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ABSTRACT 

In this paper we detail a phase lagging model of brain response to external stimuli. The model is 

derived using the basic laws of physics like conservation of energy law. This model eliminates the 

paradox of instantaneous propagation of the action potential in the brain. The solution of this model is 

then presented. The model is further applied in the case of a single neuron and is verified by simulating a 

single action potential. The results of this modeling are useful not only for the fundamental understanding 

of single action potential generation, but also they can be applied in case of neuronal interactions where 

the results can be verified against the real EEG signal. 
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1. Introduction 

Brain as the most complex organ in the human body controls all bodies’ actions/reactions by 

receiving different stimuli through the nervous system. Any stimulus stronger than the threshold stimulus 

is translated by the number of sensory neurons generating information about the stimulus and the 

frequency of the action potentials. After the action potential has been generated, it travels through the 

neural network to the brain. In various sections of the network and the brain, integration of the signals 



takes place. Different areas of the brain respond based on the kind and the location of stimuli. The brain 

sends out signals which generate the response mechanism. 

During many years, numerous models of brain/cortical activity have been proposed by scientists. On 

a microscopic level, the work that was done by Freeman in the modeling of EEG arising from the olfactory 

bulb of animals during the perception of odors is noteworthy to be mentioned. He developed a set of non-

linear equations for this response which generates EEG like pattern [1-2]. When the microscopic models 

are extended to a macro level, then different methods are employed. Many of these models assume the 

cortical region to be a continuum. The first continuum model was proposed by Lopes da Silva et al. and 

Van Rotterdam et al. In this model, which was proposed by Lopes da Silva et al., two interacting 

populations of cells were considered namely, the pyramidal cells and the local interneurons. These two 

populations is characterized by two transfer systems, one representing the excitatory post synaptic 

potentials (EPSPs), and the other one representing inhibitory post synaptic potentials (IPSPs). The 

potential of the pyramidal cell dendrites is the signal to which the recorded EEG was assumed to be 

proportional [3]. Van Rotterdam et al. extended this model by assuming an infinite one-dimensional chain 

of interconnected pyramidal cells and interneurons. They obtained a transfer function for the temporal 

frequency and spatial frequency which took into account the effect of inhibitory and excitatory populations 

of neurons. With suitable adjustments, the model recreated the alpha rhythm. The major issue with this 

model was that it did not include the nonlinear effects, axonal delays (delays due to finite propagation 

velocity of signals in the axons of neurons) and convolutions of the cortex [4]. After this Nunez introduced 

the effect of axonal delays and proposed a model which allowed wave solutions, and identified the alpha 

rhythm as being at the fundamental cortical Eigenfrequency. Nunez also solved this model for a 1D loop 

cortex in two-dimensional cortex with some boundary conditions, but this model neglected the 

inhomogeneity of the cortical connections and the effect of the convolutions of the cortex as in Lopes da 

Silva’s model [5]. Wright and Liley introduced a spatially discretized model which takes into account the 

nonlinear effects with axonal delays and dendritic delays, but it did not involve the convolutions and non-

uniformity of the cortical connections. This model could only be used for small systems or a coarser look 

at the larger systems [6-7]. Robinson et al. took Wright and Liley’s equations and introduced a continuum 

wave model to replace the linear discrete parts of the equations based on the same fundamentals; they 



also simplified the computation of dendritic lags, but this model did not consider the filtering effects of the 

skull on the EEG which they claimed could be solved by using MEG with EEG [8]. Liley et al. developed a 

set of non-linear continuum field equations which described the macroscopic dynamics of neural activity 

in the cortical region [9]. These equations were used by Steyn-Ross et al. who introduced noise terms 

into them to give a set of stochastic partial differential equations (SPDEs). They also converted equations 

governed by Liley et al. into linearized ODEs. This model could predict the substantial increase in low 

frequency power at the critical points of induction and emergence. They later used this model to study the 

electrical activity of an anaesthetized cortex [10-13]. Kramer et al. started with the equations given by 

Steyn-Ross and co-workers and neglected the spatial variation and the stochastic input. This gave rise to 

a set of ordinary differential equations (ODEs) for the modeling of cortical activity. Then, they showed that 

the results obtained from the SPDE model agree with clinical data in an approximate way, but they also 

stated that the spatial sampling of the cortex was poor because of inherent shortcomings in the 

equipment used. There is also ambiguity in the lead/lag relationships determined by the Windowed Cross 

Correlation that they used. They suggested that the seizing activity of the cortex may be understood as 

an example of pathological pattern formation [14]. Kulish and Chan have suggested a novel method for 

the modeling of brain response using the fundamental laws of nature like energy conservation and the 

least action principle. The model equation obtained has been solved and the results show a good 

agreement with real EEGs [15]. 

Even though, many researchers have worked on the modeling of brain for years, there is no 

mathematical model which effectively considers the effect of lagging time into account. The primary 

reason offered for the absence of such a model is the complexity and non-linearity of the brain. 

This paper attempts to suggest a phase-lagged model of single action potential which is based on 

fundamental laws of physics. In order to consider the least complexity of the human brain here we 

propose a model in the microscopic level of brain organization which is a single neuron. This model 

considers a finite time lag between the occurrence of the stimulus and the rise of the subsequent action 

potential in a node Ranvier which eliminates the paradox of instantaneous propagation of energy. 

 

 



2. Impulse Generation and Propagation Mechanism 

In order to study the human behavior and in a casual manner neural activity, one can consider the 

different level of brain organization at many scales in time and space from a single neuron to the whole 

brain organization [16].  

Microscopic level of brain organization refers to the activity of single-neurons with their dendritic 

networks [17]. Neurons are the principal elements of the nervous system. 

The research data suggests that appropriate environmental stimuli bigger than the threshold value 

are the main reason of the dendritic fields of individual cortical neurons, to which the neurons are 

exposed, thus, in a causal manner brain organizations make the proper decision [18-19]. 

An Axon, or nerve fiber, is a long, thin process of a neuron which typically conducts electrical 

impulses away from the neuron's cell body. In vertebrates, Axons are enclosed in an insulating myelin 

sheath formed by special neuroglia cells (Figure. 1). The myelin sheath increases the speed of impulse 

transmission and prevents the gates on that part of the axon from opening and exchanging their ions with 

the outside environment. 

 

Figure. 1. Schematic structure of a typical axon 

 

There are gaps periodically between the myelin sheath segments known as the Nodes of Ranvier. At 

those uncovered areas of the axon membrane, the ion exchange necessary for the production of an 

action potential can take place.  

The inactive or resting neuron actively pumps sodium ions ( ) out the cell and potassium ions 

( ) into the cell. However, the plasma membrane is more permeable to  ions than , so  

diffuses out of the neuron which results in an excess of positively charged ions outside the neurons 

http://en.wikipedia.org/wiki/Action_potential
http://en.wikipedia.org/wiki/Action_potential
http://en.wikipedia.org/wiki/Cell_body
http://en.wikipedia.org/wiki/Vertebrate


membrane and an excess of negatively charged ions inside the neurons. This unusual distribution of 

electrical charges on each side of the plasma membrane makes the membrane polarized, and this 

condition is known as the resting potential with the voltage of -70 mV. Potential is the difference in 

electrical charge between two sites. The polarization of the neuron membrane does not change as long 

as the neuron is inactive. 

When the neurons stimulated as a result of receiving a stimulus, they exhibit an all-or-none 

response. They either form an impulse, or they do not respond. The weakest stimulus which activates a 

neuron is called a threshold stimulus. When a neuron is activated by a stimulus, its plasma membrane 

instantly becomes permeable to , so these ions quickly diffuse into the neuron. The inward flow of 

 causes positive and negative ions to be equally abundant on each of the plasma membrane. Thus, 

there is not net electrical charge on either side of the membrane. The plasma membrane is now 

depolarized. This sudden depolarization is the nerve impulse, or action potential (Figure. 2). Then, the 

wave of depolarization flows along the myelinated axon. 

 

Figure. 2. Action potential generation in a neuron 

 

Immediately after depolarization,  diffuses outward to reestablish the resting potential of the 

membrane, with an excess of positive charges outside and an excess of negative charges inside. In this 



way, the neuron membrane is repolarized. Then,  is pumped out and  is pumped into the neurons 

in order to reestablish the resting-state distribution of ions. When this is accomplished, the neuron is 

ready to respond to another stimulus. Depolarization and Repolarization are accomplished in about 

1/1000 of a second each one.  

 

3. Diffusion model of voltage change in a neuron   

The derivation of this model shall follow the derivations as outlined by Plonsey and Barr [20]. The 

detailed derivation is presented in their book. A short version of the derivation, for the purpose of 

understanding, shall be given in this section. 

Considering the neuron as a cylindrical conductor, it is assumed that the conductor is axially 

symmetrical, and the current conducted by that neuron is also axial in nature. This means that the 

potentials and currents in the neuron are functions of a single variable. 

By Ohm’s Law, the decrease in potential in the neuron per unit length must be equal to the IR drops 

along the neuron and are given by: 

                                                                                                                                          (1) 

                                                                                                                                           (2) 

where  is the extracellular potential,  is the intracellular potential,  is the extracellular current, 

 is the intracellular current,  is the extracellular resistance, and  is the intracellular resistance. 

By Kirchhoff’s current law, we have: 

                                                                                                                                                  (3) 

where  is the transmembrane current per unit length. This is in line with the conservation of current law 

which requires the axial rate of decrease in the intercellular current be equal to transmembrane current 

per unit length. This is because any loss in the intercellular current has to be due to the current crossing 

the membrane. 

For extracellular current, any decrease in its value is due to current that is crossing the membrane 

along with the current that is carried out due to the electrodes insertion. So: 



                                                                                                                                             (4) 

where  is the current that is carried outside because of the polarizing electrodes inserted in the 

membrane. Let  be defined as: 

                                                                                                                                               (5) 

The membrane potential  is given by: 

                                                                                                                                          (6)                                             

differentiating the above equation (6) with respect to  and including equations (1) and (2), we have: 

 

       

                                                                                                                           (7) 

From equations (3) and (4), we have: 

                                                                                                                                                         (8) 

we also have: 

                                                                                                                     (9) 

differentiating equation (9) with respect to : 

                                                                                                             (10) 

substituting equations (3) and (8): 

                                                                                                                   (11) 

For an action potential on a single fiber we must have no external polarizing current i.e.  . Also, from 

equations (5) and (8),   . Under such constraints, the equation (11) becomes: 

                                                                                                                                 (12) 

Also, the nerve is present in an extensive extracellular medium. This makes the extracellular 

resistance . This approximation is also permitted by the Hodgkin- Huxley experimental chamber 



during their studies on the squid axon. The intracellular resistance per unit length  can be rewritten in 

terms of the intracellular resistivity,  as:  

                                                                                                                                                   (13) 

where  is the radius of the cylindrical nerve. So: 

                                                                                                                                             (14) 

The transmembrane current per unit area  can also be written as: 

                                                                              =                                                                         (15) 

so: 

                                                                                                                                           (16) 

Equation (16) can be equated to the transmembrane current density from the Hodgkin- Huxley relations 

to give: 

                                                                +                                                          (17) 

where  is the membrane capacitance and  is the sum total of the ionic currents. Rearranging 

equation (17): 

                                                                                                                  (18) 

If the equation (18) is observed, it is noticed that this diffusion equation shall give rise to the paradox 

of instantaneous propagation of action potential. This means that the equation suggests that the response 

to the stimulus signal is generated almost instantaneously. This is physically not possible as that would 

require an infinite speed of propagation. This paradox of instantaneous propagation exists for all such 

diffusion equations which become evident as the characteristic time gets shorter. 

In order to avoid such a paradox, the space time behavior of the action potential should satisfy the wave 

equation i.e. 

                                                                                                                                 (19) 

where,  is the velocity of propagation. Differentiating equation (19) twice and using the chain rule, we 

get: 



                                                                                                                                            (20)               

Adding equations (18) and (20), we get: 

                                                                                                  (21) 

4. Phase-lagging model of voltage change in a neuron 

The paradox of instantaneous propagation can be rectified by introducing a time lag term which 

takes care of the lag between the occurrence of the stimulus and the rise of the subsequent action 

potential. Thus, the constitutive relation to be coupled with the conservation equation must be: 

                                                                                                                          (22) 

where  on the right hand side of equation (22) is a direct result of the external influence i.e. stimulus and 

the term  is the time lag which makes sure that the paradox of instantaneous propagation does not come 

into play. 

Thus, the quantities involved in equation (22) are written for two different instances of time. In order to 

bring those physical quantities at the same time instance, it is necessary to expand the left hand side of 

equation (22) in Taylor’s series, and, keeping in mind the lagging time is small in comparison with the 

transient time of the process, to neglect those terms of the expansion whose order is larger than one i.e., 

                                                                                                              (23) 

which is the Fick’s law with a finite lagging time. 

We need to couple the new constitutive relation expressed by equation (23) with the conservation 

equation. In order to do so, let us find the derivative with respect to  of equation (23). We obtain: 

                                                                                                                                   (24) 

from the conservation equation it follows that: 

                                                                                                                                      (25) 

where  is the source function. 

Upon substituting (25) into (24), we obtain: 

                                                                                                       (26) 



denoting  

                                                                                                                        (27)     

We have: 

                                                                                                                        (28) 

where . 

In equation (28) speed of propagation  is a finite quantity which is defined as the speed of impulse 

traveling through the neuron. Also, The diffusivity term  is related to the resistance of the neuron to the 

electrical impulse. is the property of the neural tissue and will dampen the impulse as it travels over the 

nerve. 

The source/sink term  arises from the constant interactions between the neurons even in the 

absence of an external potential. It also accounts for the fact that the voltage is not conserved. 

Equation (28) is now solved in a semi-infinite domain. Here, we consider that the axon is long 

compared to the distance over which signals propagate by passive electrotonic conduction (i.e., a semi-

infinite axon). The initial condition can be defined as  at the time  which is the resting potential 

of a neuron, and . 

Three new variables shall be introduced now in equation (28): 

  

  

                                                                                                                                                 (29) 

The term  is the new distance like variable,  is the new time like variable and  is the excess potential. 

Now the equation (28) becomes: 

                                                               +                                                           (30)         

The initial conditions in this case are  at  and . 

Taking the Laplace Transform of equation (30) and rearranging the terms, we get: 



                                                                                                                (31) 

where  is the Laplace transform of the excess voltage and  is the Laplace transform of the 

source/sink term. 

The general solution of Equation (31) is: 

                                           (32) 

The first two terms on the right hand side of the equation (32) are the general solution of the associated 

homogenous equation, when , and  is the particular solution. 

Since we are considering a semi-infinite domain, the solution has to be bounded as  so as to 

not violate the energy conservation principle. This requires that . Denoting , we get: 

                                                                                         (33) 

Rearranging equation (33), C(s) can be written as: 

                                                                                          (34) 

Equation (34) shall be differentiated with respect to  in order to eliminate  as shown by Kulish and 

Lage [21]. 

 +  

                                            = +  

                               -                                  (35) 

From Abramowitz and Stegun (page 374-379, 1024) [22], it is found that the inverse Laplace Transform of 

 is  (  where  is the modified Bessel function. 

Thus, taking the Laplace Transform of equation (35) and applying the convolution theorem, we obtain: 

                                   (36) 



where is the inverse Laplace transform of the function . 

Restoring the original terms and rearranging the terms, equation (36) transforms into: 

            (37) 

Equation (37) gives the relation between the voltage and its spatial derivative at any moment in time and 

at any location in the domain of interest. 

It is noteworthy to mention that because the length of a node of Ranvier, where a single action potential 

generated, is in the range of 1 μm long, thus, here we don’t analyze the spatial component “x” and 

consider the zero reference for evaluating spatial changes in equation (37) and we just analyze the 

variation of  at a different moment of time. 

Also, the voltage mentioned in equation (37) is actually the potential difference between the surface 

potential of the neuron membrane and the ground potential (taken as 0 V). Moreover, we are interested in 

the change in voltage and not the absolute value. So, we can use V in the equation without having to 

keep including the ground reference voltage.          

 

5. Model validation 

For an isolated neuron, we can get the model equation by taking p(x,t) = 0 in equation (37). This is 

because we are assuming that the neuron does not interact with other neurons i.e. it is isolated. So, we 

have: 

                                                                                     (38)                 

The term  on the right hand side of equation (38) is a direct result of the external influence i.e. stimulus. 

It is related to the flux as  where g is the conductance and  is the flux that can be defined by 

Gaussian distribution: 

                                                                                                                               (39) 

where  denotes the moment of time, at which the Gaussian pulse (external stimulus) reaches its 

maximal value of , whereas  is the standard deviation. 

This changes equation (38) to: 



                                                                                    (40) 

Now, considering the effect of both sodium (Na) and potassium (K) as the driving ions for the action 

potential: 

    (41)     

The term  is equal to  where c is the velocity of propagation (21.2 ). The terms  and , the flux 

of sodium and potassium respectively. So, the term  can be taken as: 

                                                                                                            (42) 

and the term  can be taken as:  

                                                                                                                         (43) 

where  is the maximum amplitude of the sodium flux, t is the total time,  is the maximum amplitude 

of the potassium flux, t is the total time,  is the time of maximum flux for sodium,  is the time 

of maximum flux for potassium,  is the standard deviation of Sodium flux and similarly  for potassium 

flux. 

The values to be substituted for the parameters involved are as given below in Table 1. It is noteworthy to 

mention that these values are governed from biological studies. 

 

Table 1. Values of parameters to be substituted in equations (42), (43) and (44) 

Variable Value Units 

 -0.07  

c 21.2  

 1200        

 360        

 5100 

 

 130 

 



 
0.0011  

 
0.002  

 0.0005  

 0.001  

 0.0445  

 0.002  

t 0-0.005  

 

In fact, these parameters represent the neuron firing characteristics as the result of receiving external 

stimuli which is equated with sodium and potassium flux using . 

The sodium flux can be plotted from equation (42) as given in Figure. 3 below: 

 

 

 



Figure. 3. Sodium flux as plotted from equation (42). The flux rises to a maximum value around 1 ms as 

expected and then goes down to 0 . 

 

The potassium flux can be plotted from equation (43) as given in Figure. 4 below: 

 

 

Figure. 4. Potassium flux as plotted from equation (43). The flux slowly rises to a maximum value around 

2 ms and then gradually goes down to 0 . 

 

It can be seen in Figure.3 that the sodium flux rises to its maximum value near t = 0.0011 sec after 

which it reduces to 0 . On the other hand, the potassium flux slowly rises and reaches its maximum 

value near t = 0.002 sec after which it reduces to 0 . This is the behavior that had been described by 

various researchers when they performed experiments on the giant axon of the squid [23-26]. The 

opening and closing of sodium and potassium channels lead to this variation in flux. 



Substituting the equation (42), and (43) in equation (41): 

(44)                                        

The equation (44) consists of the voltages for both sodium and potassium fluxes. When the equation (44) 

is solved and plotted, we get the plot as shown in Figure. 5. 

 

 

Figure. 5. Solution of equation (44) - A plot similar to action potential is generated. 

 

Figure. 5 shows the characteristic shape and values of the action potential. The resting potential has 

been taken as -70 mV. The potential rises to a maximum of + 30 mV before it falls down to around -80 

mV and subsequently rising again to reach the resting potential value of -70 mV. This is due to the fact 

that sodium channels rapidly open up when the action potential is initiated leading to a sodium ion influx 

till the transmembrane voltage approaches a value closer to the sodium Nernst potential. The sodium 

channels then close and the potassium channels open to cause an efflux of potassium ions, which 

continues till the potential approaches the potassium Nernst potential. These causes a slight undershoot 



which is also called hyperpolarization. Later the ionic balance is restored which leads to the 

transmembrane potential become closer to the resting potential value. 

The generated action potential plot is similar to the real action potential plot which is shown in Figure 

2. Thus, we can say that using the proposed mathematical equations we modeled the generation of 

single action potential in a node of Ranvier. It is noteworthy to mention that this model can be developed 

in case of neuronal interactions. If so, we consider the source function in equation (28) which bring us a 

general model of neural activity in mesoscopic and further in macroscopic level of brain organization. 

 

6. Conclusion 

The proposed model incorporates the concept of finite propagation speed of the action potential in 

the neuron by introducing a finite time lag that eliminates the paradox of instantaneous propagation which 

is present in the diffusion model. Solving this model gives a relation between the voltage in a single 

neuron to its spatial derivative at any given moment of time and location. On the application of the 

required values of the parameters involved, a plot of a single action potential is generated by the model 

which is similar to the real action potential plot generated by biologist. The plots of sodium and potassium 

fluxes as provided by the model are consistent with the general behavior of the ions inside the neuron. 

This model shall be further applied in the case of neuronal interactions and the results verified against 

currently available EEG records. 
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