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Abstract

We consider the problem of stochastic comparison of general Garch-
like processes, for different parameters and different distributions of the
innovations. We identify several stochastic orders that are propagated
from the innovations to the Garch process itself, and discuss their inter-
pretations. We focus on the convex order and show that in the case of
symmetric innovations it is also propagated to the cumulated sums of the
Garch process. More generally, we discuss multivariate comparison results
related to the multivariate convex and supermodular order. Finally we
discuss ordering with respect to the parameters in the Garch (1,1) case.
Keywords: Garch, Convex Order, Peakedness, Kurtosis, Supermodularity.

1 Introduction

An extensive literature is available on applications of stochastic orders to finance
and insurance markets. The implications of stochastic orders for derivative pric-
ing and risk management are relevant. The increasing dependence of european
option prices by the riskiness of the underlying it is a well known property for
basic models like that of Black-Merton-Scholes, in which riskiness is expressed in
terms of the logreturns distribution variance: the uncertainty is quantified there
through the dispersion around the expected value and the distribution functions
can be ordered according to their ”peakedness”; the larger is the dispersions,
the higher the option prices. This very elementary and intuitive observation for
simple models become more involved when turning attention to more complex
models, where a more rigorous approach is necessary in order to avoid wrong
conclusions.

The Black-Merton-Scholes model is nowadays considered fairly inadequate to
describe the asset price dynamics; several empirical facts cannot be explained on
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the basis of this model: some statistical features exhibited by logreturns like fat
tails, volatility clustering, aggregational Gaussianity and the so-called leverage
effect are completely outside of the prevision properties of the Black-Merton-
Scholes model. Moreover a very relevant phenomenon exhibited by option prices,
the ”volatility smile” (and its term structure) cannot be explained on this model
basis. In order to provide a more satisfactory description several different models
have been introduced. Some of these models introduce a stocastic dependence
in volatility and/or jumps in asset logreturns (and/or in volatility) dynamics
both in continuous and discrete time setting.

Among discrete time models introduced in order to remove some of the
Black-Merton-Scholes model drawbacks, the class of Autoregressive Conditioned
Heteroschedastic (ARCH) models introduced by Engle [6] and their general
extension (Garch models) proposed by Bollerslev in [4] have risen considerable
interest.

Several results related to stochastic orders are available for the continuous
time models class: in [2], where a systematic investigation on semimartingale
models is performed; the models considered there include the Heston and the
Barndorff-Nielsen and Shephard models. In [11] T. Møller provides some re-
sults on stochastic orders in a dynamic reinsurance market where the traded
risk process is driven by a compound Poisson process and the claim amount
is unbounded. Stochastic order properties have been used to obtain bounds
for option prices in incomplete markets; the literature focused on this subject
is quite extensive and we just mention the papers by El Karoui et al. [5], by
Bellamy and Jeanblanc, and by Gushchin and Mordecki [8].

The purpose of the present paper is to present a systematic investigation of
stochastic orders propagation in a Garch context.

Comparison with stochastic orders in incomplete market models can give
rise to different classes of problems: first can be considered the comparison of
models under the same probability measure but with different parametric spec-
ification, second it can be examined the problem of comparing the same model
under different probability measures; as a matter of fact, when markets are
incomplete, there are several probability measures equivalent to the historical
one, under which the dynamics of prices can be given. In this paper we shall
focus on the first class of problems mentioned: we shall provide a systematic
comparison of logreturns and then of prices when the model parameters change,
but the dynamics is specified under the same probability measure. In a Garch
context the parameters entering into play are three parameters assuming a nu-
merical value and the innovations, which are random IID variables for which
the density function is assigned. We just mentioned that stochastic order re-
sults have important implications on option pricing and this holds true also in
a Garch context: in particular, convex order relations on logreturn sums imply
increasing convex order relations on the underlying price, hence on european
call option prices and this can be considered the main relevance of our results
from an application viewpoint.

We like to present a numerical illustration in order to motivate our investiga-
tion. Fig 1 compare the densities of the logreturn sums in a Garch (1,1) model
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Figure 1: Comparison of Logreturn Sum Densities

with respect to variations in the parameters α0, α1, β1; in the continuous line
all parameters assume the value 0.2, while the other lines represent the same
density, but with parameters α0 = 0.5,α1 = 0.5 and β1 = 0.5 respectively (the
parameter assuming the value 0.5 in indicated by a capital letter in each curve
caption). The sums include the first 50 terms of the logreturn sequence.

The innovations, assumed to be independent and identically distributed,
and the initial variance, are chosen as standard Gaussian random variables. It
is evident how the usual real numbers order relation between parameters implies
some ordering on logreturn sums; it then arises as a natural question to ask if
this simple remark can be made rigorous and if this conclusion can be cast into
a more general framework considering different kind of stochastic orders and
comparing stochastic order propagation from innovations to logreturns and to
logreturns sums.

In the following section we present briefly the Garch models and an auxiliary
lemma. In Section 3 we present the univariate stochastic comparisons for logre-
turns in a Garch setting. In Section 4 we provide results on some related orders,
while in Section 5 the convex order propagation of the logreturn sums is inves-
tigated together with its implications on asset and european call option prices,
while their multivariate convex order propagation is the subject of Section 6 .
We focus our attention on the Garch(1,1) case in the last section.

The main results provided in this paper require the assumption of a sym-
metric probability density for innovations. The extension of the stochastic order
propagation analysis presented here to the case of non-symmetric innovation
densities would be of great interest: both the convex order propagation result
and the comparison with respect to parameter variations will be the subject of
future investigation in this more general setting. Moreover the identification
of some convex multivariate order which naturally propagate from innovations

3



to logreturns is another target on which our research interest will be focused.
These will be the subject of our future work.

2 General Garch models

We consider Garch models of two different very general forms; the first model
(M1) is: 





Xn = σnεn, n = 0, 1, ..
εn ⊥ σn, E[εn] = 0
σn+1 = f I(|εn| , σn)

(1)

with f I : R2
+ → R+ increasing and componentwise convex (ccx for brevity).

The second model (M2) is




Xn = σnεn, n = 0, 1, ..
εn ⊥ σn, E[εn] = 0
σ2
n+1 = f II(ε2n, σ

2
n)

(2)

with f II : R2
+ → R+ increasing and ccx. In both cases the innovations εn are

independent and identically distributed (i.i.d.). When discussing the propaga-
tion of variability orderings, the normalization requirement E[ε2n] = 1 will be
dropped. The difference between model M1 and model M2 is that in the first
case the recursive dynamics is defined in terms of the volatility σn, while in the
second it is defined in terms of the variance σ2

n.
The usual Garch (1,1) model is a particular case of both M1 and M2, and is
defined as follows: {

Xn = σnεn, n = 0, 1, ..
σ2
n+1 = α0 + α1X

2
n + β1σ

2
n

(3)

with α0, α1, β1 > 0 and α1 + β1 < 1, in order to guarantee covariance station-
arity. Both models start with a possibly random σ0 > 0, by drawing a random
ε0.
The recursive equations for σn+1 and σ2

n+1 are examples of ”stochastic recur-
rences” in the sense of Chapter 4 of [10]. For the explicit expression of their
solutions, we introduce the following notations:

σn+1 := gIn+1(σ0, |ε0| , ..., |εn|) (4)

σ2
n+1 := gIIn+1(σ

2
0 , ε

2
0, ..., ε

2
n)

As in [10], we have the following:

Lemma 1 Let gIn+1, g
II
n+1 : Rn+2

+ → R+ be defined as in (4). Then gIn+1 and
gIIn+1 are increasing and componentwise convex.

Proof. We have clearly gIn+1(σ0, |ε0| , ..., |εn|) = f I(|εn| , ..., f I(|ε0| , σ0))
and gIIn+1(σ

2
0 , ε

2
0, ..., ε

2
n) = f II(ε2n, ..., f

II(ε20, σ
2
0)); since f

I and f II are increasing
and ccx, then also their compositions in (4) are increasing and ccx (see Meester
and Shanthikumar [9] for this last assertion and further properties of increasing
and ccx functions).
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3 Univariate comparisons of Xn

The aim of this section is to establish comparison results for Xn when the
distributions of the innovations are changed from εk to ε̃k. In order to establish
these results, the assumption that the innovations are identically distributed is
not necessary (while the independency assumption is essential). In the following
theorems only the distribution of a single innovation εk will be changed, and
the impact of this change on Xn will be investigated.

We recall the definitions of the basic stochastic orderings:

Definition 2 The random variable X is said to be smaller than Y in the usual
stochastic order [convex order, increasing convex order], denoted by X ≤st Y

[X ≤cx Y, X ≤icx Y ], if E[φ(X)] ≤ E[φ(Y )] for all increasing [convex, increas-
ing convex] functions φ : R → R for which the expectations exist.

We will see that in the general context of models M1 and M2 the orderings
that are naturally propagated from the innovations εk to Xn are the ≤st and
the ≤icx ordering between absolute values or squared variables. This clearly
completely modifies their interpretation; in particular, in the next section we will
see that the ≤st ordering between absolute values or squares can be interpreted
as a variability ordering, while the ≤icx ordering between absolute values or
squares can be interpreted as a kurtosis ordering.

In order to establish these results, we proceed in two steps: first we consider
the volatilities σn and then the variables Xn. The first step is an immediate
consequence of Lemma 1:

Theorem 3 Comparisons of σn and σ2
n

a) Let σn+1 be as in (1) and |εk| �st |ε̃k|; it follows that σn+1 �st σ̃n+1.
b) Let σn+1 be as in (1) and |εk| �icx |ε̃k|; it follows that σn+1 �icx σ̃n+1.
c) Let σ2

n+1 be as in (2) and ε2k �st ε̃
2
k; it follows that σ2

n+1 �st σ̃
2
n+1.

d) Let σ2
n+1 be as in (2) and ε2k �icx ε̃2k; it follows that σ2

n+1 �icx σ̃2
n+1.

Proof. Since from Lemma 1 in model M1 σn+1 = gIn+1(σ0, |ε0| , ..., |εn|)
with gIn+1 increasing and ccx, item a) and b) follows respectively fromTheorem
1.A.3 in [13] and Theorem 4.A.15 in [13]. Similarly, since from Lemma 1 in
model M2 σ2

n+1 = gIIn+1(σ
2
0 , ε

2
0, ..., ε

2
n) with gIIn+1 increasing and ccx, from the

same theorems we get c) and d).

The comparison results for σn and σ2
n lead to the following comparisons of

the variables Xn:

Theorem 4 Comparisons of Xn

a) Let Xn be as in (1) and |εk| �st |ε̃k|; it follows that |Xn| �st

∣∣∣X̃n

∣∣∣.

b) Let Xn be as in (1) and |εk| �icx |ε̃k|; it follows that |Xn| �icx

∣∣∣X̃n

∣∣∣.
c) Let Xn be as in (2) and ε2k �st ε̃

2
k; it follows that X2

n �st X̃
2
n.

d) Let Xn be as in (2) and ε2k �icx ε̃2k; it follows that X2
n �icx X̃2

n.
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Proof. Since |Xn| = σn |εn| and X2
n = σ2

nε
2
n, with σn independent from εn,

items a), and c) follow from Theorem 1.A.3 (b) in [13]. Similarly item b) and
d) follow from Theorem 4.A.15 in [13].

A natural question that arises at this point is if also the convex order is
propagated, that is if εk �cx ε̃k ⇒ Xn �cx X̃n. We prove that this is indeed
the case for model M1. We start with a simple lemma:

Lemma 5 Let σ and σ̃ be nonnegative, with σ �st σ̃. Let ε be independent
from σ and σ̃, with E [ε] = 0; then σε �cx σ̃ε.

Proof. We can construct identically distributed copies of σ and σ̃ on the
same probability space, such that σ ≤ σ̃ a.s. Then for each realization of σ, we
have that σε �cx σ̃ε. From Theorem 3.A.12 in [13] it follows that σε �cx σ̃ε.

Theorem 6 Propagation of convex order

Let Xn be as in (1) and εk �cx ε̃k; it follows that Xn �cx X̃n

Proof. First of all we remark that since εk �cx ε̃k, it follows that |εk| �icx

|ε̃k|. Indeed, for each φ increasing and convex, the composition φ(|...|) is convex;
this implies that E[φ(|εk|)] ≤ E[φ(|ε̃k|)], that is |εk| �icx |ε̃k|. From Proposition
3 item b), it then follows that σn+1 �icx σ̃n+1. From Theorem 4.A.6 in [13] there
exists a random variable σn+1 with σn+1 �st σn+1 �cx σ̃n+1. By Lemma 5,
we have that σn+1 �st σn+1 implies that σn+1εn+1 �cx σn+1εn+1; on the other
hand σn+1 �cx σ̃n+1 implies that σn+1εn+1 �cx σ̃n+1εn+1. By transitivity we
get σn+1εn+1 �cx σ̃n+1εn+1.

4 The relevant orderings

In the preceding section the orderings defined by |X | �st |Y |, X2 �st Y 2,
|X | �icx |Y |, X2 �icx Y 2 have arisen naturally.
In order to better understand their meaning, in the following lemmas we identify
some necessary and sufficient conditions in the continuous and symmetric case.
We have the following:

Lemma 7 Let X and Y be symmetric with continuous distributions F and G.
The following conditions are equivalent:
a) X2 �st Y

2;
b) |X | �st |Y |;
c) X �peak Y , where �peak is the peakedness ordering introduced in [3];
d) S−(G− F ) = 1 with sign sequence +,−, where S−(G− F ) is the number of
intersections between G and F as defined in (1.A.18) of [13].

Proof. The equivalence of a) and b) is an immediate consequence of Theo-
rem 1.A.3 in [13]. The equivalence of b) and c) is the definition of the peakedness
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ordering, while the equivalence between c) and d) follows from Theorem 3.D.1
in [13].

Lemma 8 Let X and Y be symmetric with continuous distributions F and G.
The following conditions are equivalent:
a) X2 �icx Y 2

b)
∫ +∞
x

F (u) · u · du ≤
∫ +∞
x

G(u) · u · du for each x ≥ 0, where F (u) = 1−F (u)

and G(u) = 1−G(u)
c) E[(X2 − k)+] ≤ E[(Y 2 − k)+] for each k ≥ 0

Proof. Under our hypothesis FX2(t) = 2F (
√
t)−1 and FX2(t) = 2−2F (

√
t),

for t ≥ 0. The equivalence of a) and b) follows then from Theorem 4.A.2 in [13]
with a simple change of variable. The equivalence between a) and c) is also a
consequence of Theorem 1.5.7 in [10]

The first lemma shows that for symmetric variables the orderings |X | �st

|Y | and X2 �st Y 2 are variability comparisons equivalent to the peakedness
ordering, that in this case boils down to item d), that is the validity of a single
cut condition between the distribution functions. In the typical econometric
applications these orderings are however not very relevant since the innovations
satisfy E[ε2k] = 1, and hence E[ε2k] �st E[ε̃2k] would imply ε2k =st ε̃

2
k.

In the normalized case the ordering X2 �icx Y 2 becomes equivalent to
X2 �cx Y 2; we prove a sufficient and a necessary condition for it.

Lemma 9 Let X and Y be symmetric with continuous distributions F and G

and with E[X2] = E[Y 2] = 1.
a) If the densities of X and Y cross 4 times, with the density of X being lower in
the tails and in the center, and higher in the intermediate region, then X2 �icx

Y 2.
b) If X2 �icx Y 2 and X and Y have finite fourth moments, then β2(X) < β2(Y ),
where β2 is Pearson’s kurtosis coefficient.

Proof. a) Under our hypothesis fX2(t) = f(
√
t)√
t

for t > 0. Since X and Y

are symmetrical, we have that the four intersection points between the densities
f and g are symmetrical with respect to the origin. Hence the densities of X2

and Y 2 cross in two points and since E[X2] = E[Y 2] from Theorem 3.A.44 in
[13] we have that X2 �cx Y 2.
b) In our case β2(X) = E[X4] and hence the thesis follows from the definition
of the convex order.

This lemma shows that the comparison X2 �icx Y 2 can be interpreted
as a classical kurtosis ordering; the cut condition is usually referred in the
kurtosis ordering literature as a Dyson-Finucan condition (see for example [7]
for a review).
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5 Convex comparisons for total logreturns

In financial applications the variablesXn typically represent logreturns, that are

additive quantities. The over-the-period total return is given by Sn =
n∑

k=1

Xn.

It is therefore natural to ask if some of the comparison results of Section 2 do
extend to the variables Sn. In this section we consider the case of the convex
order, that is, we wonder if εk �cx ε̃k ⇒ Sn �cx S̃n. The problem is not trivial
since Sn cannot be expressed as a sum of independent variables, so the standard
results about convex ordering of sums cannot be applied; we are able to prove
a positive result in the case of model M1 and for symmetric innovations. We
start with a basic lemma:

Lemma 10 Let φ ∈ C2(R) be convex and gi ∈ C2(R) be convex and nonnega-
tive. Let a, b ∈ R and Pm := {−1, 1}m. It follows that

h(u) =
∑

p∈Pm

φ

(
a+ bu+

m∑

i=1

pigi(u)

)

is convex.

Proof. We can compute

h′(u) =
∑

p∈Pm

φ′
(
a+ bu+

m∑

i=1

pigi(u)

)
·
(
b+

m∑

i=1

pig
′
i(u)

)

h′′(u) =
∑

p∈Pm

φ′′
(
a+ bu+

m∑

i=1

pigi(u)

)
·
(
b+

m∑

i=1

pig
′
i(u)

)2

+

∑

p∈Pm

φ′
(
a+ bu+

m∑

i=1

pigi(u)

)
·
(

m∑

i=1

pig
′′
i (u)

)

The first term is positive; the second is given by

Am =
∑

p∈Pm

φ′
(
a+ bu+

m∑

i=1

pigi(u)

)
·
(

m∑

i=1

pig
′′
i (u)

)

Let us denote with P a random vector with a discrete uniform distribution on
Pm; clearly E[P ] = 0, the components of P are independent and

Am = 2mE
[
φ′ (a+ bu+ g(u) · P

) (
g′′(u) · P

)]

Since the functions φ′ (a+ bu+ g(u) · P
)
and g′′(u) · P are componentwise in-

creasing, from the covariance inequality it follows that

Am = 2mE
[
φ′ (g(u) · P

) (
g′′(u) · P

)]
≥

≥ 2mE
[
φ′ (g(u) · P

)]
E
[(
g′′(u) · P

)]
= 0

8



We remark that in this lemma the smoothness requirements on φ and on the
gi can be dropped; we preferred this formulation in order to simplify the proof.
Since in this section we consider only model M1, we define

gn(σ0, ε0, ..., εn−1) := gIn(σ0, |ε0| , ..., |εn−1|);

from Lemma 1, it is clear that gn is even and ccx. We have

Sn = X0 +X1 + ...+Xn = σ0ε0 + σ1ε1 + ...+ σnεn =

σ0ε0 + g1(σ0, ε0)ε1 + ...+ gn(σ0, ε0, ..., εn−1)εn = (5)

Sn(σ0, ε0, ..., εn)

The main problem in proving the propagation of convexity to the sums is that Sn

is not a ccx functions of the innovations εk; indeed, each gk in (5) is multiplied
by a possibly negative innovation εk. This prevents the applications of standard
results and requires the development of a specific technique based on Lemma
10. The basic idea is that in the case of symmetric innovations it is possible
to restore the convexity by averaging over all the possible sign changes, as in
Lemma 10. This will be done in a recursive way; we start with the following:

Lemma 11 Let Xn and Sn be as in (1) and (5). Let φ be convex and εi be
symmetric. Then the function

h(σ0, ε0, ..., εk) := Eεk+1,...,εn [φ(Sn(σ0, ε0, ..., εn))] (6)

is convex in εk for each fixed value of σ0, ε0, ..., εk−1.

Proof. To avoid notational burdening we drop the arguments of the func-
tions gi. Since the innovations are symmetric and gi is even, we can write

Eεk+1,...,εn [φ(Sn(σ0, ε0, ..., εn))] = Eεk+1,...,εn [φ(σ0ε0 + ...+ gnεn)] =

Eεk+1,...,εn [
∑

p∈Pn−k

φ(σ0ε0 + ...+ p1gk+1εk+1 + ...+ pn−kgnεn)1{εk+1≥0,...,εn≥0}].

Denoting by

h(σ0, ε0, ..., εk, ..., εn) =
∑

p∈Pn−k

φ(σ0ε0+g1ε1+...+gkεk+p1gk+1εk+1+...+pn−kgnεn),

we have that

h(σ0, ε0, ..., εk−1, εk) = Eεk+1,...,εn [1{εk+1≥0,...,εn≥0}h(σ0, ε0, ..., εk, ..., εn)]

and h is convex in εk from Lemma 10. It follows that also h(σ0, ε0, ..., εk−1, εk)
is convex in εk for each value of σ0, ε0, ..., εk−1.

We can finally state the result on the propagation of the convex order to Sn:

9



Theorem 12 Let Xn and Sn be as in (1) and (5). Let εi be symmetric. If

also ε̃k is symmetric and ε̃k ≥cx εk, then S̃n := Sn(σ0, ε0, ., ε̃k, ..., εn) ≥cx

Sn(σ0, ε0, ., εk, ..., εn).

Proof. Let φ be convex. From the independence of the εi we can write

E[φ(S̃n)] = Eε0,...,εk−1
Eε̃kEεk+1,...,εn [φ(Sn(σ0, ε0, ..., εk−1, ε̃k, εk+1, ..., εn))] =

= Eε0,...,εk−1
Eε̃k [h(σ0, ε0, ..., εk−1, ε̃k)]

where as in (6)

h(σ0, ε0, ..., εk−1, ε̃k) := Eεk+1,...,εn [φ(Sn(σ0, ε0, ..., εk−1, ε̃k, εk+1, ..., εn))]

is a convex function of ε̃k for each value of σ0, ε0, ..., εk−1 from Lemma 11.
It follows that

Eε̃k [h(σ0, ε0, ..., εk−1, ε̃k)] ≥ Eεk [h(σ0, ε0, ..., εk−1, εk)]

that gives

E[φ(S̃n)] = Eε0,...,εk−1
Eε̃k [h(σ0, ε0, ..., εk−1, ε̃k)] ≥

≥ Eε0,...,εk−1
Eεk [h(σ0, ε0, ..., εk−1, εk)] = E[φ(Sn)]

that is S̃n ≥cx Sn.

6 Multivariate comparisons of logreturns

Until now we have been considering only univariate orderings of the Xn. Having
established also a convex comparison result for the sums Sn, it is natural to
wonder whether more general multivariate comparisons do hold, that is if we
can prove that εk ≤cx ε̃k ⇒ (X1, ..., Xn) � (X̃1, ..., X̃n) for some multivariate
convexity ordering � to be precise in the sequel. Before stating a positive result,
we recall two basic definitions:

Definition 13 A function ϕ : R
n → R is directionally convex if for any

x1, ...,x4 ∈ R
n, such that x1 ≤ x2,x3 ≤ x4 and x1 +x4 = x2 +x3, it holds that

ϕ(x2) + ϕ(x3) ≤ ϕ(x1) + ϕ(x4)

Definition 14 A function ϕ : Rn → R is supermodular if for any x,y ∈ R
n it

satisfies:
ϕ(x) + ϕ(y) ≤ ϕ(x ∧ y) + ϕ(x ∨ y),

where the operators ∧ and ∨ denote respectively coordinatewise minimum and
maximum (see Section 7.A.8 of [13])
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In the univariate case directionally convexity is equivalent to convexity, while
in the multivariate case there are no implications between the two concepts.
Directionally convexity implies supermodularity and its equivalent to super-
modularity plus componentwise convexity. For smooth functions, directionally
convexity is equivalent to the nonnegativity of all entries in the Hessian matrix,
while supermodularity is equivalent to the the nonnegativity of all entries out of
the principal diagonal. Clearly no implications exist between this concept and
the usual convexity of φ, that corresponds to the positive semidefiniteness of
the Hessian matrix. However, φ is directionally convex and convex if and only
if it is supermodular and convex. Finally, in the smooth case, ϕ is directionally
convex if and only if its gradient is increasing.

In order to establish multivariate comparison results, we need a generaliza-
tion of Lemma 10:

Lemma 15 Let φ ∈ C2(Rn) be convex and supermodular and gi ∈ C2(R) be
convex and nonnegative. Let Pn := {−1, 1}n. It follows that

h(u) =
∑

p∈Pn

φ(p1g1(u), ..., pngn(u))

is convex.

Proof. Let’s denote by yi the arguments of the function φ; we can write:

h′(u) =
∑

p∈Pm

m∑

i=1

pig
′
i(u)

∂φ

∂yi
(p1g1(u), ..., pmgm(u))

h′′(u) =
∑

p∈Pm

[

m∑

i=1

pig
′′
i (u)

∂φ

∂yi
(p1g1(u), ..., pmgm(u)) +

+

m∑

i=1

m∑

j=1

pipjg
′
i(u)g

′
j(u)

∂2φ

∂yi∂yj
(p1g1(u), ..., pmgm(u))]

The second term in the square brackets can be written as

m∑

i=1

m∑

j=1

pipjg
′
i(u)g

′
j(u)

∂2φ

∂yi∂yj
(p1g1(u), ..., pmgm(u)) = Pg′(u)

[
∂2φ

∂yi∂yj
(..)

]
(Pg′(u))T ≥ 0

and is positive since the Hessian of φ is positive semidefinite.
The first term can be written as

∑

p∈Pm

m∑

i=1

pig
′′
i (u)

∂φ

∂yi
(p1g1(u), ..., pmgm(u)) = 2mE

[
∇φ (p1g1(u), ..., pngn(u)) ·

(
Pg′′(u)

)]
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From the hypothesis on φ all the components of ∇φ are increasing in pi, hence
from the multivariate covariance inequality

E
[
∇φ (p1g1(u), ..., pngn(u)) ·

(
Pg′′(u)

)]
≥ 0

As in Lemma 10, the smoothness requirements on φ and gi can be dropped,
but we added them in order to simplify the proof. The multivariate analogue
of Lemma 11 is the following:

Lemma 16 Let Xn and Sn be as in (1) and (5). Let φ : Rn+1 → R be super-
modular and convex and εi be symmetric. Then the function

hk(x) := E [φ(X0, ..., Xn)|εk = x] ;

is convex.

Proof. From the symmetry of the innovations we can write

hk(x) = Eε0...εk−1εk+1...εn [φ(σ0ε0, g1ε1, ..., gkx, , ..., gnεn)] =

= Eε0...εk−1εk+1...εn [1{ε≥0}
∑

p∈Pn

φ(σ0p0ε0, g1p1ε1, ..., gkpkx, ..., gnpnεn)]

Since each gi is convex in εk, from Lemma 15 it follows that for each σ0 > 0
and εi ≥ 0, i 6= k, the function

hk(x) =
∑

p∈Pn

φ(σ0p0ε0, g1p1ε1, ..., gkpkx, ..., gnpnεn)

is convex. Averaging with respect to εi, with i 6= k, it follows that also hk(x) is
convex.

This enables us to state our main multivariate comparison result:

Theorem 17 Let Xn and Sn be as in (1) and (5). Let the εi be symmetric. If
also ε̃k is symmetric and ε̃k ≥cx εk, then,

E [φ(X0, ..., Xk, ..., Xn)] ≤ E
[
φ(X0, ..., X̃k, ..., X̃n)

]

for every function φ : Rn+1 → R supermodular and convex.

Proof. From the previous lemma we have that

E [φ(X0, ..., Xk, ..., Xn)] = Eεk [hk(εk)] ≤ Eε̃k [hk(ε̃k)] = E
[
φ(X0, ...X̃k, ..., X̃n)

]
.

We remark that we are not able to prove supermodularity or componentwise
convex ordering of (X0, ..., Xn); at the moment both hypothesys on φ seem to
be necessary for Lemma 15.
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7 The Garch (1,1) case

We focus now on the Garch (1,1) model specified by

{
Xn = σnεn

σ2
n+1 = α0 + α1X

2
n + β1σ

2
n

, (7)

with α0, α1, β1 > 0 and α1 + β1 < 1. For this model the recursive dynamic
of the volatility or of the variance (4) can easily be explicitated as follows (see
[12]):

σ2
n+1 = σ2

0

n+1∏

i=1

(β1 + α1ε
2
n−i+1) + α0

[
1 +

n∑

k=1

k∏

i=1

(β1 + α1ε
2
n−i+1)

]
(8)

From this expression it is immediate that σ2
n+1 and σn+1 are nondecreasing

functions of the parameters α0, α1and β1.We already remarked that this model
is a special case of both M1 and M2, so all the comparison result for varying
innovations of the preceding sections do hold. In this section we are interested
in establishing comparison results for different parameters α0, α1, β1. As men-
tioned in the Introduction, it is natural that an increase in α0, α1, β1 should
correspond to an increase in the variability of Xn and Sn; in this section we
prove it rigorously. Without any additional effort, we can consider stochastic
parameters α0, α1, β1:

Proposition 18 Let Xn be as in (7). If we consider random parameters α0 ≤st

α̃0, α1 ≤st α̃1 and β1 ≤st β̃1, then |Xn| ≤st

∣∣∣X̃n

∣∣∣, X2
n ≤st X̃

2
n and Xn �cx X̃n.

Proof. Since σn and σ2
nare increasing functions of the parameters, if α0 ≤st

α̃0, α1 ≤st α̃1 and β1 ≤st β̃1 it follows that σn ≤st σ̃n and σ2
n ≤st σ̃

2
n. As in the

proof of Theorem 4 it follows that |Xn| ≤st

∣∣∣X̃n

∣∣∣and X2
n ≤st X̃

2
n. From Lemma

5 σn ≤st σ̃n implies that Xn �cx X̃n.
The last point is to prove the convex comparison of the sums Sn; again, this

is nontrivial since the Xn are not independent; we provide a proof in the case
of symmetric innovations.

Theorem 19 Let Xn be as in (7) and Sn as in (5). Let εi be symmetric. If

we consider random parameters α0 ≤st α̃0, α1 ≤st α̃1 and β1 ≤st β̃1, then
Sn �cx S̃n.

Proof. As before, we write

Sn = σ0ε0 + g1(ε0, ..., α0, α1, β1)ε1 + ...+ gn(ε0, ..., α0, α1, β1)εn

where the functions gi are nondecreasing in the parameters α0, α1, β1. Let φ be
any convex function. We first want to prove that E [φ (Sn)] is nondecreasing

13



in the parameters α0, α1, β1. From the symmetry of the innovations εi we can
write:

E [φ (Sn)] = Eε0,...,εn[φ(σ0ε0 + ...+ gnεn)]

= Eε0,...,εn [
∑

p∈Pn+1

φ(σ0p0ε0 + ...+ pngnεn)1{ε0≥0,...,εn≥0}].

Denoting by

h(σ0, ..., α0, α1, β1) =
∑

p∈Pn+1

φ(σ0p0ε0 + ...+ pngnεn),

we see that h is nondecreasing in α0, α1, β1; indeed we can compute:

∂h

∂α0
=

∑

p∈Pn+1

φ′ (σ0p0ε0 + ...+ pngnεn) · (p1ε1g′1 + ...+ pnεng
′
n) ≥ 0

from the multivariate covariance inequality, as in the proof of Lemma 10. The

same reasoning shows that ∂h
∂α1

≥ 0 and ∂h
∂β1

≥ 0.

It follows that E [φ (Sn)] is is nondecreasing in α0, α1, β1; but then if α0 ≤st α̃0,

α1 ≤st α̃1 and β1 ≤st β̃1,

E [φ (Sn(α0, α1, β1)] ≤ E[φ(Sn(α̃0, α̃1, β̃1)]

that is Sn �cx S̃n.
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