21 1 dn21ln22 1 . . . 1 dsls21 1 . . . 1 d2l 1 d1 5 0.
(25)

Equation 24 indicates that there is at least one zero root.
If there is another zero root l2 5 0, it must be a root of
Equation 25. Substituting l2 into Equation 25, we get d1

5 0, which contradicts Theorems 1 and 2 and Equation
22 that di 5 zbiz . 0 (i 5 1, 2, 3, . . ., n). Therefore, l2

cannot be zero; in other words, there is one and only one
zero root.

According to the fundamental theorem of algebra, the
characteristic Polynomial 8 or 18 can be expressed as

n n21 2G(l) 5 b l 1 b l 1 · · · 1 b l 1 b l 1 bn n21 2 1 0

5 b (l 2 l )(l 2 l ) · · · (l 2 l )(l 2 l )n n n21 2 1

n 1 n21 2 n225 b {l 1 (21) l l 1 (21) l l lO On i i j

3 n23 l n2l1 (21) l l l l 1 · · · 1 (21) lO i j k

nl l l · · · l 1 · · · 1 (21) l l l l }.O i j k l 1 2 3· · · n

(26)

Expanding the right-hand side of Equation 26 and equat-
ing the coefficient of the term ln21 on both sides of the
equation give

n11b 5 (21)b l 5 (21) l . (27)O On21 n i i

On the other hand, considering

n

Det(A ) 5 a 5 2 kO1i ii ij
j51
j±i

and Equation 21, it follows that
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n n

n nb 5 (21) zDet{A }z 5 (21) zDet(A )zO On21 [n2(n21)]i 1i
i51 i51

n n

n5 (21) k . (28)O O ij
i51 j51

j±i

From Equations 27 and 28, it follows that

n n n

l 5 2 k . (29)O O Oi ij
i51 i51 j51

j±i

This indicates that the sum Sli should always be negative.
Because nonreal roots occur in conjugate pairs, each con-
jugate pair must therefore appear in the sum of all the n
roots. The sum of each conjugate pair is (h 1 mi) 1 (h
2 mi) 5 2h. Therefore, the imaginary parts cancel in the
sum. As all the real roots are either negative or zero, if
the real part h were positive, then sometimes a positive
sum Sli would occur, contradicting Theorem 2 and Re-
lation 29. Hence, the real part of each pair of complex-
valued roots must be either negative or zero.

By Theorem 3, Equation 12 can be rewritten as:

n

l tjx 5 c 1 c (t)e (30)Oi i1 ij
j52

where l1 5 0 (the zero root). This indicates that the ki-
netic equation of an n-site order-disorder process consists
of one constant term and n 2 1 exponential terms. Such
a constant term is the equilibrium site occupancy at the
si site.

INVERSE CALCULATION OF KINETIC COEFFICIENTS

Once the initial site occupancies are known, the order-
disorder behaviour of atoms in a given crystal is com-
pletely determined by the n(n 2 1) kinetic coefficients.
Hence, estimating these kinetic coefficients from experi-
mental data is an essential step in theoretical studies of
multi-site ordering-disordering.

Nonlinear parameter estimation

Equations 11, 12, and 14 contain some unknown pa-
rameters that can be determined only through experiment:
cij and lj in Equation 11, and pije, dij and lj (i, j 5 1, 2,
. . ., n) in Equation 14. To calculate them, it is essential
to determine the kinetic site occupancies of an atom or
ion, that is, the site occupancies at different times in iso-
thermal or isobaric conditions, at each of the n nonequi-
valent sites.

Inversion of kinetic coefficients

Suppose that all the above parameters have been esti-
mated; the problem now is to calculate the n(n 2 1) ki-
netic coefficients in matrix A. Expanding Equation 30
gives

l t l t l t2 3 nx 5 c 1 c (t)e 1 c (t)e 1 · · · 1 c (t)e (31.1)1 11 12 13 1n

l t l t l t2 3 nx 5 c 1 c (t)e 1 c (t)e 1 · · · 1 c (t)e (31.2)2 21 22 23 2n

l t l t l t2 3 nx 5 c 1 c (t)e 1 c (t)e 1 · · · 1 c (t)e (31.3)3 31 32 33 3n

A A A
l t l t l t2 3 nx 5 c 1 c (t)e 1 c (t)e 1 · · · 1 c (t)e (31.n)n n1 n2 n3 nn

l t l t2 3c c (t)e c (t)e11 12 13

l t l t2 3c c (t)e c (t)e21 22 23

l t l t2 3Let X 5 , X 5 , X 5 , · · ·,c c (t)e c (t)e1 2 331 32 33F G F G F GA A A
l t l t2 3c c (t)e c (t)en1 n2 n3

l tnc (t)e1n

l tnc (t)e2n

l tnX 5 .c (t)en 3nF GA
l tnc (t)enn

Note that X1 is a constant vector because of the unique-
ness and existence of the zero root l1 5 0 by Theorem
3. It can be shown that X1, X2, X3, . . ., Xn are n linearly
independent solutions of Equation 4, and it follows that

dX dX dX1 2 35 X9 5 AX , 5 X9 5 AX , 5 X91 1 2 2 3dt dt dt

dXn5 AX , · · ·, 5 X9 5 AX3 n ndt

which is equivalent to

5 A[X1 X2 X3 . . . Xn].[X9 X9 X9 . . . X9]1 2 3 n (32)

Let F(t) 5 [X1 X2 X3 . . . Xn], which is the fundamental
solution matrix of Equation 4; then Equation 32 becomes

F(t)9 5 AF(t) (33)

and the kinetic coefficient matrix is

A 5 F(t)9 F(t)21. (34)
Because all the parameters in Equations 31.1 to 31.n have
been completely determined through nonlinear parameter
estimations from the experimental kinetic site-occupancy
data, Equation 34 can be calculated. By equating each
component of the right-hand side of the matrix Equation
34 to the corresponding component of the kinetic coef-
ficient Matrix 15, we obtain the n(n 2 1) kinetic coeffi-
cients. It should be noted that, although each component
of F(t), cij(t) , is a function of time, the final productl tje
F(t)9F(t)21 is a constant matrix.

UNITS OF SITE-OCCUPANCY VARIABLES

There are actually two options in choosing the units of
the site-occupancy variables: mole number per formula
unit (or atoms per formula unit) and mole fraction (or
atomic fraction), both of which are valid.
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Mole number per formula unit
Let mi be the mole number of an atom at site si per

formula unit (pfu) of a crystal, yi the mole fraction of the
atom at site si, vi the multiplicity of site si (pfu), and N
the sum of the multiplicities or the total number of all
nonequivalent sites (pfu). Then we have

n

N 5 v (35)O i
i51

m 5 v y . (36)i i i

If we let M 5 {mi} 5 [m1 m2 m3 . . . mn]T 5 [v1y1 v2y2

v3y3 . . . vnyn]T and X 5 M, and replace x1, x2, . . ., xi, . . .,
xn with the corresponding m1, m2, . . ., mi, . . ., mn, all
results concerning X and x1, x2, . . ., xn are valid for M
and m1, m2, . . ., mi, . . ., mn. After such a substitution, we
have

ndm1 5 2 k m 1 k m 1 k m 1 · · · 1 k m (37.1)O 1j 1 21 2 31 3 n1 n1 2dt j52

ndm2 5 k m 2 k m 1 k m 1 · · · 1 k m (37.2)O12 1 2j 2 32 3 n2 n1 2dt j51
j±2

ndm3 5 k m 1 k m 2 k m 1 · · · 1 k m (37.3)O13 1 23 2 3j 3 n3 n1 2dt j51
j±3

A A A
n21dmn 5 k m 1 k m 1 k m 1 · · · 2 k m . (37.n)O1n 1 2n 2 3n 3 nj n1 2dt j51

After summing Equations 37.1 to 37.n, we get an ex-
pression similar to Equation 6:

n n n

0 0 0m 5 m 5 constant 5 v w 5 Nw (38)O O Oi i i l l1 2
i51 i51 i51

where m is the initial site occupancy (in mole number0
i

per formula unit) and w is the bulk or total mole fraction0
l

of atom or ion el (l 5 1, 2, 3, . . ., q) in the crystal. In
the matrix form, Equations 37.1 to 37.n can be rewritten
as

dM
5 AM. (39)

dt

The solution to Equation 39 is
At 2At A(t2t )0 0M 5 {m } 5 e e M(t 5 t ) 5 e M . (40)i 0 0

According to Equations 11 and 12, in an explicit form,
Equation 40 becomes

n

l tjM 5 {m } 5 d (t)e (41)Oi ij5 6
j51

where dij(t) is a constant or polynomial in t.

Mole fraction
Substituting Equation 36 into Equations 37.1 to 37.n

gives

nd(v y )1 1 5 2 k (v y ) 1 k (v y ) 1 k (v y ) 1 · · ·O 1j 1 1 21 2 2 31 3 31 2dt j52

1 k (v y ) (42.1)n1 n n

nd(v y )2 2 5 k (v y ) 2 k (v y ) 1 k (v y ) 1 · · ·O12 1 1 2j 2 2 32 3 31 2dt j51
j±2

1 k (v y ) (42.2)n2 n n

nd(v y )3 3 5 k (v y ) 1 k (v y ) 2 k (v y ) 1 · · ·O13 1 1 23 2 2 3j 3 31 2dt j51
j±3

1 k (v y ) (42.3)n3 n n

A A A

d(v y )n n 5 k (v y ) 1 k (v y ) 1 k (v y ) 1 · · ·1n 1 1 2n 2 2 3n 3 3dt

n21

2 k (v y ). (42.n)O nj n n1 2
j51

Summing Equations 42.1 to 42.n gives

n

d v yO i i1 2
i51

5 0 (43)
dt

which is equivalent to

n n n

0 0 0v y 5 v y 5 constant 5 v w 5 NwO O Oi il i il i l l1 2
i51 i51 i51

(i 5 1, 2, 3, · · ·, n; l 5 1, 2, 3, · · ·, q) (44)

or
n

0p y 5 w (45)O i il l
i51

where

v vi ip 5 5i n N
vO i

i51

is defined as the fractional site multiplicity of site i in the
crystal, and y 5 y is the initial site occupancy of atom0 0

il i

or ion el(l 5 1, 2, 3, . . ., q). In the above notation, the
subscript l in the site-occupancy variable yi 5 yil for atom
or ion el is used here for clarity, but was previously omit-
ted (above) for simplicity.

Let us define the site-multiplicity matrix V as

v 0 0 · · · 01

0 v 0 · · · 02

V 5 . (46)0 0 v · · · 03F GA A A · · · A
0 0 0 · · · vn

Then in the matrix form, Equation 36 becomes
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M 5 VY (47)

and Equations 42.1 to 42.n has the form

d(VY)
5 A(VY). (48)

dt

As the site-multiplicity matrix V is an n 3 n nonsin-
gular constant diagonal matrix, its inverse matrix V21 ex-
ists. By differentiating the matrices at the left-hand side
of Equation 48 and rearranging it, we have

dY
5 BY (49)

dt

where the matrix B is defined as

B 5 V21AV (50)

which indicates that matrix B is similar to matrix A. The
characteristic polynomial of B is

21F(l) 5 Det(B 2 lE) 5 Det(V AV 2 lE)

21 21 215 Det[V AV 2 V (lE)V] 5 Det(V (A 2 lE)V)

215 Det(V )Det(A 2 lE)Det(V)

5 Det(A 2 lE) 5 G(l). (51)

Equation 51 proves that both matrices A and B have
the same eigenvalues, which is important enough to be
stated as the following theorem.
Theorem 4.

For a multi-site order-disorder process, the eigenvalues
of matrices A and B of the governing matrix Equations
39 and 49 are the same and independent of the multi-
plicities of all nonequivalent sites in a crystal, no matter
what units are chosen for the site-occupancy variables.

By Theorem 4, the matrix solution to Equation 49 is
21 At 2At 21 A(t2t )0 0Y 5 {y } 5 V e e VY(t 5 t ) 5 V e VYi 0 0

B(t2t )05 e Y (52)0

where the inverse form of the site-multiplicity matrix V21

and the initial conditions are

1
0 0 · · · 0

v1

1
0 00 0 · · · 0 m y1 1v2 0 0m y2 2121 0 0V 5 , M 5 , Y 5 .0 0 · · · 0 m y0 03 3v3 F G F GA A
0 0F GA A A · · · A m yn n

1
0 0 0 · · ·

vn

Equation 52 has the following explicit form
n1

l tjY 5 {y } 5 d (t)e . (53)Oi ij5 6v j51i

Let G 5 {dij(t) } and C 5 {1/vi dij(t) } be n 3 nl t l tj je e
matrices whose column vectors form fundamental-solu-
tion sets to Equations 39 and 49, respectively; then it
follows that

G(t) 5 VC(t). (54)

The kinetic coefficient matrices B and A can be similarly
inverted to give

21 21 21 21B 5 C(t)9C(t) 5 [V G(t)]9[V G(t)]

21 215 V G(t)9G(t) V (55)

21 21A 5 VBV 5 G(t)9G(t) . (56)

CONSTRAINED VERSUS UNCONSTRAINED

TREATMENTS

There exist virtually two different approaches to the
treatment of order-disorder kinetic Equations 3.1 to 3.n:
constrained and unconstrained

Constrained treatment and crystal-chemical conditions

In the constrained approach, two external crystal-
chemical conditions are often exerted on site occupancies
during the experimental derivation of these variables
(Finger 1969a, 1969b; Hawthorne 1983b; Skogby and
Annersten 1985; Hirschmann et al. 1994):

(1) For each site si, we have

q

0y 5 r # 1 (i 5 1, 2, 3, · · ·, n; l 5 1, 2, 3, · · ·, q)O il i
l51

(57)

where r is a constant for site si, and is equal to unity0
i

when only atoms e1, e2, . . ., el, eq occupy the si site (Wi

5 0). This condition can be always satisfied in both con-
strained and unconstrained treatments.

(2) For each atom or ion el, we get

n n n

0 0m 5 v y 5 v w 5 NwO O Oi i il i l l1 2
i51 i51 i51

(i 5 1, 2, 3, · · ·, n; l 5 1, 2, 3, · · ·, q) (58)

where w is the bulk or total mole fraction of atom or ion0
l

el in the crystal.
From Equations 38 and 44, it is clear that the governing

Equations 37.1 to 37.n or Equations 42.1 to 42.n naturally
comply with the crystal-chemical Constraint 58 when ei-
ther the mole number per formula unit or mole fraction
(associated with the site multiplicities) is used as the unit
of the site-occupancy variables.

Unconstrained treatment

In the unconstrained method, no additional external
conditions are constrained on the site-occupancy vari-
ables. This approach can be rationalized by the following
reasons:

(1) In view of the theory of chemical kinetics, the va-
lidity of the governing Equations 3.1 to 3.n for a multi-
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site order-disorder process does not necessarily require
any other external constraints.

(2) The site occupancies of atoms at nonequivalent
sites can be experimentally determined, independently of
the crystal chemistry, such as Constraint 58 (e.g., Ungar-
etti et al. 1981; Rossi et al. 1983; Molin 1989; Molin et
al. 1991; Skogby et al. 1992). This is because the dif-
fraction data or the quantities derived from them, such as
unit cell parameters, atomic positions, bond lengths and
angles as well as mean atomic numbers, also contain in-
formation on the bulk chemistry of the crystal (Haw-
thorne 1983b; Domeneghetti et al. 1995). Therefore,
when deriving the experimental site occupancies there are
two schools of researchers: one uses crystal-chemical
Constraint 58 (e.g., Finger 1969a, 1969b; Ghose and
Weidner 1972; Skogby and Annersten 1985; Ganguly et
al. 1994; Hirschmann et al. 1994), whereas the other ig-
nores it (e.g., Ungaretti et al. 1981; Rossi et al. 1983;
Molin 1989; Molin et al. 1991; Skogby et al. 1992). How-
ever, these two different approaches give quite consistent
results within experimental errors (Ganguly et al. 1994;
Domeneghetti et al. 1995).

(3) When site multiplicities do not appear explicitly in
the governing Equations 3.1 to 3.n, a group of symmet-
rically equivalent sites are merged and treated as a single
site. In such a case, the kinetic coefficients implicitly con-
tain the contribution of site multiplicities to the order-
disorder kinetics.

(4) Constraint 58 is actually a mass conservation equa-
tion, whereas Equation 6 is an equivalent form of mass
conservation in which a group of equivalent sites are
treated as a single site.

In this treatment, we choose directly the mole fraction
as the unit of all site-occupancy variables and explicitly
exclude the site multiplicities from the governing Equa-
tions 3.1 to 3.n. Let the site-occupancy vector be

Z 5 {zi} 5 [z1 z2 z3 . . . zn]T

with the initial condition being

Z(t 5 t0) 5 Z0 5 [z z z . . . z ]T.0 0 0 0
1 2 3 n

If we let X 5 Z and replace x1, x2, . . ., xi, . . ., xn with
corresponding z1, z2, . . ., zi, . . ., zn in all the relevant equa-
tions, all the conclusions regarding X and x1, x2, . . ., xi,
. . ., xn will be applicable to Z and z1, z2, . . ., zi, . . ., zn.

It can be noted that the unconstrained kinetic model
can be easily switched to the constrained ones (Equations
41 and 52), only by changing the choice of the unit of
the site-occupancy variables from the mole number per
formula unit or mole fraction associated with the site mul-
tiplicities to the mole fraction dissociated with the site
multiplicities, or vice versa.

DISCUSSION

Equations 11 and 12 or Equations 41 and 53 can be
used to predict the general form of the kinetic equations
of a multi-site order-disorder process in a crystal. For
instance, for two-site and three-site ordering-disordering,

n 5 2 and n 5 3, then the kinetic equations should be of
the form

xi 5 ci1 1 l t2c ei2 (59)

and

xi 5 ci1 1 1 .l t l t2 3c e c ei2 i3 (60)

Equations 59 and 60 are consistent with the explicit so-
lutions for two-site and three-site ordering-disordering
discussed by Sha and Chappell (1996a, 1996b). In the
case of two-site order-disorder kinetics, if the mole num-
ber per formula unit is chosen as the unit of the site-
occupancy variables, one only needs to substitute xi(i 5
1, 2) in Equations 7 and 8 of Sha and Chappell (1996a)
with mi to get the following expressions

0 0 0 0k (m 1 m ) (k m 2 k m )21 1 2 21 2 12 1m 5 21 k 1 k k 1 k12 21 12 21

· exp[2(k 1 k )(t 2 t )] (61)12 21 0

0 0 0 0k (m 1 m ) (k m 2 k m )12 1 2 21 2 12 1m 5 12 k 1 k k 1 k12 21 12 21

· exp[2(k 1 k )(t 2 t )] (62)12 21 0

where m1 and m2 are the site occupancies (in mole number
per formula unit) of sites s1 and s2 respectively, m and0

1

m are the corresponding initial site occupancies, and k12
0
2

and k21 are the kinetic coefficients.
Furthermore, if we want the site multiplicities to appear

explicitly in Equations 61 and 62, simply substitute mi(i
5 1, 2) with viyi, then we have

0 0 0 0k (v y 1 v y ) (k v y 2 k v y )21 1 1 2 2 21 2 2 12 1 1y 5 21 v (k 1 k ) v (k 1 k )1 12 21 1 12 21

· exp[2(k 1 k )(t 2 t )]12 21 0

0 0 0k w [k w 2 p y (k 1 k )]21 l 21 l 1 1 12 215 1
p (k 1 k ) p (k 1 k )1 12 21 1 12 21

· exp[2(k 1 k )(t 2 t )] (63)12 21 0

and
0 0 0 0k (v y 1 v y ) [k v y 2 k v y ]12 1 1 2 2 21 2 2 12 1 1y 5 12 v (k 1 k ) v (k 1 k )2 12 21 2 12 21

· exp[2(k 1 k )(t 2 t )]12 21 0

0 0 0k w [k w 2 p y (k 1 k )]12 l 21 l 1 1 12 215 1
p (k 1 k ) p (k 1 k )2 12 21 2 12 21

· exp[2(k 1 k )(t 2 t )] (64)12 21 0

where y1 and y2 are the site occupancies in mole fraction,
y and y are the initial site occupancies, v1 and v2 are0 0

1 2

the site multiplicities, p1 5 v1/(v1 1 v2) and p2 5 v2/(v1

1 v2) are the fractional site multiplicities, and is the0wl

bulk concentration of an atom or ion el and has the fol-
lowing relation:

w 5 (v1y 1 v2y )/(v1 1 v2) 5 (p1y 1 p2y ).0 0 0 0 0
l 1 2 1 2
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Sha and Chappell (1996a, 1996b) discussed the appli-
cability of two-site and three-site order-disorder kinetic
models. Using orthopyroxene and tremolite as examples
of two-site and four-site order-disorder processes, they
demonstrated that theoretical predictions from the kinetic
models (Sha and Chappell 1996a, 1996b) are in good
agreement with available experimental results (Besancon
1981; Saxena et al. 1987, 1989; Skogby 1987, 1992;
Sykes-Nord and Molin 1993).

Finally, it is important to point out that the occurrence
of maxima or minima of the site-occupancy functions is
characteristic of multi-site ordering-disordering in con-
trast to two-site ordering-disordering in which the site
occupancies are monotonically increasing or decreasing
functions.
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