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Abstract

This paper is devoted to description of the relationship among oriented associativity equations,
symmetry consistent conjugate curvilinear coordinate nets, and the widest associated class of semi-
Hamiltonian hydrodynamic-type systems.
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1 Introduction

The nonlinear partial differential system1

∂2ci

∂aj∂am
∂2cm

∂ak∂an
=

∂2ci

∂ak∂am
∂2cm

∂aj∂an
(1)

describing a displacement vector appears in [4]. Following [14] we call this system the oriented associa-

tivity equations. This system admits the scalar linear spectral problem (cf. [4])

∂2h

∂ai∂aj
= λ

∂2cm

∂ai∂aj
∂h

∂am
(2)

or, alternatively, the vector linear spectral problem (cf. e.g. [15] and references therein)

∂bi

∂ak
= λ

∂2ci

∂ak∂am
bm. (3)

Integrable system (1) was extensively investigated in a number of papers (see, for instance, [9]) dedicated
to the so-called coisotropic deformations. Some other aspects were considered in [8], [11], [12], [13], [15].

This paper is devoted to integrability of system (1). We consider a connection of (1) with a widest

class of semi-Hamiltonian hydrodynamic-type systems

aitk = ∂x
∂ci

∂ak
; (4)

we present a geometrical interpretation for (1) and linear spectral problems (2) and (3), and describe some
transformations preserving (1), (2) and (3).

The celebrated WDVV equation (see, for instance, [4], [5], [6], [10])

∂3F

∂ai∂aj∂am
ηmn ∂3F

∂an∂ak∂as
=

∂3F

∂ai∂ak∂am
ηmn ∂3F

∂an∂aj∂as
, j 6= k (5)

can be obtained from (1) by the potential reduction (where ηks is a constant nondegenerate symmetric
metric)

ci = ηim
∂F

∂am
. (6)

In this paper, we follow [4], and step by step unravel the relationship among (1) and the widest class of
the so-called conjugate curvilinear coordinate nets determined by (see, for instance, [1])

∂iβjk = βjiβik, i 6= j 6= k, (7)

δβik = 0, i 6= k, (8)

where ∂i = ∂/∂ri, δ = Σ∂m is the so-called shift symmetry operator, and the rotation coefficients βik de-
pend on N Riemann invariants rk. The first subset of the above equations is the famous Darboux system,
while the second condition means that the rotation coefficients depend only on differences of the Riemann
invariants. For the sake of simplicity we shall call these conjugate curvilinear coordinate nets symmetry

consistent.

1Here and below the sum over any of repeated indices in the opposite locations (that is, one subscript and one superscript)
is understood; otherwise the sum is indicated explicitly.
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The paper is organized as follows. In Section 2 we introduce the metric and the basic set of solutions of
linear systems (determining the symmetry consistent conjugate curvilinear coordinate nets) whose compat-
ibility conditions imply the oriented associativity equations. In Section 3 we construct the transformation
from the symmetry consistent conjugate curvilinear coordinate nets to the oriented associativity equations.
In Section 4 we construct the relationship between linear spectral problems for the oriented associativity
equations and the symmetry consistent conjugate curvilinear coordinate nets. In Section 5 we equip the
oriented associativity equations by the unity condition. We concentrate here on the three-component case.
In Section 6 we prove that these oriented associativity equations are a Hamiltonian system. In Section 7 we
prove that the oriented associativity equations can be interpreted as a system of equations describing N -
component position vector of a hypersurface in centroaffine geometry. In Section 8 we construct the inverse
transformation from the oriented associativity equations to the symmetry consistent conjugate curvilinear
coordinate nets. In Section 9 we construct an infinite set of particular solutions for semi-Hamiltonian
hydrodynamic type systems whose rotation coefficients depend on differences of the Riemann invariants
only. Finally, in Section 10 we just emphasize the relations among these very important systems.

2 Linear Spectral Problems. Basic Sets of Solutions

Consider two linear systems
∂iHk = βikHi, ∂iψk = βkiψi, i 6= k, (9)

whose rotation coefficients βik depend on differences of the Riemann invariants rk only (see (8)). This
means that a particular set of solutions Hk, ψi satisfies two extra equations

δHi = λHi, δψi = λψi. (10)

The first set of compatibility conditions ∂j(∂iHk) = ∂i(∂jHk), ∂j(∂iψk) = ∂i(∂jψk) leads to a full set of
equations (7) describing conjugate curvilinear coordinate nets, while the second compatibility conditions
∂j(δHk) = δ(∂jHk), ∂j(δψk) = δ(∂jψk) yield (8).

Remark: The symmetry consistent conjugate curvilinear coordinate nets are well known in classical
differential geometry (see e.g. [1] and [17]). Moreover, system (7), (8) was derived more recently in the
context of algebro-geometric solutions for multidimensional integrable systems (see [3]). It is interesting
to note that this system also arises in quantum statistical physics, see Slavnov [16], and in theory of the
discrete analogue of conjugate curvilinear coordinate nets known as D-invariant lattices (see [2]).

In this case N infinite series of solutions of systems (9) can be recursively found by quadratures (see
[17])

δH
(n+1,s)
k = H

(n,s)
k , δψ

(n+1,s)
i = ψ

(n,s)
i , s = 1, 2, ..., N, n = 0, 1, ..., (11)

where δψ
(0,s)
i = 0 and δH

(0,s)
i = 0.

Choose N particular solutions H(k)i ≡ H
(0,k)
i as the basic set of solutions. Then introduce a non-

degenerate (and non-constant in the generic case) symmetric metric

ḡik =

N
∑

m=1

H(i)mH(k)m. (12)

Lemma: N particular solutions ψ
(n)
i = ψ

(0,n)
i can be chosen in the form

ψ
(s)
i = ḡsnH(n)i, (13)

where ḡsn is an inverse metric for ḡik.
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Proof : Substituting (13) into the second equation of (9) yields

∂i(ḡ
snH(n)k) = βkiḡ

snH(n)i, i 6= k.

Upon removing the parentheses on the l.h.s. and multiplying both sides by ḡjs the above relations boil
down to

H(n)kḡ
ns∂iḡsj = (βik − βki)H(j)i, i 6= k.

Taking into account (recall that δH(s)i = 0) the equations

∂iH(s)i = −
∑

m6=i

βmiH(s)m, ∂iḡjk =
∑

m6=i

(βim − βmi)(H(j)iH(k)m +H(k)iH(j)m), (14)

one obtains an identity. The theorem is proved.
Then, obviously, three additional identities (where δik and δik are the Kronecker symbols)

ḡik =

N
∑

m=1

ψ(i)
m ψ

(k)
m , δik =

N
∑

m=1

ψ(i)
mH(k)m, δik =

N
∑

m=1

ψ
(m)
i H(m)k (15)

hold. In the Egorov case βik = βki and the metric ḡik = const (see (14)).

3 Reconstruction of Oriented Associativity Equations

In contrast with the previous section, we consider N Riemann invariants rk as functions of N independent
variables tn, i.e. we introduce N commuting hydrodynamic-type systems

ritk =
H(k)i

H̄i

rix, (16)

where H̄i is an arbitrary solution of the first linear system in (9). These hydrodynamic-type systems are
semi-Hamiltonian (i.e. possess infinite set of conservation laws parameterized by N arbitrary functions of
a single variable, see [17]). In such a case, they can be written in the conservative form

∂tkh = ∂xgk, (17)

where ∂ih = ψiH̄i, ∂igk = ψiH(k)i and ψi is an arbitrary solution (parameterized by N arbitrary functions
of a single variable, see [17]) of the second system in (9). Introduce N conservation law densities ak such

that ∂ia
k = ψ

(k)
i H̄i and N conservation law densities ck such that ∂ic

k = ψ̄
(k)
i H̄i, where δψ̄

(k)
i = ψ

(k)
i (i.e.

ψ̄
(k)
i ≡ ψ

(1,k)
i , see (11) and (13)).

Theorem: N commuting hydrodynamic-type systems (16) can be written in the conservative form (4),
whose compatibility conditions are oriented associativity equations (1).

Proof : The relation ψ̄
(k)
i = cksψ

(s)
i follows from

dck =
N
∑

m=1

ψ̄
(k)
m H̄mdr

m = cksda
s = cks

N
∑

m=1

ψ(s)
m H̄mdr

m,

where cik ≡ ∂ci/∂ak (see (4)). Taking into account the second identity from (15), one can obtain

cik =
N
∑

m=1

ψ̄
(i)
mH(k)m. (18)
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Then (see (9))

∂ic
k
j = ∂i

(

ψ̄
(k)
i H(j)i +

∑

m6=i

ψ̄
(k)
m H(j)m

)

= ψ̄
(k)
i ∂iH(j)i +H(j)i∂iψ̄

(k)
i +H(j)i

∑

m6=i

βimψ̄
(k)
m + ψ̄

(k)
i

∑

m6=i

βmiH(j)m

= ψ̄
(k)
i

(

∂iH(j)i +
∑

m6=i

βmiH(j)m

)

+H(j)i

(

∂iψ̄
(k)
i +

∑

m6=i

βimψ̄
(k)
m

)

.

If we take into account that the expression in the first brackets vanishes because δH(j)i = 0, and the

expression in the second brackets is nothing but ψ
(k)
i (since δψ̄

(k)
i = ψ

(k)
i ), then one can conclude that

∂ic
k
j = ψ

(k)
i H(j)i. (19)

On the other hand, if the hydrodynamic-type systems (16) possess N conservation laws (4), then

∂ma
i · rmtk = ∂mc

i
k · r

m
x .

Substituting the r.h.s. of (16) for ri
tk

leads to (recall that ∂ia
k = ψ

(k)
i H̄i)

∂ic
k
j =

H(j)i

H̄i

ψ
(k)
i H̄i = ψ

(k)
i H(j)i,

which coincide with (19). The theorem is proved.
Remark: The second derivatives of the functions ci with respect to the field variables aj, ak can be

easily derived from (19). Indeed, the relations

∂ic
k
j = ckjs∂ia

s = ckjsψ
(s)
i H̄i = ψ

(k)
i H(j)i

lead (upon multiplying the third and fourth blocks of the above expression by the ratio H(p)i/H̄i, and
summing according to the second formula from (15)) to

cijk =
N
∑

m=1

ψ(i)
mH(j)mH(k)m

H̄m

, (20)

which, obviously, satisfy (1) by virtue of (15). Its symmetric form

cijk = ḡisc
s
jk =

N
∑

m=1

H(i)mH(j)mH(k)m

H̄m

is well known in the theory of WDVV associativity equations and Frobenius manifolds, where such expres-
sions for cijk can be found using the theory of meromorphic differentials on algebraic Riemann surfaces
(see, for instance, [4] and [10]).

Remark: Since
N
∑

m=1

∂ma
k ·
∂rm

∂as
= δks ,

N
∑

m=1

∂ka
m ·

∂rs

∂am
= δsk,

one can easily derive (recall (15) and ∂ia
k = ψ

(k)
i H̄i)

∂ri

∂ak
=
H(k)i

H̄i

. (21)
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Thus, the characteristic velocities vi(k)(a) ≡ H(k)i/H̄i (see (16)) of N commuting hydrodynamic-type

systems (4) are nothing but ∂ri/∂ak. Thus, the compatibility conditions ∂vi(k)/∂a
j = ∂vi(j)/∂a

k should be

satisfied. Indeed, multiplying both sides by api and summing over i, one obtains an identity, which follows
from

N
∑

m=1

vm(k)
∂apm
∂aj

=

N
∑

m=1

vm(j)
∂apm
∂ak

,

where ∂aim/∂a
k = aimsv

s
(k). Thus, we conclude that

∂ri

∂ak
= vi(k)(a). (22)

Any semi-Hamiltonian hydrodynamic-type system (see [17])

ait = vika
k
x, (23)

is associated with the non-degenerate metric tensor ḡik. The necessary and sufficient conditions for exis-
tence of this tensor are given by (here ∇k is the covariant derivative) the Tsarev lemma (see [17])

ḡikvjk = ḡjkvik, ∇iv
k
j = ∇jv

k
i . (24)

However, for hydrodynamic-type systems (4) we should not solve this system, because we already know
that the metric tensor ḡij in the field variables ak is given by (12). Indeed, we have (see (12), (15))

ds2 =

N
∑

i=1

N
∑

k=1

ḡikda
idak =

N
∑

i=1

N
∑

k=1

N
∑

s=1

N
∑

n=1

(

N
∑

m=1

H(i)mH(k)m

)

(ψ(i)
s H̄sdr

s)(ψ(k)
n H̄ndr

n)

=
N
∑

s=1

N
∑

n=1

N
∑

m=1

(

N
∑

i=1

ψ(i)
s H(i)m

)(

N
∑

k=1

ψ(k)
n H(k)m

)

H̄nH̄sdr
sdrn =

N
∑

m=1

H̄2
m(dr

m)2.

So, we arrive at the conclusion that the diagonal metric gkk = H̄2
k in the Riemann invariants, in perfect

agreement with Tsarev’s definition of semi-Hamiltonian metric (see [17]).
Anyway, taking into account the expression for the covariant derivative ∇lv

i
k = ∂lv

i
k − Γm

lkv
i
m + Γi

lmv
m
k ,

conditions (24) for hydrodynamic-type systems (4) reduce to a more compact form

ḡikcjks = ḡjkciks, Γk
imc

m
js = Γk

jmc
m
is . (25)

By virtue of (15) and (20), the first group of equations yields an identity. To consider the second group of
equations, at first we should compute

Γi
jk =

1

2
ḡim
(

∂ḡmk

∂aj
+
∂ḡmj

∂ak
−
∂ḡjk
∂am

)

.

Taking into account (14), (15) and (21) yields

Γi
jk =

1

2

N
∑

m=1

N
∑

s=1

ḡim
(

∂sḡmk

∂rs

∂aj
+ ∂sḡmj

∂rs

∂ak
− ∂sḡjk

∂rs

∂am

)

=

N
∑

s=1

H(j)sH(k)s

H̄s

N
∑

p=1

(βsp − βps)ψ
(i)
p .

Then, upon taking into account (15) and (20) once again, the second group of equations in (25) becomes
an identity.
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4 Linear Spectral Problems for Oriented Associativity Equa-

tions

As it was already mentioned in Introduction, the oriented associativity equations (1) can be obtained as
compatibility conditions of the scalar linear spectral problem (2)

hik = λcsikhs, (26)

where we denote cijk ≡ ∂2ci/∂aj∂ak, hi ≡ ∂h/∂ai, hik ≡ ∂2h/∂ai∂ak.
Lemma: The function h(a) is a generating function of conservation law densities (see (17)).
Proof : If h(a) is a conservation law density, then (see (21) and cf. (18))

hk =

N
∑

m=1

∂mh ·
∂rm

∂ak
=

N
∑

m=1

ψmH̄m ·
H(k)m

H̄m

=

N
∑

m=1

ψmH(k)m.

Also, taking into account (26) and (19), one can compute

dhk = hkmda
m = λcskmhsda

m = λhsdc
s
k

= λ

N
∑

s=1

N
∑

n=1

N
∑

m=1

(ψnH(s)n)(ψ
(s)
m H(k)mdr

m) = λ

N
∑

n=1

N
∑

m=1

(

N
∑

s=1

H(s)nψ
(s)
m

)

ψnH(k)mdr
m,

i.e. we have

dhk = λ

N
∑

m=1

ψmH(k)mdr
m.

So, we arrive at the relation

∂i

(

N
∑

m=1

ψmH(k)m

)

= λψiH(k)i,

which immediately reduces to the second equation in (10). The lemma is proved.
Now, consider the commuting hydrodynamic-type system (τ is a group parameter)

riτ =
Hi

H̄i

rix, ⇔ akτ = bkx, (27)

where Hi is an arbitrary solution of first linear system (9) and ∂ib
k = ψ

(k)
i Hi. As it was mentioned in

Introduction, oriented associativity equations (1) can be obtained as compatibility conditions of the vector
linear spectral problem (3)

bik = λciksb
s, (28)

where we denote bik ≡ ∂bi/∂ak.
Lemma: The functions

bk(a) = λ−1
N
∑

m=1

ψ(k)
m Hm

are conservation law fluxes for generating functions of commuting flows (27).
Proof : Taking into account (28), (19) and (15), we find that

dbk = λcknsb
sdan = λbsdcks =

N
∑

s=1

(

N
∑

m=1

ψ(s)
m Hm

)(

N
∑

n=1

ψ(k)
n H(s)ndr

n

)

7



=
N
∑

m=1

N
∑

n=1

(

N
∑

s=1

ψ(s)
m H(s)n

)

ψ(k)
n Hmdr

n =
N
∑

m=1

ψ(k)
m Hmdr

m.

Thus, indeed, ∂ib
k = ψ

(k)
i Hi. On the other hand, we have

λ∂ib
k =

∑

m6=i

ψ(k)
m ∂iHm + ψ

(k)
i ∂iHi +

∑

m6=i

Hm∂iψ
(k)
m +Hi∂iψ

(k)
i ,

i.e.

λ∂ib
k = Hi

∑

m6=i

βimψ
(k)
m + ψ

(k)
i

(

δHi −
∑

m6=i

βmiHm

)

+ ψ
(k)
i

∑

m6=i

βmiHm +Hi

(

δψ
(k)
i −

∑

m6=i

βimψ
(k)
m

)

.

Since the first sum equals to the fourth sum, and the second sum equals to the third sum, we arrive at the
conclusion that λ∂ib

k = ψ
(k)
i δHi (recall that δψ

(k)
i = 0), which agrees with the previously computed ∂ib

k =

ψ
(k)
i Hi, if and only ifHi satisfies the first equation in the linear spectral problem (10). The lemma is proved.
Remark: One commuting flow (27) can be found without integration, i.e. (y is a group parameter)

aiy = (ascis − ci)x. (29)

Indeed (see (20)), we have

∂i(a
scks − ck) = ascksn∂ia

n = ascksnψ
(n)
i H̄i = as

N
∑

n=1

N
∑

m=1

ψ(k)
m H(s)mH(n)m

H̄m

ψ
(n)
i H̄i

= as
N
∑

m=1

ψ(k)
m H(s)m

H̄m

(

N
∑

n=1

ψ
(n)
i H(n)m

)

H̄i = asψ
(k)
i H(s)i.

Since ∂i(a
scks − ck) = ψ

(k)
i H̃i, where H̃i is some solution of the first system in (9), we conclude that

H̃i = asH(s)i. Substituting this expression into the first system in (9) leads to an identity, and the
substitution into the first equation in (10) yields

δH̃i = H(s)iδa
s =

N
∑

s=1

H(s)i

N
∑

m=1

ψ(s)
m H̄m =

N
∑

m=1

(

N
∑

s=1

ψ(s)
m H(s)i

)

H̄m = H̄i.

Thus, the family of hydrodynamic-type systems (4) has a simple commuting flow (29), which in the
diagonal form (see the first equation in (27)) has characteristic velocities H̃i/H̄i such that δH̃i = H̄i.

5 Reduction to Canonical Form

Hydrodynamic-type systems (4) have N additional natural conservation laws

citk = ∂x
∂Qi

∂ak
. (30)

Indeed, suppose that the hydrodynamic-type systems (4) possess N additional conservation laws ci
tk

=
∂xQ

i
k. Then dQi

k = cimdc
m
k , i.e. Qi

ks = cimc
m
ks. Thus, we conclude that Qi

ks = Qi
sk and N functions Qi

determine the fluxes of these conservation laws. The compatibility conditions ∂Qi
ks/∂a

j = ∂Qi
js/∂a

k hold
by virtue of (1).

8



Rewrite N commuting hydrodynamic-type systems (4) in the differential form, i.e. (see (18)),

dzi = aidx+

N
∑

k=1

cik(a)dt
k ≡ aidx+

N
∑

m=1

N
∑

k=1

ψ̄
(i)
mH(k)mdt

k.

Thus, we see that functions cik(a) do not depend on the choice of Lamè coefficients H̄k, while (recall again)

∂ia
k = ψ

(k)
i H̄i. Below we shall consider the reduced version, i.e.

dzi =
N
∑

m=1

N
∑

k=1

ψ̄
(i)
mH(k)mdt

k.

In such a case, we pick the first “time” variable t1 and choose the new field variables ãi ≡ ci1(a), and then
instead of (4) we shall consider just N − 1 commuting flows

ãitk = ∂t1
∂c̃i

∂ãk
, (31)

where ∂c̃i/∂ãk = ∂ci/∂ak, k = 2, 3, ..., N . Thus, all functions c̃i can be found in quadratures, i.e.

dc̃i =
N
∑

m=1

cimdc
m
1 .

Indeed, rewrite the conservation laws (30) in the differential form

dyi = ci(a)dx+
N
∑

k=1

Qi
k(a)dt

k = ci(a)dx+Qi
1(a)dt

1 +
N
∑

k=2

Qi
k(a)dt

k.

Choose c̃i = Qi
1(a), then dc̃

i = Qi
1sda

s = cimc
m
1sda

s = cimdc
m
1 = cimdã

m. So, ∂c̃i/∂ãk = ∂ci/∂ak.
Obviously, the hydrodynamic-type systems (31) can be written in the diagonal form

ritk =
H(k)i

H(1)i

rit1 . (32)

Indeed, the first of these commuting flows (16) can be written in the form

rix =
H̄i

H(1)i

rit1 .

Then all other commuting flows (16) reduce to (32) upon substituting for rix from the above formula.
Below we shall omit tildes over field variables ak and cn, because we are going to consider just the

oriented associativity equations supplemented with the so-called “unity” condition (cf. [4])

ci1k = δik, (33)

which is equivalent to considering a canonical set of N − 1 commuting flows (31). We shall call such
oriented associativity equations normalized.

Thus, the conservative representations (31) reduce to the form

a1tk = ∂t1u
1
k, aitk = ∂t1(a

1δik + uik), i, k = 2, 3, ..., N,

9



where the new unknown functions un(a2, a3, ..., aN) appear from integration of (33), i.e.

c1 =
1

2
(a1)2 + u1, ck = a1ak + uk, k = 2, 3, ..., N. (34)

In this case, the shift symmetry operator δ can be easily expressed via the field variables ak instead of the
Riemann invariants rn, i.e.

δ =

N
∑

m=1

∂

∂rm
=

N
∑

k=1

(

N
∑

m=1

∂ak

∂rm

)

∂

∂ak
=

N
∑

k=1

(

N
∑

m=1

ψ(k)
m H(1)m

)

∂

∂ak
=

∂

∂a1
. (35)

Thus, two equations of scalar and vector linear spectral problems (26) and (28), namely

h1 = λh, bk1 = λbk (36)

coincide with the eigenvalue problem for the above shift symmetry operator, while the remaining equations
in (26) and (28) become, respectively,

hik = λ
N
∑

s=1

usikhs, i, k = 2, 3, . . . , N, (37)

bik = λ

(

(δik − δi1δ
1
k)b

1 +
N
∑

m=2

uikmb
m

)

, i = 1, 2, ..., N, k = 2, 3, ..., N.

Example: Consider the simplest nontrivial case N = 3. Then two commuting flows are given by (here
x = t1, t = t2, y = t3)

at = ∂xub, bt = ∂x(a+ vb), ct = ∂xwb;

(38)

ay = ∂xuc, by = ∂xvc, cy = ∂x(a+ wc),

where a = a1, b = a2, c = a3, u = u1(b, c), v = u2(b, c), w = u3(b, c) and the subscripts indicate the
corresponding partial derivatives. The compatibility conditions for (38), which read (ay)t = (at)y, (by)t =
(bt)y, (cy)t = (ct)y, lead to three algebraic equations relating the second-order derivatives

ubb = vbcwbb − vbbwbc + w2
bc − wbbwcc, ubc = vccwbb − vbcwbc, ucc = v2bc − vbbvcc + vccwbc − vbcwcc,

which are integrable by the inverse spectral transform. The scalar Lax pair for the latter (see (37)) is
given by





ha
hb
hc





b

= λ





0 1 0
ubb vbb wbb

ubc vbc wbc









ha
hb
hc



 ,





ha
hb
hc





c

= λ





0 0 1
ubc vbc wbc

ucc vcc wcc









ha
hb
hc



 ,

while the adjoint Lax pair has transposed matrices, i.e.




b1

b2

b3





b

= λ





0 ubb ubc
1 vbb vbc
0 wbb wbc









b1

b2

b3



 ,





b1

b2

b3





c

= λ





0 ubc ucc
0 vbc vcc
1 wbc wcc









b1

b2

b3



 .

Remark: Both commuting hydrodynamic-type systems (37) also have the same Lax matrices, i.e.




a
b
c





t

=





0 ubb ubc
1 vbb vbc
0 wbb wbc









a
b
c





x

,





a
b
c





y

=





0 ubc ucc
0 vbc vcc
1 wbc wcc









a
b
c





x

.
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6 Hamiltonian Structure of Oriented Associativity Equations

The system of quadratic equations

ubb = vbcwbb − vbbwbc + w2
bc − wbbwcc, ubc = vccwbb − vbcwbc, ucc = v2bc − vbbvcc + vccwbc − vbcwcc,

is nothing but the oriented associativity equations in three-dimensional case with the unity condition (33)
(see also (34)). Introduce a new set of field variables q1 = ubb, q

2 = ubc, q
3 = vbb, q

4 = vbc, q
5 = wbb, q

6 = wbc.
Then this quadratic system becomes a six-component hydrodynamic-type system

q1c = q2b , q2c = ∂b
q2q6 + q1q4 − q2q3

q5
,

q3c = q4b , q4c = ∂b
q2 + q4q6

q5
, (39)

q5c = q6b , q6c = ∂b
(q6)2 − q3q6 + q4q5 − q1

q5
.

As it was already mentioned in Section 5, in the present paper we restrict ourselves to the generic case
when all characteristic velocities vi(k)(a) are pairwise distinct. We seek the Riemann invariants r(a, b, c)

for both commuting hydrodynamic-type systems (38) written in the diagonal form

rt = v(2)rx, ry = v(3)rx. (40)

Taking into account that ra = 1 (thanks to the shift symmetry operator δ = ∂a, see (35)), one can obtain

rb = v(2), rc = v(3), (41)

where the characteristic velocities v(2) and v(3) of (38) are related polynomially,

v(3) =
(v(2))

2 − q3v(2) − q1

q5
,

while v(2) satisfies the characteristic equation (45) for the first hydrodynamic-type system from (38), i.e.

(v(2))
3 − (q3 + q6)(v(2))

2 + (q3q6 − q4q5 − q1)v(2) + q1q6 − q2q5 = 0.

Since the three characteristic velocities are distinct, the commuting hydrodynamic-type systems (38) can
be written in diagonal form (40), where the Riemann invariants can be found by quadratures (see (41)),
i.e. (cf. (46))

rk = a+

∫

(vk(2)db+ vk(3)dc), k = 1, 2, 3.

Remark: Hydrodynamic-type system (39) possesses at least two additional local conservation laws.
Indeed, the existence of three Riemann invariants (see (41)) implies three additional conservation laws

∂cv
k
(2) = ∂b

(vk(2))
2 − q3vk(2) − q1

q5
, k = 1, 2, 3.

Hence, the roots vk(2) are conservation law densities. However, five conservation law densities q3, q6, v1(2), v
2
(2),

v3(2) are related by the linear equation

q3 + q6 = v1(2) + v2(2) + v3(2) (42)
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by virtue of the Viète theorem. This means that just two of the above three conservation laws are new.
Main Result of this Section: Upon expressing q1, q2 and q6 using the Viète theorem via q3, q4, q5

and v1(2), v
2
(2), v

3
(2), the hydrodynamic-type system (39) can be written in the local Hamiltonian form (cf. [6])

sic = g̃ik∂b
∂H

∂sk
,

where the flat coordinates are

s1 = v1(2), s2 = v2(2), s3 = v3(2), s4 = q4, s5 = q5, s6 = 2q3 − (v1(2) + v2(2) + v3(2)),

the metric is

g̃ik = −
1

2

















−1 1 1 0 0 0
1 −1 1 0 0 0
1 1 −1 0 0 0
0 0 0 0 2 0
0 0 0 2 0 0
0 0 0 0 0 1

















, g̃ik = −

















0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 2

















,

the momentum density P is

q1 =
1

2
g̃iks

isk =
1

4
(s1 + s2 + s3)2 − (s1s2 + s1s3 + s2s3)−

1

4
(s6)2 − s4s5,

and the Hamiltonian density H is

q2 =
2s1s2s3 + (s1 + s2 + s3 − s6)q1

2s5
,

while the other conservation law densities q3, q4, q5, q6 (recall (42)) are just linear combinations of the flat
coordinates sk, i.e.

q3 =
1

2
(s1 + s2 + s3 + s6), q4 = s4, q5 = s5, q6 =

1

2
(s1 + s2 + s3 − s6).

7 Centroaffine Geometry

Thanks to the presence of the shift symmetry operator (i.e. h1 = λh, see the first equation in (36)) linear
spectral problem (37) for normalized oriented associativity equations (see (33)) becomes

hik = λ
N
∑

s=2

usikhs + λ2u1ikh, i, k = 2, ..., N.

This linear system arises in centroaffine geometry. Following [5], consider a linear overdetermined
system (which is required to be compatible of rank N)

∂2r

∂ai∂aj
= λΓk

ij

∂r

∂ak
+ λ2gijr, i, j = 2, . . . , N, (43)

for the N -component position vector r = r(a2, . . . , aN) of a hypersurface MN−1 in centroaffine geometry,
where λ is a spectral parameter, gij(a

2, . . . , aN) is a pseudo-Riemannian metric, and Γk
ij(a

2, . . . , aN) are
components of a torsionless affine connection (which in general is not the Levi-Civita connection of flat
metric gij). The conformal class of gij is nothing but the second fundamental form of MN−1.

12



The compatibility conditions for this system have the form (see [5])

Γs
ijgsk=Γs

jkgsi=Γs
ikgsj, ∂kgij=∂igjk = ∂jgik, ∂kΓ

s
ij = ∂iΓ

s
jk = ∂jΓ

s
ik,

Γs
ijΓ

m
sk + gijδ

m
k = Γs

jkΓ
m
si+gjkδ

m
i = Γs

ikΓ
m
sj+gikδ

m
j ,

(44)

The equations ∂kgij=∂igjk = ∂jgik, ∂kΓ
s
ij = ∂iΓ

s
jk = ∂jΓ

s
ik mean that the components of the metric tensor

(in these coordinates ak) are second derivatives of a single function g(a) with respect to the corresponding
coordinates ak (i.e. gik ≡ ∂2g/∂ai∂ak), while the components of the affine connection Γi

jk are also second

derivatives of a single vector function ~Γ(a) (i.e. Γs
ik ≡ ∂2Γs/∂ai∂ak, where Γs are components of the vector

function ~Γ(a)). Following [5], one can split the affine connection on two parts, i.e.

Γs
ik =

1

2
gsmgmik + f s

ik,

where the first block 1
2
gsmgmik is a Levi-Civita connection, while the difference of connections f i

jk is
a (1,2)-tensor. Then the equations Γs

ijgsk=Γs
jkgsi=Γs

ikgsj (see (44)) imply that the tensor fijk = f s
ijgsk is

totally symmetric, defining the centroaffine cubic form C = fijkdx
idxjdxk of the hypersurfaceMN−1 which

together with the centroaffine metric M = gijdx
idxj (satisfying compatibility conditions (44)) uniquely

characterize a hypersurface. The rest of system (44) are precisely the normalized oriented associativity
equations, where u1 ≡ g and all other uk ≡ Γk.

The inverse construction: Now consider an additional variable a1 and assume that the indices i, j, k
run from 1 up to N . Since the vector function ~c(a) has the components determined from (34), we can
define the quantities cijk(a

1, . . . , aN)

ci1k = δik, i, k = 1, . . . , N, cijk = Γi
jk, c1jk = gik, i, j, k = 2, . . . , N

and h = (λr, ∂r/∂a1, ..., ∂r/∂aN )T . In such a case, linear system (43) is replaced again by more general
linear system (26).

Note that these formulas bear considerable resemblance with the formulas for cijk for the associativity
equations (the famous WDVV equation) at p. 36 in [5]. In fact, our formulas reduce to those of Ferapontov
if the metric gij is constant in the coordinates ai: gij = η̃ij = const.

Examples: The oriented associativity equations in three-dimensional case with the unity condition
(33) are nothing but a system of quadratic equations (see (38) and below)

ubb = vbcwbb − vbbwbc + w2
bc − wbbwcc, ubc = vccwbb − vbcwbc, ucc = v2bc − vbbvcc + vccwbc − vbcwcc.

Three distinguished versions of the WDVV associativity equations can be singled out by the special choices
of the metrics ḡik (see (6)). If η11 = η22 = η33 = 1 (and all other entries of ηik are equal to zero), then (see
(5) and (34))

F =
a3

6
+
b2 + c2

2
a + z(b, c),

where the three above quadratic equations reduce to a single one (v = zb, w = zc and u = (b2 + c2)/2)

z2bbc + z2bcc = 1 + zbbbzbcc + zccczbbc;

if η11 = η23 = η32 = 1, then

F =
a3

6
+ abc + z(b, c),

where the three aforementioned quadratic equations reduce to a single one (u = bc, v = zc, w = zb)

1 = zccczbbb − zbcczbbc;
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if η13 = η22 = η31 = 1, then

F =
1

2
(a2c+ ab2) + z(b, c),

where the three corresponding quadratic equations reduce to a single one (u = zc, v = zb, w = b2/2)

zccc = z2bbc − zbbbzbcc.

The first two examples are associated with the hypersurfaces endowed with flat centroaffine metrics
(see [5] for details), while the third example is related to a non-flat centroaffine metric, because gbb =
ubb, gbc = ubc, gcc = ucc and all components of the Riemann curvature tensor do not vanish.

Thus, we established a link (in fact, an equivalence) between the oriented associativity equations with
unity and centroaffine geometry in a general non-flat case (cf. [5]).

8 Inverse Construction

In the preceding sections we constructed the transformation from symmetry consistent conjugate curvilin-
ear coordinate nets to the oriented associativity equations. In this section, we briefly discuss the inverse
transformation.

• Any solution of oriented associativity equations (1) is associated with the corresponding hydrodynamic-
type systems (4).

• Suppose that all characteristic velocities vi(k)(a) of each hydrodynamic-type system (4) are distinct,

i.e. the algebraic equations (for each fixed index k)

det
∣

∣cijk − v(k)δ
i
j

∣

∣ = 0 (45)

have just simple roots. In this paper we restrict our consideration to this semi-simple case only.

• If an N -component hydrodynamic-type system has pairwise distinct characteristic velocities (see
(45)), N conservation laws (see (17)) and all components of the Haantjes tensor (see [7]) vanish,
then this hydrodynamic-type system is semi-Hamiltonian (see [17]) and can be written in diagonal
form (i.e., N Riemann invariants exist). The Nijenhuis tensor for the hydrodynamic-type system
(23) reads (below in this Section ∂k ≡ ∂/∂ak)

Ni
jk = vpj∂pv

i
k − vpk∂pv

i
j − vip(∂jv

p

k − ∂kv
p
j ),

and the Haantjes tensor has the form

Hi
jk = N i

pnv
p
j v

n
k −Np

jnv
i
pv

n
k −Np

nkv
i
pv

n
j +Np

jkv
i
nv

n
p .

For each system (4) with the time variable ts we readily find that the Nijenhuis tensor reduces to
the form (recall that the summation is over the pairs of oppositely located repeated indices only)

Ni
(s)jk = cqjsc

i
qks − cqksc

i
qjs,

while the Haantjes tensor becomes

Hi
(s)jk = cpjsc

m
ks(c

q
psc

i
qms−c

q
msc

i
qps)+c

i
psc

m
ks(c

q
msc

p
qjs−c

q
jsc

p
qms)+c

i
psc

m
js(c

q

ksc
p
qms−c

q
msc

p

qks)+c
i
psc

p
ns(c

q
jsc

n
qks−c

q

ksc
n
qjs).
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This expression formally contains eight blocks. However, the fourth and fifth blocks coincide. Thus,
the Haantjes tensor reduces to the six-block form

Hi
(s)jk = cpjsc

m
ks(c

q
psc

i
qms − cqmsc

i
qps) + cipsc

q
ms(c

m
ksc

p
qjs − cmjsc

p

qks) + cipsc
p
ns(c

q
jsc

n
qks − cqksc

n
qjs).

Then one can rewrite the Haantjes tensor in the following form

Hi
(s)jk = cpjsc

m
ks∂s(c

i
qmc

q
ps − ciqpc

q
ms) + cipsc

m
ks∂s(c

q
msc

p
qj − cqmjc

p
qs) + cipsc

m
js∂s(c

p
qsc

q

mk − cpqkc
q
ms)

+(ciqmc
m
js − cimsc

m
qj)c

p

ksc
q
pss + (cimsc

m
qk − ciqmc

m
ks)c

p
jsc

q
pss + ciqs(c

m
ksc

p
mj − cmjsc

p

mk)c
q
pss,

where each bracket vanishes by virtue of oriented associativity equations (1). So, indeed, the family
of hydrodynamic-type systems (4) is semi-Hamiltonian.

• In such a case (see (22)), the Riemann invariants can be found by quadratures

ri =

N
∑

m=1

∫

vi(m)(a)da
m, (46)

where the characteristic velocities vi(k)(a) also (see (45)) satisfy quadratic relations (cf. [4])

vi(j)v
i
(k) =

N
∑

s=1

csjkv
i
(s).

This means that the functions an (upon inverting the point transformation (46)) can be expressed
via the Riemann invariants rk.

• Then following Tsarev’s construction (see [17] for details), one can compute the so-called Lamè
coefficients (the expressions on the r.h.s. are equal for all values of s)

∂k ln H̄i =
∂kv

i
(s)(a)

vk(s)(a)− vi(s)(a)
, i 6= k. (47)

• Then following Darboux (see [1] for details), one can find the rotation coefficients

βik =
∂iH̄k

H̄i

, i 6= k, (48)

which satisfy2 system (7), (8) describing symmetry consistent conjugate curvilinear coordinate nets.
Indeed, since the rotation coefficients are the same for all commuting flows (4), without loss of
generality consider just N − 1 commuting hydrodynamic-type systems (31). Then (46) reduces to
the form

ri = ã1 +

N
∑

m=2

∫

ṽi(m)(ã)dã
m,

where ṽi(m)(ã) depend on the variables ã2, ..., ãN only. Thus, δṽi(m)(ã) = 0, where the shift symmetry

operator (see (35))

δ =
∂

∂ã1
=

N
∑

m=1

∂rm

∂ã1
∂

∂rm
=

N
∑

m=1

∂

∂rm
.

2Since the Lamè coefficients H̄i are determined up to multiplication by arbitary functions µ
i
(ri) (see (47)), they should

be fixed by the restriction δβik = 0.
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Since the Lamè coefficients H(1)i can be found from (cf. (47))

∂k lnH(1)i =
∂kṽ

i
(s)(ã)

ṽk(s)(ã)− ṽi(s)(ã)
, i 6= k,

we have ∂kδ lnH(1)i = 0, i.e. δ lnH(1)i = χi(r
i), where χi(r

i) are arbitrary functions. Thus, one can

chooseH(1)i = χ̃i(r
i)H̃(1)i such that χi(r

i) = ∂i ln χ̃i(r
i). Then δH̃(1)i = 0, i.e. the corresponding rota-

tion coefficients βik depend on differences of the Riemann invariants, because δβik = 0, which follows
from (48). So, we conclude that any solution of the oriented associativity equations (1) gives rise to
some solution of system (7), (8) describing symmetry consistent conjugate curvilinear coordinate nets.

9 The Widest Class of Semi-Hamiltonian Hydrodynamic-Type

Systems

This section is devoted to description and integrability of the widest class of semi-Hamiltonian hydrody-
namic-type systems (27). A general solution of oriented associativity equations (1) leads (see Section 5)
to a general solution of system (7), (8) describing symmetry consistent conjugate curvilinear coordinate
nets as well as to the basic set of solutions H(i)k (see (11)). In this section we construct general solutions
of linear spectral problems (9) and (10) which are important for various applications in the theory of semi-
Hamiltonian hydrodynamic-type systems, for instance, in the generalized hodograph method (see [17]).

Recall a few major formulas from Sections 2, 3, 4.
Suppose that the basic set of solutions H(i)k (see (11)) of the linear spectral problem (see (9) and (10))

δHi = λHi, ∂iHk = βikHi, i 6= k (49)

is found for a given set of rotation coefficients βik depending only on differences of the Riemann invariants

rn (see (8)) and satisfying (7). Then, the basic set of solutions ψ
(s)
i of the adjoint linear problem (see (9)

and (10)) is given by (13), where ḡsn is a non-degenerate symmetric metric which is inverse to (12).
Our goal is to find a general solution of the above linear spectral problem as well as a general solution

of the adjoint linear spectral problem

δψi = λψi, ∂iψk = βkiψi, i 6= k, (50)

and general solutions of both other linear spectral problems (26) and (28).

Main result: N infinite series of solutions H
(s,k)
j , ψ

(n,p)
i (see (11)) can be found in quadratures.

Consider the expansions in λ of solutions for both linear spectral problems (49) and (50), i.e. (see (11))

Hi = H
(0,k)
i + λH

(1,k)
i + λ2H

(2,k)
i + ..., ψi = ψ

(0,k)
i + λψ

(1,k)
i + λ2ψ

(2,k)
i + ..., k = 1, ..., N,

as well as the corresponding expansions of solutions of two other linear spectral problems (26) and (28),
i.e.

h = λ−1δk1 + ak + λck + λ2h(2,k) + λ3h(3,k) + ..., bs = λ−1δsk + csk + λbs(1,k) + λ2bs(2,k) + λ3bs(3,k) + ...,

where ∂ih
(n,k) = ψ

(n,k)
i H(1)i and ∂ib

s
(n,k) = ψ

(s)
i H

(n,k)
i , while (see Section 4)

h(n,k) =

N
∑

m=1

ψ(n+1,k)
m H(1)m, bs(n,k) =

N
∑

m=1

ψ(s)
m H(n+1,k)

m .
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Instead of complicated integration of infinite sets of recursion relations (11) (see (49) and (50)), one can
easily integrate the other infinite sets of recursion relations (see (26) and (28)),

dh
(n+1,k)
i =

N
∑

m=1

N
∑

s=1

csimh
(n,k)
s dam, dbi(n+1,k) =

N
∑

m=1

N
∑

s=1

cimsb
s
(n,k)da

m, i = 1, ..., N, n = 0, 1, ... (51)

The construction of all these four recursion relations includes the following steps:

• Since ψ
(1,k)
i ≡ ψ̄

(k)
i = cksψ

(s)
i (see the proof of the theorem in Section 3), where ∂ic

k
j = ψ

(k)
i H(j)i, the

expressions cks can be found in quadratures, i.e.

dcks =

N
∑

m=1

ψ(k)
m H(s)mdr

m.

Then (recall that ∂ia
s = ψ

(s)
i H(1)i, ∂ic

s = ψ
(1,s)
i H(1)i)

ψ
(1,k)
i =

N
∑

s=1

ψ
(s)
i

N
∑

m=1

∫

ψ(k)
m H(s)mdr

m, dck =

N
∑

p=1

N
∑

s=1

ψ(s)
p

(

N
∑

m=1

∫

ψ(k)
m H(s)mdr

m

)

H(1)pdr
p.

Thus, we had a basic set of solutions H(i)k. Then we reconstructed the adjoint basic set of solutions

ψ(k)
m . Then we found N conservation law densities ak and N conservation law densities ck. So, we

have found all structure constants cijk with unity condition (33).

• Then step by step (see (51)) we can find N infinite series of higher conservation law densities h(n,k)

as well as N infinite series of higher conservation law fluxes bs(n,k).

• Since ∂ih
(n,k) = ψ

(n,k)
i H(1)i and ∂ib

s
(n,k) = ψ

(s)
i H

(n,k)
i , we can find higher solutions H

(n,k)
i , ψ

(n,k)
j .

Moreover, we want to find general solutions of linear systems (9) without extra conditions (10). This is
essential for application of the generalized hodograph method (see [17]). However, just in some very special
cases general solutions of linear systems (9) can be found explicitly. Nevertheless, using the approach
suggested in [17], one can see that any initial data for the linear system (9) can be approximated by linear

combinations infinitely many particular solutions H
(n,k)
i , ψ

(n,k)
j with appropriately chosen coefficients ξn,k.

This means that the general solution of an arbitrary semi-Hamiltonian hydrodynamic-type system
(27) whose rotation coefficients depend on differences of Riemann invariants only can be found using the
generalized hodograph method (see [17]) and has the form

xH̄i + tHi =

∞
∑

n=0

N
∑

k=1

ξn,kH
(n,k)
i .

10 Conclusion

In this paper, we considered three distinguished objects: oriented associativity equations, symmetry con-
sistent conjugate curvilinear coordinate nets and semi-Hamiltonian hydrodynamic-type systems whose
rotation coefficients depend on differences of the Riemann invariants only. We have shown that these
objects are closely related, and thus the knowledge about one of them implies the knowledge about the
others.
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