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We present an algorithm to store binary memories in a Hopfield neural network using minimum
probability flow, a recent technique to fit parameters in energy-based probabilistic models. In the
case of memories without noise, our algorithm provably achieves optimal pattern storage (which
we show is at least one pattern per neuron) and outperforms classical methods both in speed and
memory recovery. Moreover, when trained on noisy or corrupted versions of a fixed set of binary
patterns, our algorithm finds networks which correctly store the originals. We also demonstrate this
finding visually with the unsupervised storage and clean-up of large binary fingerprint images from
significantly corrupted samples.

Introduction. In 1982, motivated by the Ising spin
glass model from statistical physics [1], Hopfield intro-
duced an auto-associative neural-network for the storage
and retrieval of binary patterns [2]. Even today, this
model and its various extensions [3, 4] provide a plausible
mechanism for memory formation in the brain. However,
existing techniques for training Hopfield networks suffer
either from limited pattern capacity or excessive training
time, and they exhibit poor performance when trained
on unlabeled, corrupted memories.

Our main theoretical contributions here are the intro-
duction of a tractable and neurally-plausible algorithm
for the optimal storage of patterns in a Hopfield network,
a proof that the capacity of such a network is at least
one pattern per neuron, and a novel local learning rule
for training neural networks. Our approach is inspired by
minimum probability flow [5], a recent technique for fit-
ting probabilistic models that avoids computations with a
partition function, the usually intractable normalization
constant of a parameterized probability distribution.

We also present several experimental results. When
compared with standard techniques for Hopfield pattern
storage, our method is shown to be superior in efficiency
and generalization. Another finding is that our algo-
rithm can store many patterns in a Hopfield network
from highly corrupted (unlabeled) samples of them. This
discovery is also corroborated visually by the storage of
64× 64 binary images of human fingerprints from highly
corrupted versions, as explained in Fig. 2.

Background. A Hopfield network H = (J, θ) on n
nodes {1, . . . , n} consists of a symmetric weight matrix
J = J> ∈ Rn×n with zero diagonal and a threshold vec-
tor θ = (θ1, . . . , θn)> ∈ Rn. The possible states of the
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FIG. 1. Example Hopfield Network. The figure above
displays a 3-node Hopfield network with weight matrix J
and zero threshold vector. Each binary state vector x =
(x1, x2, x3)> has energy Ex as labeled on the y-axis of the
diagram on the right. Arrows between states represent one
iteration of the network dynamics; i.e., x1, x2, and x3 are
updated by (1) in the order indicated by the clockwise arrow
in the graph on the left. The resulting fixed states of the
network are indicated by filled circles.

network are all length n binary strings {0, 1}n, which we
represent as binary column vectors x = (x1, . . . , xn)>,
each xi ∈ {0, 1} indicating the state xi of node i. Given
any state x = (x1, . . . , xn)>, an (asynchronous) dynami-
cal update of x consists of replacing xi in x (in consecutive
order starting with i = 1; see Fig 1) with the value

xi = H(Jix− θi). (1)

Here, Ji is the ith row of J and H is the Heaviside func-
tion given by H(r) = 1 if r > 0 and H(r) = 0 if r ≤ 0.

The energy Ex of a binary pattern x in a Hopfield
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FIG. 2. Learning memories from corrupted samples.
We stored 80 fingerprints (64×64 binary images) in a Hopfield
network with n = 642 = 4096 nodes by minimizing the MPF
objective (4) over a large set of randomly generated (and unla-
beled) “noisy” versions (each training pattern had a random
subset of 1228 of its bits flipped; e.g., a,e). After training,
all 80 original fingerprints were stored as fixed-points of the
network. a. Sample fingerprint with 30% corruption used
for training. b. Sample fingerprint with 40% corruption. c.
State of the network after one update of the dynamics initial-
ized at b. d. Converged network dynamics equal to original
fingerprint. e-h. As in a-d, but for a different fingerprint.

network is defined to be

Ex(J, θ) := −1

2
x>Jx + θ>x = −

∑
i<j

xixjJij +

n∑
i=1

θixi,

(2)
identical to the energy function for an Ising spin glass. In
fact, the dynamics of a Hopfield network can be seen as
0-temperature Gibbs sampling of this energy function. A
fundamental property of Hopfield networks is that asyn-
chronous dynamical updates do not increase the energy
(2). Thus, after a finite number of updates, each initial
state x converges to a fixed-point x∗ = (x∗1, . . . , x

∗
n)> of

the dynamics; that is, x∗i = H(Jix
∗ − θi) for each i. See

Fig. 2 for a sample Hopfield network on n = 3 nodes.
Given a binary pattern x, the neighborhood N (x) of

x consists of those binary vectors which are Hamming
distance 1 away from x (i.e., those with exactly one bit
different from x). We say that x is a strict local minimum
if every x′ ∈ N (x) has a strictly larger energy:

0 > Ex − Ex′ = (Jix− θi)δi, (3)

where δi = 1−2xi and xi is the bit that differs between x
and x′. It is straightforward to verify that if x is a strict
local minimum, then it is a fixed-point of the dynamics.

A basic problem is to construct Hopfield networks with
a given set D of binary patterns as fixed-points or strict
local minima of the energy function (2). Such networks
are useful for memory denoising and retrieval since cor-
rupted versions of patterns in D will converge through
the dynamics to the originals. Traditional approaches

to this problem consist of iterating over D a learning
rule [6] that updates a network’s weights and thresholds
given a training pattern x ∈ D. We call a rule local
when the learning updates to the three parameters Jij ,
θi, and θj can be computed with access solely to xi, xj ,
the feedforward inputs Jix, Jjx, and the thresholds θi,
θj ; otherwise, we call the rule nonlocal. The locality of
a rule is an important feature in a network training al-
gorithm because of its necessity in theoretical models of
computation in neuroscience.

In [2], Hopfield defined an outer-product learning rule
(OPR) for finding such networks. OPR is a local rule
since only the binary states of nodes xi and xj are re-
quired to update a coupling term Jij during training (and
only the state of xi is required to update θi). Using OPR,
at most n/(4 log n) patterns can be stored without er-
rors in an n-node Hopfield network [7, 8]. In particular,
the ratio of patterns storable to the number of nodes us-
ing this rule is at most 1/(4 log n) memories per neuron,
which approaches zero as n increases. If a small per-
centage of incorrect bits is tolerated, then approximately
0.15n patterns can be stored [2, 9].

The perceptron learning rule (PER) [10, 11] provides
an alternative method to store patterns in a Hopfield
network [12]. PER is also a local rule since updating Jij
requires only Jix and Jjx (and updating θi requires Jix).
Unlike OPR, it achieves optimal storage capacity, in that
if it is possible for a collection of patterns D to be fixed-
points of a Hopfield network, then PER will converge to
parameters J, θ for which all of D are fixed-points. How-
ever, training frequently takes many parameter update
steps (see Fig. 4), and the resulting Hopfield networks do
not generalize well (see Fig. 5) nor store patterns from
corrupted samples (see Fig. 6).

Despite the connection to the Ising model energy func-
tion, and the common usage of Ising spin glasses (oth-
erwise referred to as Boltzmann machines [4]) to build
probabilistic models of binary data, we are aware of no
existing work on associative memories that takes ad-
vantage of a probabilistic interpretation during training.
(Although probabilistic interpretations have been used
for pattern recovery [13].)
Theoretical Results. We give an efficient algorithm

for storing at least n binary patterns as strict local min-
ima (and thus fixed-points) in an n-node Hopfield net-
work, and we prove that this algorithm achieves the op-
timal storage capacity achievable in such a network. We
also present a novel local learning rule for the training of
neural networks.

Consider a collection of m binary n-bit patterns D to
be stored as strict local minima in a Hopfield network.
Not all collections of m such patterns D can so be stored;
for instance, from (3) we see that no two binary patterns
one bit apart can be stored simultaneously. Nevertheless,
we say that the collection D can be stored as local minima
of a Hopfield network if there is some H = (J, θ) such
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that each x ∈ D is a strict local minimum of the energy
function Ex(J, θ) in (2).

The minimum probability flow (MPF) objective func-
tion [5] given the collection D is

KD(J, θ) :=
∑
x∈D

∑
x′∈N (x)

exp

(
Ex − Ex′

2

)
. (4)

The function in (4) is infinitely differentiable and strictly
convex in the parameters. Notice that when KD(J, θ) is
small, the energy differences Ex − Ex′ between x ∈ D
and patterns x′ in neighborhoods N (x) will satisfy (3),
making x a fixed-point of the dynamics.

As the following result explains, minimizing (4) given a
storable set of patterns will determine a Hopfield network
storing those patterns.

Theorem 1. If a set of binary vectors D can be stored
as local minima of a Hopfield network, then minimizing
the convex MPF objective (4) will find such a network.

Proof: We first claim that D can be stored as local
minima of a Hopfield network H if and only if the MPF
objective (4) satisfies KD(J, θ) < 1 for some J and θ.
Suppose first that D can be made strict local minima
with parameters J and θ. Then for each x ∈ D and
x′ ∈ N (x), inequality (3) holds. In particular, a uniform
scaling in the parameters will make the energy differences
in (4) arbitrarily large and negative, and thus K can be
made less than 1. Conversely, suppose that KD(J, θ) < 1
for some choice of J and θ. Then each term in the sum
of positive numbers (4) is less than 1. This implies that
the energy difference between each x ∈ D and x′ ∈ N (x)
satisfies (3). Thus, D are all strict local minima.

We now explain how the claim proves the theorem.
Suppose that D can be stored as local minima of a Hop-
field network; then, KD(J, θ) < 1 for some J, θ. Any
method producing parameter values J and θ having ob-
jective (4) arbitrarily close to the infimum of KD(J, θ)
will produce a network with MPF objective strictly less
than 1, and therefore store D by above.

Our next main result is that at least n patterns in an n-
node Hopfield network can be stored by minimizing (4).
To make this statement mathematically precise, we intro-
duce some notation. Let r(m,n) < 1 be the probability
that a collection of m binary patterns chosen uniformly
at random from all

(
2n

m

)
m-element subsets of {0, 1}n can

be made local minima of a Hopfield network. The pattern
capacity (per neuron) of the Hopfield network is defined
to be the supremum of all real numbers a > 0 such that

lim
n→∞

r(an, n) = 1. (5)

Theorem 2. The pattern capacity of an n-node Hop-
field network is at least 1 pattern per neuron.

In other words, for any fixed a < 1, the fraction of
all subsets of m = an patterns that can be made strict
local minima (and thus fixed-points) of a Hopfield net-
work with n nodes converges to 1 as n tends to infinity.
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FIG. 3. Shows fraction of patterns made fixed-points of a
Hopfield network using OPR (outer-product rule), MPF (min-
imum probability flow), and PER (perceptron) as a function
of the number of randomly generated training patterns m.
Here, n = 64 binary nodes and we have averaged over t = 20
trials. The slight difference in performance between MPF and
PER is due to the extraordinary number of iterations required
for PER to achieve perfect storage of patterns near the critical
pattern capacity of the Hopfield network. See also Fig. 4.

Moreover, by Theorem 1, such networks can be found
by minimizing (4). Experimental evidence suggests that
the limit in (5) is 1 for all a < 1.5, but converges to 0
for a > 1.7 (see Fig. 3). Although the Cover bound [14]
forces a ≤ 2, it is an open problem to determine the ex-
act critical value of a (i.e., the exact pattern capacity of
the Hopfield network)

We close this section by defining a new learning rule
for a neural network. In words, the minimum probability
flow learning rule (MPF) takes an input training pat-
tern x and moves the parameters (J, θ) a small amount
in the direction of steepest descent of the MPF objec-
tive function KD(J, θ) with D = {x}. Mathematically,
these updates for Jij and θi take the form (where again,
δ = 1− 2x):

∆Jij ∝ −δixje
1
2 (Jix−θi)δi − δjxie

1
2 (Jjx−θj)δj (6)

∆θi ∝ δie
1
2 (Jix−θi)δi . (7)

It is clear from (6),(7) that MPF is a local learning rule.
Experimental results. We performed several experi-

ments comparing standard techniques for fitting Hopfield
networks with minimizing the MPF objective function
(4). All computations were performed on standard desk-
top computers, and we used used the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm
[15] to minimize (4).

In our first experiment, we compared MPF to the two
methods OPR and PER for finding 64-node Hopfield net-
works storing a given set of patterns D. For each of 20
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FIG. 4. Shows time (on a log scale) to train a Hopfield net-
work with n = 64 neurons to store m patterns using OPR,
PER, and MPF (averaged over t = 20 trials).
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FIG. 5. Shows fraction of exact pattern recovery for a per-
fectly trained n = 128 Hopfield network using rules PER (fig-
ure on the left) and MPF (figure on the right) as a function
of bit corruption at start of recovery dynamics for various
numbers m of patterns to store. We remark that this exper-
iment and the next do not involve OPR as its performance
was significantly worse than that of MPF and PER.

trials, we used the three techniques to store a randomly
generated set of m binary patterns, where m ranged from
1 to 120. The results are displayed in Fig. 3 and support
the conclusions of Theorem 1 and Theorem 2.

To study the efficiency of our method, we compared
training time of a 64-node network as in Fig. 3 with the
three techniques OPR, MPF, and PER. The resulting
computation times are displayed in Fig. 4 on a loga-
rithmic scale. Notice that computation time for MPF
and PER significantly increases near the pattern capac-
ity threshold of the Hopfield network.

For our third experiment, we compared the denoising
performance of MPF and PER. For each of four values for
m in a 128-node Hopfield network, we determined weights
and thresholds for storing all of a set of m randomly gen-
erated binary patterns using both MPF and PER. We
then flipped 0 to 64 of the bits in the stored patterns and
let the dynamics (1) converge (with weights and thresh-
olds given by MPF and PER), recording if the converged
pattern was identical to the original pattern or not. Our
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FIG. 6. Shows fraction of patterns (shown in red for MPF and
blue for PER) and fraction of bits (shown in dotted red for
MPF and dotted blue for PER) recalled of trained networks
(with n = 64 nodes each) as a function of the number of pat-
terns m to be stored. Training patterns were presented re-
peatedly with 20 bit corruption (i.e., 31% of the bits flipped).
(averaged over t = 13 trials.)

results are shown in Fig 5, and they demonstrate the su-
perior corrupted memory retrieval performance of MPF.

A surprising final finding in our investigation was that
MPF can store patterns from highly corrupted or noisy
versions on its own and without supervision. This result
is explained in Fig 6. To illustrate the experiment visu-
ally, we stored m = 80 binary fingerprints in a 4096-node
Hopfield network using a large set of training samples
which were corrupted by flipping at random 30% of the
original bits; see Fig. 2 for more details.
Discussion. We have presented a novel technique for

the storage of patterns in a Hopfield associative mem-
ory. The first step of the method is to fit an Ising model
using minimum probability flow learning to a discrete
distribution supported equally on a set of binary target
patterns. Next, we use the learned Ising model param-
eters to define a Hopfield network. We show that when
the set of target patterns is storable, these steps result
in a Hopfield network that stores all of the patterns as
fixed-points. We have also demonstrated that the result-
ing (convex) algorithm outperforms current techniques
for training Hopfield networks.

We have shown improved recovery of memories from
noisy patterns and improved training speed as compared
to training by PER. We have demonstrated optimal stor-
age capacity in the noiseless case, outperforming OPR.
We have also demonstrated the unsupervised storage of
memories from heavily corrupted training data. Further-
more, the learning rule that results from our method is
local; that is, updating the weights between two units
requires only their states and feedforward input.

As MPF allows the fitting of large Hopfield networks
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quickly, new investigations into the structure of Hopfield
networks are posssible [16]. It is our hope that the ro-
bustness and speed of this learning technique will enable
practical use of Hopfield associative memories in both
computational neuroscience, computer science, and sci-
entific modeling.
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