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Abstract

In this paper, we propose an efficient Monte Carlo implementation of non-linear
FBSDEs as a system of interacting particles inspired by the ideas of branching diffu-
sion method. It will be particularly useful to investigate large and complex systems,
and hence it is a good complement of our previous work presenting an analytical per-
turbation procedure for generic non-linear FBSDEs. There appear multiple species of
particles, where the first one follows the diffusion of the original underlying state, and
the others the Malliavin derivatives with a grading structure. The number of branch-
ing points are capped by the order of perturbation, which is expected to make the
scheme less numerically intensive. The proposed method can be applied to semi-linear
problems, such as American and Bermudan options, Credit Value Adjustment (CVA),
and even fully non-linear issues, such as the optimal portfolio problems in incomplete
and/or constrained markets, feedbacks from large investors, and also the analysis of
various risk measures.
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1 Introduction

The forward backward stochastic differential equations (FBSDEs) were first introduced by
Bismut (1973) [1], and then later extended by Pardoux and Peng (1990) [27] for general
non-linear cases. They were found particularly relevant for optimal portfolio and indiffer-
ence pricing issues in incomplete and/or constrained markets. Their financial applications
are discussed in details in, for example, El Karoui, Peng and Quenez (1997a) [10], Ma and
Yong (2000) [24] and a recent book edited by Carmona (2009) [4]. The importance of
FBSDEs will increase in coming years even among practitioners where the new financial
regulations will put significant constraints on available assets and trading strategies.

In the recent paper, Fujii & Takahashi (2011) [12] proposed a new perturbative so-
lution technique for generic non-linear FBSDEs. It was shown that a non-linear FBSDE
can be decomposed into a series of linear and decoupled FBSDEs by treating a non-linear
driver and feedback terms as perturbations to the corresponding decoupled free system.
In particular, it allows analytical explicit expressions for the backward components with
the help of the asymptotic expansion technique (See, for example [28, 21, 30, 29].). A
backward component of the diffusion part was shown to be obtained by directly consider-
ing dynamics of the stochastic flow, which denotes a Malliavin derivative of the underling
state process, or simply applying Itô formula to the result of the other part. In Fujii &
Takahashi (2012) [13], the method was applied to a quadratic-growth FBSDE appearing
in an incomplete financial market with stochastic volatility. Explicit expressions for both
of the backward components were obtained up to the third order of the volatility of volatil-
ity. The comparison to the exact solution with Cole-Hopf transformation demonstrated
effectiveness of the perturbative expansion.

Notice the fact that one can already apply standard Monte Carlo simulation to the
results obtained in each order of the perturbative expansion in [12]. However, due to its
convoluted nature, it contains multi-dimensional time integrations of expectation values
which make the naive applications too time consuming, particularly for the evaluation
of higher order perturbation terms. To handle this problem, we applied the idea of par-
ticle representation used in branching diffusion models, such as in McKean (1975) [26].
There, the convoluted expectation is compressed into a single standard expectation by
introducing an intensity of the particle interaction. McKean [26] applied the method to
solve a particular type of semi-linear PDE, where a single particle splits into two at each
interaction time and creates a cascade of the identical particles. Note that, our method
is not directly related to McKean [26] since the interested system is already decomposed
into a set of linear problems, although we have used the similar particle representation to
avoid nested simulations.

The analysis of branching Markov process and related problems in semi-linear PDEs
has a long history. Some of the well-known works are Fujita (1966) [15], Ikeda, Naga-
sawa & Watanabe (1965,1966,1968) [17, 18, 19], Ikeda et.al. (1996,1997) [20] and Naga-
sawa & Sirao (1969) [25]. As for a recent work, in particular, Chakraborty & López-
Mimbela (2008) used particle representation where the number of offspring at each inter-
action point is randomly drawn by some probability distribution, which can be finitely
many or infinite. The authors used the branching particle representation 1 to study the
existence of global solutions for semi-linear PDEs with a non-linear driver given by a

1The same branching representation is already seen in [19], for example.
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generic polynomial function 2. Recently, Henry-Labordère (2012) [16] introduced a par-
ticle representation to study the semi-linear problems in finance. He called it marked
branching diffusion and has discussed its application to efficiently calculate CVA (credit
value adjustment) in one-shot Monte Carlo simulation. He also referred to its application
to other semi-linear problems, such as American options, as well as its possible extension
to truly non-linear problems by using Malliavin derivatives.

In the current paper, we combine the idea of particle representation and the per-
turbation technique developed in the previous work [12]. We provide a straightforward
simulation scheme to solve fully-nonlinear decoupled as well as coupled FBSDEs at each
order of perturbative approximation. In contrast to the direct application of branching
diffusion method, the number of branching points are capped by the order of perturbative
expansion, which is due to the linearity of the decomposed FBSDE system. This property
is expected to make Monte Carlo simulation less numerically intensive. Our method can be
applied to semi-linear problems, such as American and Bermudan options 3, Credit Value
Adjustment (CVA) as special examples. It can be also applied to fully non-linear (and fully
coupled) issues, such as the optimal portfolio problems in incomplete and/or constrained
market, analysis for various risk measures as well as for the feedbacks from so-called large
investors. Concrete applications of the new method will be published separately [14].

2 Setup

We first consider generic decoupled non-linear FBSDEs. Let us use the same setup assumed
in the work [12]. The probability space is taken as (Ω,F , P ) and T ∈ (0,∞) denotes some
fixed time horizon. Wt = (W 1

t , · · · ,W
r
t )

∗, 0 ≤ t ≤ T is Rr-valued Brownian motion defined
on (Ω,F , P ), and (Ft){0≤t≤T} stands for P-augmented natural filtration generated by the
Brownian motion.

We consider the following forward-backward stochastic differential equation (FBSDE)

dVs = −f(Xs, Vs, Zs)ds + Zs · dWs (2.1)

VT = Ψ(XT ) (2.2)

where V takes the value in R, and Xt ∈ Rd is assumed to follow a generic Markovian
forward SDE

dXs = γ0(Xs)ds+ γ(Xs) · dWs . (2.3)

Here, we absorbed an explicit dependence on time toX by allowing some of its components
can be a time itself. Ψ(XT ) denotes the terminal payoff where Ψ(x) is a deterministic
function of x. The following approximation procedures can be applied in the same way
also in the presence of coupon payments. Z and γ take values in Rr and Rd×r respectively,
and ”·” in front of the dW represents the summation for the components of r-dimensional

2For recent developments and reviews of the particle methods, see for examples [8, 9]. There exist a
significant amount of works related to branching diffusion in 1960’s and 70’s. There are also a vast range
of new applications and enhancements in biology, such as gene mutation and population growth problems,
as well as in engineering issues. We have not yet obtained the whole picture of research history related to
branching diffusion and are welcoming information from those familiar with the topic.

3A BSDE formulation for an American option was shown in El Karoui etal. (1997b) [11], which was
recently studied by Labart & Lelong (2011) [22] based on regression based Monte Carlo simulation.
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Brownian motion. Throughout this paper, we are going to assume that the appropriate
regularity conditions are satisfied for the necessary treatments.

Let us fix the initial time as t. We denote the Malliavin derivative of Xu (u ≥ t) at
time t as

DtXu ∈ R
r×d (2.4)

Its dynamics in terms of the future time u is specified by the well-known stochastic flow:

d(Yt,u)
i
j = ∂kγ

i
0(Xu)(Ytu)

k
j du+ ∂kγ

i
a(Xu)(Ytu)

k
j dW

a
u

(Yt,t)
i
j = δij (2.5)

where ∂k denotes the differential with respect to the k-th component of X, and δij denotes
Kronecker delta. Here, i and j run through {1, · · · , d} and {1, · · · , r} for a. Throughout
the paper, we adopt Einstein notation which assumes the summation of all the paired
indexes. Using the known chain rule of Malliavin derivative, one sees

(DtX
i
u) =

∫ u

t

∂kγ
i
0(Xs)(DtX

k
s )ds+

∫ u

t

∂kγ
i(Xs)(DtX

k
s ) · dWs + γi(Xt) (2.6)

and hence it satisfies

(DtX
i
u)a = (Yt,u)

i
jγ

j
a(Xt) = (Yt,uγ(Xt))

i
a (2.7)

where ”a” is the index of r-dimensional Brownian motion.

3 Expansion into a series of Linear FBSDE System

Following the perturbative method proposed in [12], let us introduce the perturbation
parameter ǫ and then write the equation as

{

dV
(ǫ)
s = −ǫf(Xs, V

(ǫ)
s , Z

(ǫ)
s )ds+ Z

(ǫ)
s · dWs

V
(ǫ)
T = Ψ(XT )

(3.1)

where ǫ = 1 corresponds to the original model 4. We suppose that the solution can be
expanded in a power series of ǫ:

V
(ǫ)
t = V

(0)
t + ǫV

(1)
t + ǫ2V

(2)
t + ǫ3V

(3)
t + · · · (3.2)

Z
(ǫ)
t = Z

(0)
t + ǫZ

(1)
t + ǫ2Z

(2)
t + ǫ3Z

(3)
t + · · · (3.3)

If the non-linearity is sub-dominant, one can expect to obtain reasonable approximation
of the original system by putting ǫ = 1 at the end of calculation.

The dynamics of each pair (V (i), Z(i)) can be easily derived as follows:
Zero-th order

{

dV
(0)
s = Z

(0)
s · dWs

V
(0)
T = Ψ(XT )

(3.4)

4It is possible to extract the linear term from the driver and treat separately. Here, we simply leave it
in a driver, or work in a ”discounted” base to remove linear term in V .
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First order
{

dV
(1)
s = −f(Xs, V

(0)
s , Z

(0)
s )ds+ Z

(1)
s · dWs

V
(1)
T = 0

(3.5)

Second order

{

dV
(2)
s = −

{

V
(1)
s

∂
∂v

+ (Z
a(1)
s ) ∂

∂za

}

f(Xs, V
(0)
s , Z

(0)
s )ds+ Z

(2)
s · dWs

V
(2)
T = 0

(3.6)

Third order















dV
(3)
s = −

{

V
(2)
s

∂
∂v

+ Z
2(a)
s

∂
∂za

+ 1
2(V

(1)
s )2 ∂2

∂v2
+ V

(1)
s Z

a(1)
s

∂2

∂v∂za

+1
2Z

a(1)
s Z

b(1)
s

∂2

∂za∂zb

}

f(Xs, V
(0)
s , Z

(0)
s )ds+ Z

(3)
s · dWs

V
(3)
T = 0

(3.7)

One can continue to an arbitrary higher order in the same way.

· · · · · · · · ·

Note that the higher order backward components (V (n), Z(n)){n≥1} are always outside
of the non-linear functions. This property arises naturally due to the very nature of
perturbation. As we shall see, this is crucial to suppress the number of particles in the
numerical simulation.

4 Interacting Particle Interpretation

Let us fix the initial time t and set Xt = xt.

4.1 ǫ-0th Order

For the zeroth order, it is easy to see

V
(0)
t = E

[

Ψ(XT )
∣

∣

∣
Ft

]

(4.1)

Z
a(0)
t = E

[

∂iΨ(XT )(D
a
tX

i
T )
∣

∣

∣
Ft

]

= E

[

∂iΨ(XT )(YtT γ(Xt))
i
a

∣

∣

∣
Ft

]

(4.2)

It is clear that they can be evaluated by standard Monte Carlo simulation. However,
for their use in higher order approximation, it is crucial to obtain explicit approximate
expressions for these two quantities. As proposed in [12], we use asymptotic expansion
technique [28, 21, 30, 29] for this purpose. When Ψ is a smooth function, it is quite
straightforward. Even if Ψ is not a smooth function, such as an option payoff, one can ob-
tain explicit expressions of (V (0), Z(0)) in terms of Xt, too. This is because, one can derive
an approximate joint transition density of general diffusion processes by the asymptotic
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expansion 5. In the following, let us suppose that we have obtained the solutions up to a
given order of asymptotic expansion, and write each of them as a function of xt:

{

V
(0)
t = v(0)(xt)

Z
(0)
t = z(0)(xt)

(4.3)

4.2 ǫ-1st Order

Since the BSDE is linear, we can integrate as before. Here, let us first consider the

evaluation of V
(1)
t .

V
(1)
t =

∫ T

t

E

[

f(Xu, V
(0)
u , Z(0)

u )
∣

∣

∣
Ft

]

du

=

∫ T

t

E

[

f
(

Xu, v
(0)(Xu), z

(0)(Xu)
)
∣

∣

∣
Ft

]

du (4.4)

Although it is possible to carry out standard Monte Carlo simulation for every time u ∈

(t, T ) and integrate to obtain the V
(1)
t , the time integration becomes numerically quite

heavy. In fact, it will soon become infeasible for ǫ higher order terms that include multi-
dimensional integration of time. We now introduce particle interpretation by McKean [26]
developed for the study of semilinear PDEs:

Proposition 1 The V
(1)
t in (4.4) can be equivalently expressed as

V
(1)
t = 1{τ>t}E

[

1{τ<T}f̂t

(

Xτ , v
(0)(Xτ ), z

(0)(Xτ )
)∣

∣

∣
Ft

]

(4.5)

Here τ is the time of interaction which is drawn independently from Poisson distribution
with an arbitrary deterministic positive intensity process λt. It can be a positive constant
for the simplest case. 6 f̂ is defined as

f̂t(x, v
(0)(x), z(0)(x)) :=

1

λs
e
∫ s

t
λuduf(x, v(0)(x), z(0)(x)) . (4.6)

Proof: Define the new process for (s > t):

V̂
(1)
t,s = e

∫ s

t
λuduV (1)

s (4.7)

then its dynamics is given by

dV̂
(1)
t,s = e

∫ s

t
λudu

{

λsV
(1)
s ds− f(Xs, v

(0)(Xs), z
(0)(Xs))ds + Z(1)

s · dWs

}

= λsV̂
(1)
t,s ds− λsf̂t(Xs, v

(0)(Xs), z
(0)(Xs))ds + e

∫ s

t
λuduZ(1)

s · dWs . (4.8)

Since we have V̂
(1)
t,t = V

(1)
t , one can easily see the following relation holds:

V
(1)
t =

∫ T

t

E

[

e−
∫ u

t
λsdsλuf̂t(Xu, v

(0)(Xu), z
(0)(Xu))

∣

∣

∣
Ft

]

du (4.9)

5We intend to use the result of asymptotic expansion only for higher order approximations.
6It is not difficult to make it a stochastic process.
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It is clear for those familiar with credit risk modeling [2, 3], it is nothing but the present
value of default payment where the default intensity is λ with the default payoff at s (> t)
as f̂t(Xs, v

(0)(Xs), z
(0)(Xs)). Thus, it is clear that (4.9) is equivalent to (4.5). �

Now, let us consider the martingale component Z(1). It can be expressed as

Z
(1)
t =

∫ T

t

E

[

Dtf
(

Xu, v
(0)(Xu), z

(0)(Xu)
)∣

∣

∣
Ft

]

du (4.10)

We perform the similar transformation for Z(1) to make it easier to interpret in the inter-
acting particle model. Firstly, let us observe that the dynamics of Malliavin derivative of
V (1) follows

d(DtV
(1)
s ) = −(DtX

i
s)
{

∂i + ∂iv
(0)(Xs)∂v + ∂iz

a(0)(Xs)∂za
}

f(Xs, v
(0)(Xs), z

(0)(Xs))ds

+(DtZ
(1)
s ) · dWs (4.11)

DtV
(1)
t = Z

(1)
t (4.12)

For lighten the notation, let us introduce a derivative operator

∇i(x, v
(0), z(0)) = ∂i + ∂iv

(0)(x)∂v + ∂iz
a(0)(x)∂za (4.13)

and also

f(x, v(0), z(0)) ≡ f(x, v(0)(x), z(0)(x)) (4.14)

Now, we can write Eq. (4.12) as

d(DtV
(1)
s ) = −(DtX

i
s)∇i(Xs, v

(0), z(0))f(Xs, v
(0), z(0))ds + (DtZ

(1)
s ) · dWs

Define, for (s > t),

̂
DtV

(1)
s = e

∫ s

t
λudu(DtV

(1)
s ) (4.15)

then its dynamics can be written as

d(
̂
DtV

(1)
s ) = e

∫ s

t
λudu

{

λs(DtV
(1)
s )ds − (DtX

i
s)∇i(Xs, v

(0), z(0))f(Xs, v
(0), z(0))ds

+DtZ
(0)
s · dWs

}

= λs(
̂
DtV

(1)
s )ds− λs(DtX

i
s)∇i(Xs, v

(0), z(0))f̂t(Xs, v
(0), z(0))ds

+e
∫ s

t
λudu(DtZ

(0)
s ) · dWs (4.16)

We have

̂
DtV

(1)
t = Z

(1)
t (4.17)

and hence

Z
(1)
t =

∫ T

t

E

[

e−
∫ u

t
λsdsλs(DtX

i
u)∇i(Xu, v

(0), z(0))f̂t(Xu, v
(0), z(0))

∣

∣

∣
Ft

]

(4.18)

Thus, following the same argument of the proposition 1, we can conclude:
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Proposition 2 Z
(1)
t in (4.10) is equivalently expressed as

Z
a(1)
t = 1{τ>t}E

[

1{τ<T}(Yt,τγ(Xt))
i
a∇i(Xτ , v

(0), z(0))f̂t(Xτ , v
(0), z(0))

∣

∣

∣
Ft

]

(4.19)

where the definitions of random time τ and the intensity process λ are the same as those
in proposition 1.

As we shall see later, interpreting (X,Y ) as a pair of particles allows an efficient Monte
Carlo implementation. For the evaluation of Z(1) for example, one can consider it as an
system of two particles (X,Y ), which have the intensity λ of the interaction that produces

(Ytτγ(Xt))
i
a∇i(Xτ , v

(0), z(0))f̂t(Xτ , v
(0), z(0)) (4.20)

at the interaction point and annihilate altogether. For V (1), the interpretation is much
simpler. A single particle X with the decay rate of λ leaves f̂ at its decay point and
vanishes.

4.3 ǫ-2nd Order

For the ǫ-2nd order, one can observe that

V
(2)
t =

∫ T

t

E

[(

V (1)
u ∂v + Za(1)

u ∂za
)

f(Xu, v
(0), z(0))

∣

∣

∣
Ft

]

du (4.21)

Z
(2)
t =

∫ T

t

E

[

Dt

{(

V (1)
u ∂v + Za(1)

u ∂za
)

f(Xu, v
(0), z(0))

}∣

∣

∣
Ft

]

du (4.22)

solve the BSDE (3.6). Its particle interpretation is available by the similar transformation.
Firstly, for (s > t), let us define

V̂
(2)
t,s = e

∫ s

t
λuduV (2)

s (4.23)

with some appropriate intensity process λ. Then it follows

dV̂
(2)
t,s = λsV̂

(2)
t,s ds− λs(V

(1)
s ∂v + Za(1)

s ∂za)f̂t(Xs, v
(0), z(0))ds

+e
∫ s

t
λuduZ(2)

s · dWs (4.24)

Observing that V̂
(2)
t,t = V

(2)
t , one can confirm that

V
(2)
t = 1{τ1>t}E

[

1{τ1<T}

(

V (1)
τ1

∂v + Za(1)
τ1

∂za
)

f̂t(Xτ1 , v
(0), z(0))

∣

∣

∣
Ft

]

(4.25)

where τ1 is the random interaction time with intensity λ. Now, using the tower property
of conditional expectations, one can conclude that

Proposition 3 V
(2)
t in (4.21) is equivalently expressed as

V
(2)
t = 1{τ1>t}E

[

1{τ1<τ2<T}(∂v f̂t,τ1)f̂τ1,τ2

∣

∣

∣
Ft

]

+1{τ1>t}E

[

1{τ1<τ2<T}∂za f̂t,τ1

(

Yτ1,τ2γτ1

)i

a
∇i,τ2 f̂τ1,τ2

∣

∣

∣
Ft

]

(4.26)
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where we have defined

f̂t,s ≡ f̂t(Xs, v
(0)(Xs), z

(0)(Xs))

∇i,s ≡ ∇i(Xs, v
(0)(Xs), z

(0)(Xs))

γt ≡ γ(Xt) (4.27)

and τ1 and τ2 are the two interaction times randomly drawn with intensity λ.

A particle interpretation for the first term is quite simple. A particle X starts at t

follows the diffusion (2.3) with (self) interaction intensity λ. For the first interaction time
τ1, it yields ∂vf̂t,τ1 and at the 2nd interaction time τ2 it yields f̂τ1,τ2 and decays away. The
expectation value can be evaluated by preparing a large number of particles X starting
from the same point and obeying the same physical law but spend independent lives. For
the second term, the interpretation is more interesting. A particle X starts at time t and
follows the diffusion (2.3) with interaction intensity λ. At the first interaction time τ1, it
yields ∂za f̂t,τ1 and at the same time bears a new particle Y . After τ1, the two particles
(X,Y ) follow the diffusions (2.3) and (2.5), respectively. They have interaction intensity
λ, and at the second interaction point τ2 they yield (Yτ1,τ2γ(Xτ2))∇τ2 f̂τ1,τ2 and annihilate
altogether. As in the first example, the expectation can be calculated by preparing a large
number of particle X at the same starting point.

Remark: Note that, if we simply use Eqs. (4.4, 4.21) and the tower property, we have
to handle a two-dimensional time integration. It makes naive implementation of Monte
Carlo simulation numerically too heavy. In our particle interpretation, this problem is
solved by introducing random interaction times with some intensity λ. One can choose
appropriate size of intensity that produces enough amount of events for Monte Carlo sim-
ulation.

We now consider an interacting particle interpretation of Z(2). For the evaluation of
Z(2), we need to define the second order stochastic flow for (t < s < u):

(Γt,s,u)
i
jk =

∂2

∂x
j
t∂x

k
s

Xi
u =

∂

∂x
j
t

(Ys,u)
i
k (4.28)

Since we have

(Ys,u)
i
k = δik +

∫ u

s

(Ys,v)
l
k(∂lγ

i
0(Xv)dv + ∂lγ

i(Xv) · dWv) (4.29)

it is easy to see that

(Γt,s,u)
i
j,k =

∫ u

s

(Γt,s,v)
l
j,k(∂lγ

i
0(Xv)dv + ∂lγ

i(Xv) · dWv)

+

∫ u

s

(Yt,v)
m
j (Ys,v)

l
k(∂lmγi0(Xv)dv + ∂lmγi(Xv) · dWv) (4.30)

Note that we have Γt,s,s = 0, regardless of time s (> t). Using the second order stochastic
flow, the Malliavin derivative of Y can be written as

Da
t (Ys,v)

i
k = (Γt,s,v)

i
j,k(γ

j(Xt))a = (Γt,s,vγ(Xt))
i
k,a (4.31)
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Consider the process of Malliavin derivative DtV
(2)
s . One can write its dynamics for

(t < s) as

d(DtV
(2)
s ) = −

(

(DtV
(1)
s )∂v + (DtZ

a(1)
s )∂za

)

f(Xs, v
(0), z(0))ds

−(DtX
i
s)
{

V (1)
s ∇i,s(∂vf(Xs, v

(0), z(0))) + (Za(1)
s )∇i,s(∂zaf(Xs, v

(0), z(0)))
}

ds

+DtZ
(2)
s · dWs (4.32)

DtV
(2)
t = Z

(2)
t (4.33)

As before, we define

̂
DtV

(2)
s = e

∫ s

t
λudu(DtV

(2)
s ) (4.34)

then its dynamics satisfies the following SDE:

d(
̂
DtV

(2)
s ) = λs(

̂
DtV

(2)
s )ds− λs

[

(DtX
i
s)
(

V (1)
s ∇i,s(∂v f̂t,s) + (Za(1)

s )∇i,s(∂za f̂t,s)
)

+
(

(DtV
(1)
s )∂v + (DtZ

a(1)
s )∂za

)

f̂t,s

]

ds+ e
∫ s

t
λuduDtZ

(2)
s · dWs (4.35)

(
̂
DtV

(2)
t ) = Z

(2)
t (4.36)

Then, the same arguments leads to

Z
(2)
t = 1{τ1>t}E

[

1{τ1<T}(DtX
i
τ1
)
(

V (1)
τ1

∇i,τ1(∂v f̂t,τ1) + (Za(1)
τ1

)∇i,τ1(∂za f̂t,τ1)
)

+1{τ1<T}

(

(DtV
(1)
τ1

)∂v + (DtZ
a(1)
τ1

)∂za
)

f̂t,τ1

∣

∣

∣
Ft

]

(4.37)

using the random interaction time τ1.

Proposition 4 Z
(2)
t in (4.22) is equivalently expressed as

Z
a(2)
t = 1{τ1>t}E

[

1{τ1<τ2<T}(Yt,τ1γt)
i
a∇i,τ1(∂vf̂t,τ1)f̂τ1,τ2

∣

∣

∣
Ft

]

+1{τ1>t}E

[

1{τ1<τ2<T}(Yt,τ1γt)
i
a∇i,τ1(∂zb f̂t,τ1)(Yτ1,τ2γτ1)

j
b∇j,τ2f̂τ1,τ2

∣

∣

∣
Ft

]

+1{τ1>t}E

[

1{τ1<τ2<T}(∂vf̂t,τ1)(Yt,τ2γt)
i
a∇i,τ2 f̂τ1,τ2

∣

∣

∣
Ft

]

+1{τ1>t}E

[

1{τ1<τ2<T}(∂zb f̂t,τ1)(γτ1)
j
b(Γt,τ1,τ2γt)

i
j,a∇i,τ2 f̂τ1,τ2

∣

∣

∣
Ft

]

+1{τ1>t}E

[

1{τ1<τ2<T}(∂zb f̂t,τ1)(Yt,τ1γt)
j
a(∂jγτ1)

k
b (Yτ1,τ2)

i
k∇i,τ2 f̂τ1,τ2

∣

∣

∣
Ft

]

+1{τ1>t}E

[

1{τ1<τ2<T}(∂zb f̂t,τ1)(Yt,τ2γt)
j
a(Yτ1,τ2γτ1)

i
b∇j,τ2(∇i,τ2 f̂τ1,τ2)

∣

∣

∣
Ft

]

. (4.38)

where τ1 and τ2 are sequential interaction times with intensity λ.

Proof: It can be shown straightforwardly by using the tower property of conditional expec-
tations and commutativity between the indicator functions and the Malliavin derivative
due to the independence of λ. �
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t X
xt
·

Yt,·

τ1

τ2 < T

X
xt
·

Yt,·

Yτ1,·

Γt,τ1,·

Figure 1: A particle interpretation for Z
(2)
t .

Despite the apparent complexity, required numerical procedures for the evaluation of
Z(2) is, in fact, quite simple. We provide a Feynman diagram for the particle interpreta-
tion in Figure 1. At the first stage, there are two particles of (X·, Yt,·) with initial values
(xt, {δ

i
j}), which survive until the second interaction time τ2 (< T ). At the first inter-

action at τ1, two additional particles (Yτ1,·,Γt,τ1,·) are created. Each interaction occurs
randomly with intensity λ. Note that we already know the initial values of the new par-
ticles regardless of the interaction time, which makes numerical simulations possible to
carry out. What one has to do is to store the information of τ1 and τ2 and the values of
the particles at these times. Then, all the ingredients in expectations can be calculated.
Simply repeating independent experiments and taking average will give the desired values.

4.4 ǫ-3rd Order: V
(3)

In the similar fashion, we can proceed to higher order. As before, by considering the
dynamics of

V̂
(3)
t,s = e

∫ s

t
λuduV (3)

s (4.39)

one can observe that

V
(3)
t = 1{τ1>t}E

[

1{τ1<T}

(

V (2)
τ1

∂v + Za(2)
τ1

∂za +
1

2
(V (1)

τ1
)2∂2

v

+V (1)
τ1

Za(1)
τ1

∂v∂za +
1

2
Za(1)
τ1

Zb(1)
τ1

∂zazb
)

f̂t,τ1

∣

∣

∣

∣

Ft

]

. (4.40)

It can be written in terms of the fundamental variables simply applying tower property.
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Proposition 5 V
(3)
t can be expressed as

V
(3)
t = 1{τ1>t}E

[

1{τ1<τ2<τ3}(∂vf̂t,τ1)
{

(∂vf̂τ1,τ2)f̂τ2,τ3 + (∂za f̂τ1,τ2)(Yτ2,τ3γτ2)
i
a∇i,τ3 f̂τ2,τ3

}

+1{τ1<τ2<τ3}(∂za f̂t,τ1)
{

(Yτ1,τ2γτ1)
i
a∇i,τ2(∂vf̂τ1,τ2)f̂τ2,τ3

+(Yτ1,τ2γτ1)
i
a∇i,τ2(∂zb f̂τ1,τ2)(Yτ2,τ3γτ2)

j
b∇j,τ3 f̂τ2,τ3

+(∂zb f̂τ1,τ2)(γτ2)
j
b(Γτ1,τ2,τ3γτ1)

i
j,a∇i,τ3 f̂τ2,τ3

+(∂zb f̂τ1,τ2)(Yτ1,τ2γτ1)
j
a(∂jγτ2)

k
b (Yτ2,τ3)

i
k∇i,τ3 f̂τ2,τ3

+(∂zb f̂τ1,τ2)(Yτ1,τ3γτ1)
j
a(Yτ2,τ3γτ2)

i
b∇j,τ3(∇i,τ3 f̂τ2,τ3)

}
∣

∣

∣
Ft

]

(4.41)

+ 1{τ1>t}E



1{τ1<T}
1

2
(∂2

v f̂t,τ1)
2
∏

p=1

(

1{τ1<τ
p
2
<T}f̂τ1,τp2

)

+1{τ1<T}(∂v∂za f̂t,τ1)
(

1{τ1<τ
p
2
<T}f̂τ1,τp2

)p=1(

1{τ1<τ
p
2
<T}(Yτ1,τ

p
2
γτ1)

i
a∇i,τ

p
2
f̂τ1,τp2

)p=2

+1{τ1<T}
1

2
(∂zazb f̂t,τ1)

(

1{τ1<τ
p
2
<T}(Yτ1,τ

p
2

γτ1)
i
a∇i,τ

p
2

f̂τ1,τp2

)p=1

×
(

1{τ1<τ
p
2
<T}(Yτ1,τ

p
2

γτ1)
j
b∇j,τ

p
2

f̂τ1,τp2

)p=2
∣

∣

∣

∣

Ft

]

(4.42)

where the contents within each bracket of p ∈ {1, 2} must be calculated according to the
diffusion processes (X

xτ1
· , Yτ1,·)p={1,2} that follow the identical diffusion laws with the same

initial values, but are independent with each other. {τi}i≥1 are sequential random times
of interactions drawn with intensity λ. {τp2 }p=1,2 should be drawn independently.

Note that, we have introduced two sets of particles labeled by p ∈ {1, 2} that follow the
same physical laws but perfectly independent with each other to eliminate τ1-conditional
expectations. In this way, one can avoid the use of nested Monte Carlo simulation. In
Figures 2 and 3, we have provided two Feynman diagrams, one for the first half, and

the other for the second half of the expression of V
(3)
t . In simulations, one has to store

the interaction times and all the relevant particles values at those points to evaluate the
expectations.

t Xxt
·

Yt,·

τ1 Xxt
·

Xxt
·

Yt,·

Yt,·

Yτ1,·

τ2

Γτ1,τ2,·

Yτ1,·

Yτ2,·

τ3 < T

Figure 2: A particle interpretation for the first half of V
(3)
t .
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t Xxt
·

Yt,·

τ1

(X
xτ1
· )p=1

(X
xτ1
· )p=2

(Yτ1,·)
p=1

(Yτ1,·)
p=2

(τp2 )
p=1 < T

(τp2 )
p=2 < T

Figure 3: A particle interpretation for the second half of V
(3)
t .

4.5 Z
(3) and ǫ-higher order terms

The valuation procedures for Z(3) are almost the same as that of Z(2), but we need to
introduce a new type of particle corresponding to ( ∂

∂xt
Γs,u,v,·). As easily guessed from

the previous examples, we need to add one new particle corresponding to a higher order
stochastic flow to complete the particle picture at every time when we proceed a ǫ-higher
order approximation (of martingale component Z). A remarkable fact is that all the
initial conditions of the new particles created at random times are known beforehand
thanks to the characteristics of the Malliavin derivatives. This feature makes one can
perform numerical simulations that describe full history of the evolution of particles.

5 Extension to Fully-Coupled Cases

We now consider the situation where the underlying state processX also gets the feedbacks
from the backward components. By making use of the perturbative technique in PDE
framework [12], we shall show that the same strategy in the previous sections works well
also in this seemingly much more complicated situation.

The dynamics of whole system is given by























dVt = −f(t,Xt, Vt, Zt)dt+ Zt · dWt

VT = Ψ(XT )

dXt = γ0(t,Xt, Vt, Zt)dt+ γ(t,Xt, Vt, Zt) · dWt

X0 = x

(5.1)

where we have distinguished time arguments from X to make PDE generator a familiar
form. As before, we assume that V,Z,X take value in R,Rr and Rd respectively, and W

denotes a r-dimensional Brownian motion. Following the idea of four-step scheme [23], we
postulate that Vt is given by some appropriate function of t and X, v(t,X). Then it needs
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to satisfy the relevant PDE:























∂tv(t, x) +
{

∂iv(t, x)γ
i
0(t, x, v(t, x), z(t, x)) +

1
2∂ijv(t, x)(γ

i · γj)(t, x, v(t, x), z(t, x))
}

+f(t, x, v(t, x), z(t, x)) = 0

z(t, x) = ∂iv(t, x)γ
i(t, x, v(t, x), z(t, x))

v(T, x) = Ψ(T, x)

(5.2)

The above non-linear PDE cannot be solved in general. Therefore, let us introduce
perturbation parameter ǫ as before,



































dV
(ǫ)
t = −ǫf(t,X

(ǫ)
t , V

(ǫ)
t , Z

(ǫ)
t )dt+ Z

(ǫ)
t · dWt

V
(ǫ)
T = Ψ(X

(ǫ)
T )

dX
(ǫ)
t =

(

r(t,X
(ǫ)
t ) + ǫµ(t,X

(ǫ)
t , V

(ǫ)
t , Z

(ǫ)
t )

)

dt

+
(

σ(t,X
(ǫ)
t ) + ǫη(t,X

(ǫ)
t , V

(ǫ)
t , Z

(ǫ)
t )

)

· dWt

X
(ǫ)
0 = x

and its corresponding PDE























∂iv
(ǫ)(t, x) +

{

∂iv
(ǫ)(t, x)γi0(t, x, v

(ǫ), z(ǫ)) + 1
2∂ijv

(ǫ)(t, x)(γi · γj)(t, x, v(ǫ), z(ǫ))
}

+ǫf(t, x, v(ǫ), z(ǫ)) = 0

z(ǫ)(t, x) = ∂iv
(ǫ)(t, x)γi(t, x, v(ǫ), z(ǫ))

v(ǫ)(T, x) = Ψ(x)

(5.3)

Here, we have extracted the terms free from feedback effects from X’s dynamics 7:
{

γ0(t, x, v
(ǫ), z(ǫ)) = r(t, x) + ǫµ(t, x, v(ǫ)(t, x), z(ǫ)(t, x))

γ(t, x, v(ǫ), z(ǫ)) = σ(t, x) + ǫη(t, x, v(ǫ)(t, x), z(ǫ)(t, x))
(5.4)

We suppose that the solution of the above PDE can be expanded perturbatively in
terms of ǫ as

v(ǫ)(t, x) = v(0)(t, x) + ǫv(1)(t, x) + ǫ2v(2)(t, x) + · · · (5.5)

z(ǫ)(t, x) = z(0)(t, x) + ǫz(1)(t, x) + ǫ2z(2)(t, x) + · · · (5.6)

As in the previous sections, putting ǫ = 1 is expected to give the approximation of the
original system as long as the non-linear effects are perturbative.

5.1 Expansion of non-linear PDE

Straightforward calculation allows us to expand the original PDE into a series of linear
parabolic PDEs. See [12] for details. Firstly, let us define the differential operator L:

L(t, x) = ri(t, x)∂i +
1

2
(σi · σj)(t, x)∂ij (5.7)

7Although this can be done somewhat arbitrarily, it may be natural to set r(t, x) and σ(t, x) as the
expected dynamics of X when all the feedback effects are switched off.
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which corresponds to the infinitesimal generator of X(0), ie., the free forward component

dX
(0)
t = r(t,Xt)dt+ σ(t,Xt) · dWt (5.8)

X
(0)
0 = x (5.9)

Using this generator, we can show that the backward components in each order satisfy:
Zero-th order

{

(

∂t + L(t, x)
)

v(0)(t, x) = 0

v(0)(T, x) = Ψ(x)
(5.10)

and
z(0)(t, x) = ∂iv

(0)(t, x)σi(t, x) (5.11)

Higher expansion order (n ≥ 1)

{

(

∂t + L(t, x)
)

v(n)(t, x) +G(n)(t, x) = 0

v(n)(T, x) = 0
(5.12)

where the expression of G(n) and z(n) can be obtained straightforwardly by extracting
O(ǫn) terms from (5.3).

5.2 Particle Interpretation

The crucial point in the previous subsection is, because of the perturbation structure in
(5.4), the relevant differential operator always derived from X(0) and remains the same
for all the expansion orders. In addition, since we put a ǫ-factor in front of the non-
linear terms, G(n) contains the backward components with ǫ-order only up to (n − 1).
Furthermore, it is clear to see that z(n) can only contain the backward components of
{v(m)}{m≤n} and {z(m)}{m≤(n−1)}. Therefore, using Feynman-Kac theorem, we see that
the PDE in (5.12) is equivalently expressed by

{

dV
(n)
t = −G(n)(t,X

(0)
t , V

(n−1)
t , Z

(n−1)
t , · · · )dt+ Z̃

(n)
t · dWt

V
(n)
T = 0

(5.13)

where the dynamics of the forward component X(0) is already known. Because of the
very nature of the perturbative expansion, all the (V (m), Z(m)){m≥1} appear as a power

series and not contained within the non-linear functions. Thus, V
(n)
t can be solved by the

same procedures studied in the previous sections, and also the nice properties of explicitly
capped number of branches and interaction points still hold.

Note that Z̃
(n)
t is not equal to Z

(n)
t that contains additional terms through the feedbacks

to X. However, it is not difficult to calculate these terms. For example, one can observe:
1st order (n = 1)

G(1)(t, x) = f (0)(t, x) + ∂iv
(0)(t, x)µi(0)(t, x) + ∂ijv

(0)(t, x)(σi · ηj(0))(t, x) (5.14)

z(1)(t, x) = ∂iv
(1)(t, x)σi(t, x) + ∂iv

(0)(t, x)ηi(0)(t, x) (5.15)
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2nd order (n = 2)

G(2)(t, x) =
(

v(1)(t, x)∂v + za(1)(t, x)∂za
)

f (0)(t, x)

+∂iv
(1)(t, x)µi(0)(t, x) + ∂iv

(0)(t, x)
(

v(1)(t, x)∂v + za(1)(t, x)∂za
)

µi(0)(t, x)

+∂ijv
(1)(t, x)(σi · ηj(0))(t, x) +

1

2
∂ijv

(0)(t, x)(ηi(0) · ηj(0))(t, x)

+∂ijv
(0)(t, x)σi(t, x) ·

(

v(1)(t, x)∂v + za(1)(t, x)∂za
)

ηj(0)(t, x) (5.16)

z(2)(t, x) = ∂iv
(2)(t, x)σi(t, x) + ∂iv

(1)(t, x)ηi(0)(t, x)

+∂iv
(0)(t, x)

(

v(1)(t, x)∂v + za(1)(t, x)∂za
)

ηi(0)(t, x) (5.17)

Higher order cases can be obtained similarly.
Let us now consider the particle method to evaluate the relevant terms. Let us fix

the initial time as t as before: For the zero-th order, the problem is exactly the same as
the decoupled case and we can derive easily v(0)(t, x) and z(0)(t, x) as a function of x by

asymptotic expansion 8. For simplicity, we write X
(0)
s as Xs, since the underlying process

does not change.

1st order

As for the first order, observe that G(1)(t, x) is given as an explicit function of x after the

completion of the zero-th order calculation. Then, V
(1)
s follows

{

dV
(1)
s = −G(1)(t,Xs)ds+ Z̃

(1)
s · dWs

V
(1)
T = 0

(5.18)

and hence, by the same arguments, for (s > t), we have a particle representation as

V
(1)
t = 1{τ>t}E

[

1{τ<T}Ĝ
(1)
t (τ,Xτ )

∣

∣

∣
Ft

]

(5.19)

where Ĝ
(1)
t is defined as

Ĝ
(1)
t (s,Xs) =

1

λs

e
∫ s

t
λuduG(1)(s,Xs) (5.20)

with some appropriate positive deterministic (or independent) intensity λ. For martingale
component, it is easy to see

Z
(1)
t = Z̃

(1)
t + ∂iv

(0)(t, xt)η
i(0)(t, xt) (5.21)

from (5.15). Here, the particle representation of Z̃(1) can be derived in the same way as
in the decoupled case:

Z̃
a(1)
t = 1{τ>t}E

[

1{τ<T}(Yt,τσt)
i
a∂iĜ

(1)
t (τ,Xτ )

∣

∣

∣
Ft

]

(5.22)

8As before, this is only to use higher order expansion. For the valuation of the zero-th order itself, one
can use the standard Monte Carlo simulation

16



where Yt,s (s > t) is the stochastic flow of X and is given by

(Yt,u)
i
j = δij +

∫ u

t

(Yt,s)
k
j

{

∂kr
i(s,Xs)ds+ ∂kσ

i(s,Xs) · dWs

}

(5.23)

The second term of Z(1) is already given as an explicit function of xt.

2nd order

We can proceed to higher orders in similar fashion. For the second order, the contribution
to V (2) from the first line of G(2) can be calculated in the same way as the decoupled case.
Let us consider non-trivial remaining terms. The contribution from ∂iv

(1)(t, x)µi(0)(t, x),
for example, can be calculated as

1{τ1>t}E

[

1{τ1<T}µ̂
i(0)
t (τ1,Xτ1)

∂

∂xiτ1

(

1{τ2>τ1}E

[

1{τ2<T}Ĝ
(1)
τ1

(τ2,Xτ2)
∣

∣

∣
Fτ1

])

∣

∣

∣

∣

Ft

]

= 1{τ1>t}E

[

1{τ1<τ2<T}µ̂
i(0)
t (τ1,Xτ1)(Yτ1,τ2)

j
i∂jĜ

(1)
τ1

(τ2,Xτ2)
∣

∣

∣
Ft

]

(5.24)

where

µ̂
i(0)
t (s,Xs) =

1

λs

e
∫ s

t
λuduµi(0)(s,Xs) (5.25)

Note that the partial derivative of x in ∂iv
(1)(τ1,Xτ1) should be recognized as the shift of

X at the time of τ1, which leads to the first order stochastic flow Y in the above expression.
Next, let us consider the contribution from ∂ijv

(1)(t, x)(σi · ηj(0))(t, x). As is the pre-
vious example, it is calculated as

1{τ1>t}E

[

1{τ1<T}(
̂σi · ηj(0))(τ1,Xτ1)

∂2

∂xiτ1∂x
j
τ1

(

1{τ2>τ1}E

[

1{τ2<T}Ĝ
(1)
τ1

(τ2,Xτ2)
∣

∣

∣
Fτ1

])

∣

∣

∣

∣

∣

Ft

]

= 1{τ1>t}E

[

1{τ1<τ2<T}(
̂σi · ηj(0))(τ1,Xτ1)

{

(Γτ1,τ2)
k
ij∂kĜ

(1)
τ1

(τ2,Xτ2)

+(Yτ1,τ2)
k
i (Yτ1,τ2)

l
j∂klĜ

(1)
τ1

(τ2,Xτ2)
}∣

∣

∣
Ft

]

(5.26)

where ̂σi · ηj(0) is defined similarly as Ĝ(1). Note that the second order stochastic flow
(Γt,s)

k
i,j is defined, for (u > t), as

(Γt,u)
k
i,j =

∂

∂xit∂x
j
t

(Xxt
u )k (5.27)

and is given by

(Γt,u)
k
i,j =

∫ u

t

(Γt,s)
l
ij

{

∂lr
k(s,Xs)ds + ∂lσ

k(s,Xs) · dWs

}

+

∫ u

t

(Yt,s)
l
i(Yt,s)

m
j

{

∂lmrk(s,Xs)ds + ∂lmσk(s,Xs) · dWs

}

(5.28)

The remaining contributions to V (2) as well as Z(2) can be calculated by the same tech-
nique.
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· · · · · · · · ·

Although tedious calculation is needed, we can proceed to an arbitrary higher order in the
same fashion. Note that, also in fully-coupled cases, new particles required in simulation
are all derived as stochastic flows of X and hence the initial values at their creations are
known beforehand.

6 Conclusions and Discussions

In this paper, we have developed an efficient Monte Carlo scheme with an interacting
particle representation. It allows straightforward numerical implementation to solve fully
non-linear decoupled as well as coupled FBSDEs at each order of perturbative expansion.
The appearance of unknown backward components in the expressions of higher order ap-
proximations is solved by introducing an appropriate particle interpretation. Although a
couple of new particles are created at random interaction times, their initial values are
known beforehand. This is due to their properties as the stochastic flows of the under-
lying sate, which is the crucial point to make straightforward Monte Carlo simulation
possible. The proposed method can be applied to semi-linear problems, such as American
and Bermudan options, Credit Value Adjustment (CVA), and even fully non-linear issues,
such as the optimal portfolio problems in incomplete and/or constrained markets, feed-
backs from large investors, and also the analysis of various risk measures. It looks also
interesting to use the current method to study higher order FBSDEs, where the higher
order Malliavin derivatives exist in the non-linear driver, such as f(t,Xt, Vt,DtV,D

2
t V ).

It can be done straightforwardly by introducing higher order stochastic flows.

Acknowledgment: The authors thank Seisho Sato of the Institute of Statistical Mathe-
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