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Abstract. We systematically study the boundaries of one-dimensional,
2-color cellular automata depending on 4 cells, begun from simple
initial conditions. We determine the exact growth rates of the
boundaries that appear to be reducible. Morphic words charac-
terize the reducible boundaries. For boundaries that appear to
be irreducible, we apply curve-fitting techniques to compute an
empirical growth exponent and (in the case of linear growth) a
growth rate. We find that the random walk statistics of irreducible
boundaries exhibit surprising regularities and suggest a threshold
separating two distinct classes. Finally, we construct a cellular au-
tomaton whose growth exponent does not exist, showing that a
general classification by exponent is not possible.

1. Introduction

Cellular automata are simple machines consisting of cells that update
in parallel at discrete time steps. The earliest known examples were
engineered for specific purposes, such as the two-dimensional cellular
automaton constructed by von Neumann in 1951 to model biological
self-replication [1]. Three decades later, researchers began to study
entire classes of automata, such as the 256 one-dimensional cellular au-
tomata that use k = 2 colors and that depend on d = 3 cells [2, 3]. The
behavior of these rules subsequently garnered much attention. Most
studies have focused on the interiors of patterns generated by cellular
automata, likely because the boundaries are well known and simple for
the k = 2, d = 3 rules, such as the three linear boundaries shown in
Figure 1. However, boundaries of automata are diverse, often more
predictable than interiors (and hence more amenable to mathematical
study), and even useful for detecting interesting behavior.

Our main purpose in this paper is to inventory the boundary growth
of the 216 = 65536 one-dimensional rules that use k = 2 colors and
that depend on d = 4 cells. Several rules in this space have boundaries
not found among rules with shorter range d. For example, some nested
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90 30 110

Figure 1. Three 2-color cellular automaton rules de-
pending on 3 cells, begun from a single black cell. De-
spite very different interior behavior, the boundaries all
exhibit simple linear growth.

automata have piecewise linear boundaries characterized by morphic
words, while more chaotic automata have boundaries that behave like
random walks.

Boundaries of cellular automata have been studied before. Phillips [4]
studied the k = 2, d = 3 automata with periodic-background initial
conditions, which is more general than we consider here, and he ob-
served rules in this space that support multiple growth rates. In 2005,
Wolfram [5] conducted a live experiment investigating the boundaries
of k = 2, d = 4 rules begun from simple initial conditions. Our paper
can be seen as the completion of this experiment.

Because of the large size of the rule space, we are particularly inter-
ested in making our inventory programmatically accessible so that it
can be searched and computed with. The Mathematica package Cel-
lularAutomatonData [6] provides an interface to all the data we
accumulated both programmatically and by hand. The primary func-
tion in this package uses the same syntax as the data functions built
into Mathematica, and a cellular automaton is denoted {{n, k, (d −
1)/2}, init} to parallel CellularAutomaton. For example,

CellularAutomatonData[{{1273, 2, 3/2}, {{1}, 0}}, "GrowthRate"]

retrieves the limiting growth rate of the k = 2, d = 4 rule number
1273 begun from the initial condition · · ·������� · · · , which is 6/5.
The package CellularAutomatonBoundaries [7] contains code
used to generate the data in CellularAutomatonData [6]. These
packages are available from the websites of the authors [6, 7].

Section 2 of the paper establishes our notation and reviews the
boundary growth rates for 2-color cellular automata depending on at
most 3 cells. In Section 3 we describe a search for 2-color cellular au-
tomata depending on 4 cells that exhibit reducible boundary growth,
and we discuss boundaries found by this search. In Section 4 we ad-
dress the automata that were not found to have reducible growth; we
study their growth rates statistically using tools typically applied to
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random walks. We also attempt to assign a growth function tb to each
automaton for some 0 ≤ b ≤ 1. However, in Section 5 we show that
in general this is impossible, by constructing an automaton for which
no such b exists. In Section 6 we discuss possible extensions and open
questions.

Classifying automata by their boundaries identifies many automata
with interesting behavior. Many boundaries closely reflect the behavior
of the interior. For example, nested boundaries arise from nested au-
tomata, while chaotic boundaries arise from complex automata. Some
automata with complicated interiors (such as rules 30 and 110 in Fig-
ure 1) nevertheless have simple boundaries. Thus the complexity of an
automaton’s boundary provides a lower bound on the complexity of its
interior. Throughout the paper we describe many interesting automata
found in this way by using the boundary as a filter.

2. Background

2.1. One-dimensional cellular automata. The cellular automata
that we study in this paper are one-dimensional. A one-dimensional
cellular automaton consists of

• an alphabet Σ of size k,
• a positive integer d,
• a function i from the set of integers to Σ, and
• a function f from Σd (d-tuples of elements in Σ) to Σ.

The function i is called the initial condition, and the function f is called
the rule. We think of the initial condition as an infinite row of discrete
cells, each assigned one of k colors. To evolve the cellular automaton,
we update all cells in parallel, where each cell updates according to f ,
a function of d cells in its vicinity on the previous step.

There are kk
d

rules on k colors depending on d cells. We adopt the
usual convention of naming a cellular automaton’s rule by the number
whose base-k digits consist of the outputs of the rule under the kd pos-
sible inputs of d cells, ordered reverse-lexicographically. For example,
the 2-color rule depending on 3 cells that maps the 8 possible inputs
according to the table

��� ��� ��� ��� ��� ��� ��� ���
� � � � � � � �

is rule 000111102 = 30 in this numbering. Here we have identified
0 = � and 1 = �.

The evolution of a one-dimensional cellular automaton can be visu-
alized in two dimensions by displaying each row below its predecessor.
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For example, Figure 1 shows 28 steps of three rules evaluated from the
initial condition · · ·������� · · · . To create such pictures we must
choose a horizontal offset. For instance, the offset of rule 30 in the ta-
ble above is center-aligned: every cell depends on the cells in the same
position, l = 1 position to the left, and r = 1 position to the right.
For a different offset, the rows in the automaton will be the same;
each row simply shifts with respect to the row preceding it. In other
words, shifting l and r to l − ∆ and r + ∆, respectively, only shears
the two-dimensional picture. Therefore, for convenience we generally
choose a horizontal offset that minimizes the total width of the region
of interest.

2.2. Row lengths. We require that all but finitely many cells in the
initial condition have the same color. Then each row has finite length,
which we define as follows. If all cells in a row are the same color,
the length of that row is 0. Otherwise, the length of a row is the
number of cells in the region bordered by, and including, the first and
last cells that differ from the constant background. For a given cellular
automaton, let `(t) be the length of the row on step t for each t ≥ 0.

For example, the length `(t) for rule 90 begun from · · ·������� · · ·
as in Figure 1 is `(t) = 2t+1 for all t ≥ 0. For rule 30 the length is also
`(t) = 2t+ 1, whereas for rule 110 it is `(t) = t+ 1. Note that `(t) does
not depend on the horizontal offset chosen to display the automaton.

At each step in a cellular automaton, information can propagate at
most l steps from the right boundary and at most r steps from the left
boundary, where l and r depend on the offset chosen but are subject
to l + 1 + r = d. In other words, the maximum growth rate possible
(called the “speed of light”) is d−1 cells per step, and if the maximum
growth rate persists over time, then `(t) = (d−1)t+c for some c. If the
maximum growth is achieved at every step, then `(t) = (d− 1)t+ `(0)
for all t ≥ 0.

Because each row in a cellular automaton depends only on the previ-
ous row, the difference sequence `(t+ 1)− `(t) is particularly relevant,
since it gives the number of cells by which the automaton grows or
shrinks at each step. It will be useful to think of the difference se-
quence as an infinite word on the set of integers.

Definition 1. The boundary word of a cellular automaton is the se-
quence {`(t+ 1)− `(t)}t≥0.

We will see that the boundary word frequently reflects properties of
an automaton.
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45 107 106

Figure 2. Rules 45 and 107 have row lengths that can
be expressed by Equation 1. Rule 106 exhibits square-
root growth when begun from two adjacent black cells.

If the boundary word is eventually periodic, then `(t) can be writ-
ten as a piecewise expression in linear functions. Namely, there exist
integers m, tmin and rational numbers a and c0, c1, . . . , cm−1 such that
for all t ≥ tmin we have

(1) `(t) =


at+ c0 if t ≡ 0 mod m

at+ c1 if t ≡ 1 mod m
...

...

at+ cm−1 if t ≡ m− 1 mod m.

For example, the sequence `(t) for rule 45 begun from · · ·������� · · · ,
shown in Figure 2, is 1, 3, 4, 6, 7, . . . . The boundary word 212121 · · · is
periodic with period length 2, and the length of the row at step t is

`(t) =

{
3t/2 + 1 if t ≡ 0 mod 2

3(t+ 1)/2 if t ≡ 1 mod 2

for t ≥ 0. Rule 107 begun from a single black cell is also shown in
Figure 2; its boundary word 12120202024̄2024̄ · · · , where 4̄ = −4, is
eventually periodic with period length 4, and for t ≥ 7

`(t) =


11 if t ≡ 0 mod 4

11 if t ≡ 1 mod 4

13 if t ≡ 2 mod 4

9 if t ≡ 3 mod 4.

All 2-color cellular automata depending on d = 2 cells have eventu-
ally periodic boundary words, either with growth rate a = 0 or a = 1.

The boundaries of 2-color cellular automata depending on d = 3
cells are largely similar. These automata generate a variety of inter-
nal structures: rule 90, for example, produces nested structure, while
rules 30 and 110 yield complex behavior. One new feature seen for
d = 3 is square-root growth, exhibited for example by rule 106 begun
from the initial condition · · ·�������� · · · , as shown in Figure 2.
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We discuss square-root growth further in Section 3.3. However, with
the exceptions of rules 106, 120, 169, and 225, each 2-color cellular au-
tomaton depending on d = 3 cells has an eventually periodic boundary
word. Moreover, for every automaton in this space (with a constant-
background initial condition), the limiting growth rate

lim
t→∞

`(t)

t
(2)

exists and is an element of {0, 1, 3/2, 2}. In particular, for rule 106 this
limit is 0. (Note that if we allow a general periodic background for the
initial condition, then the boundary word is not necessarily eventually
periodic; for example, the left boundary of rule 30 begun from the initial
condition · · ·������������� · · · = · · · 0101011101010 · · · appears
to be chaotic.)

In general, the limiting growth rate limt→∞ `(t)/t of a cellular au-
tomaton may not exist, as we see in Section 3. Moreover, the limiting
growth exponent limt→∞ logt `(t) may not exist, as we show in Sec-
tion 5. However, in most cases these values do appear to exist, so in
Section 4 we use them as statistical information about boundaries.

We mention the observation of Phillips [4] that if the sequence of
rows in an automaton is not eventually periodic, then `(t) grows at
least logarithmically. This is because for ` ≥ 2 there are k`−1(k − 1)2

possible rows of length `, so a cellular automaton that never returns
to the same state has at most exponentially many rows of length `.
Logarithmic growth is not seen for k = 2 and d ≤ 3, and we did not find
logarithmic growth among d = 4 rules either. However, it is possible to
construct an automaton that implements counting in binary, by using
additional colors (and additional steps) to propagate carries, and this
automaton grows logarithmically [4].

3. Automata with reducible growth

In this section we describe a combined automated–manual search for
reducible boundaries among all 2-color rules depending on d = 4 cells,
begun from single-cell initial conditions. Eventually periodic boundary
words can be detected completely automatically, and we examine by
hand the automata that are not found to have an eventually periodic
boundary word.

As in every space of cellular automaton rules, some rules in this
space are equivalent to others by simple transformations. For example,
reversing each tuple in the definition of the rule and reversing the initial
condition results in an image that is simply the left–right reflection of
the original. Similarly, permuting the colors in a rule and in the initial
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condition produces an image that is obtained from the original by the
same permutation. Therefore it suffices to consider only one rule among
each equivalence class of rules obtained by reflecting and permuting.
For this we choose the rule with minimal rule number. For k = 2 and
d = 4 this reduces the number of rules from 65536 to 16704.

As a simplifying assumption, we consider only the two initial con-
ditions · · ·������� · · · and · · ·������� · · · , each consisting of an
infinite constant background with a single perturbed cell. This results
in 33408 automata (two initial conditions for each rule). In many cases
these initial conditions suffice to characterize the growth of the rule.
However, for rules that grow dramatically differently depending on the
initial condition, the data we collect may not be representative of typ-
ical growth.

We further restrict the initial condition by requiring the background
color to reoccur on some later step (but not necessarily the next step).
That is, we only consider the initial condition · · ·������� · · · if a
white background reoccurs on some later step. Similarly, we only con-
sider · · ·������� · · · if a black background reoccurs on a later step.
We ignore these initial conditions otherwise because we are interested
in long-term behavior, and a background that does not reoccur is a type
of transience. Doing so reduces the number of automata to 25088.

We run each of these automata for tmax steps and consider the differ-
ence sequence `(t+ 1)− `(t) for tmin ≤ t ≤ tmax−1, with some tmin > 0
allowing for transience. Let m be the smallest positive integer such that
`(t+1+m)−`(t+m) = `(t+1)−`(t) for all tmin ≤ t ≤ tmax−1−m. If
m < (tmax− tmin)/4, then we deem the boundary word to be eventually
periodic (and `(n) to satisfy Equation 1), and we record the period
length m and the growth rate

(3) a =
sum of the terms in the period

m
=
`(t+m)− `(t)

m
.

Otherwise we consider the period length unreliable and this test incon-
clusive.

In choosing a time range tmin ≤ t ≤ tmax on which to test periodicity,
we face opposing goals: To overcome possible transience, we want tmin

to be large, but for speed we want tmax to be small. Our solution
is to use the four short time ranges 20 ≤ t ≤ 100, 50 ≤ t ≤ 300,
200 ≤ t ≤ 600, and 400 ≤ t ≤ 1000 as successive filters, followed
by a more extensive range. If a reliable period length is found in any
of these ranges, then we skip the remaining ranges and compute the
period length in a final range 500 ≤ t ≤ 4000 to confirm that the period
length persists. This final time range identifies only 32 corrections to
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period lengths found by one of the first four ranges, and all but one
of those (correcting the slope from 7/4 to 18/11 for rule 23726 begun
from · · ·������� · · · ) are cases where the boundary word does not
appear to be eventually periodic. Running all 25088 automata through
the four filter ranges took approximately twenty minutes on a 2.5GHz
machine. Running the final time range took approximately two and a
half days.

While we believe that confirming each period length in the range
500 ≤ t ≤ 4000 has allowed our data to be highly reliable, this al-
gorithm clearly does not guarantee that if a period length was found
then the boundary word is in fact eventually periodic (false positives),
nor does it guarantee that if a period length was not found then the
boundary word is not eventually periodic (false negatives). There are
several automata whose boundaries do not stabilize until well after 400
steps or whose eventual behavior is unclear. For example, rule 11109
begun from · · ·������� · · · grows to `(1722) = 918, and thereafter
has average growth rate 0. Rule 4713 begun from · · ·������� · · · jet-
tisons a particle at step 915, leaving behind an otherwise chaotic left
boundary. Rule 10633 (begun from either initial condition) appears to
have an eventually periodic boundary word due to its internal froth
generally moving away from the boundary, but it is not clear that this
will continue indefinitely. Worse, there are automata whose growth is
periodic for short time intervals but that are most likely not periodic
in general. For example, rule 457 begun from either initial condition
has a boundary word that is periodic in the range 100 ≤ t ≤ 200; but
for larger ranges we see that the periodicity does not continue.

These examples indicate that in general one cannot determine the
long-term behavior of the boundary of a cellular automaton by exam-
ining finitely many steps. Of course, this is not surprising, because the
boundary can depend sensitively on the interior of the automaton, and
it is known that some cellular automaton rules are computationally
universal. Indeed, we determined the four time ranges only after some
experimentation with a selection of rules.

Executing this automatic search yields 837 automata (with 620 dis-
tinct rules) that were not found to have an eventually periodic bound-
ary word. Among these 837, there are only 757 distinct pictures (at
least for 500 rows), because several pairs of inequivalent rules appear
to nonetheless generate the same evolution due to certain configura-
tions not appearing. We examined each of these classes manually and
found that 36 automata do in fact appear to have eventually periodic
boundary words, while another 81 exhibit self-similarity. Therefore a
classification of the 25088 automata is as follows.
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(1) 24287 automata have eventually periodic boundary words.
(2) 81 automata have boundary words that are not eventually pe-

riodic but are reducible.
(3) 720 automata have boundaries that are most likely not re-

ducible.

Analyzing automata in the third class is the subject of Section 4. Au-
tomata in the first two classes have boundary words with simple de-
scriptions, and they are the subject of this section.

A note regarding the level of rigor is in order. We do not formally
prove the claims in this section, neither the explicit growth rates nor
other properties we describe. Therefore they can either be taken as
conjectures or as semi-rigorous results that are experimentally verified
for the first 4000 (and in some cases many more) steps of the cellular
automata involved. Proving each claim is beyond the scope of the
current paper, although we touch on this in Section 6.

3.1. Eventually periodic boundary words. In the first class of
24287 automata—those with eventually periodic boundary words—the
most common average growth rate is 0, and there are 11768 automata
with growth rate 0. The following table gives the thirty most common
growth rates a (as in Equation 1) and the number Na of automata with
each rate.

a Na a Na a Na a Na a Na

0 11768 5/4 102 15/13 18 9/7 11 8/7 8
3 4800 5/3 73 9/4 17 10/7 10 13/8 7
2 4001 6/5 53 9/5 17 7/6 10 11/10 7
1 1082 7/4 45 7/5 17 15/14 10 14/11 6

5/2 985 3/4 40 5/6 15 1/2 10 7/8 6
3/2 951 4/3 28 11/8 11 9/8 9 2/3 6

The smallest nonzero growth rate is 2/5, and 5 automata have growth
rate 2/5.

If r/s is a non-negative rational number written in lowest terms (with
gcd(r, s) = 1), let us define the height of r/s to be max(r, s). The height
of a number is one measure of its complexity. The automaton whose
limiting growth rate has largest height is rule 10168 begun from a single
black cell, with growth rate a = 1578/1013. This automaton also has
the largest period length: 2026 steps. The next largest-height growth
rates that occur are 773/411, 515/318, 398/247, 329/199, and 297/127;
all these automata have fairly simple interiors.

The growth rate with largest height that is generated by two distinct
rules (not two distinct automata that share the same rule but two
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distinct rules) is 91/55. The rules are 17380 and 46236, respectively
begun from · · ·������� · · · and · · ·������� · · · .

3.2. Morphic words. The remainder of Section 3 concerns automata
in the second class mentioned above: automata with boundary words
that are not eventually periodic but still amenable to short descrip-
tion. These automata all have boundaries that exhibit nontrivial self-
similarity, so we may refer to these as fractal boundaries. It turns out
that the boundary words for all these automata are morphic words—
words generated by iterating a morphism (also known as a substitution
system).

Let Σ and ∆ be finite alphabets, and let Σ∗ denote the set of all
finite words with letters in Σ. The empty word is denoted by ε. For a
function ϕ : Σ → ∆∗ and a (finite or infinite) sequence w0, w1, . . . of
letters in Σ, define ϕ(w0w1 · · · ) = ϕ(w0)ϕ(w1) · · · . We refer to ϕ as a
morphism, since ϕ(xy) = ϕ(x)ϕ(y) for all words x, y. If ∆ = Σ and
there is some letter A ∈ Σ and some word x ∈ Σ∗ such that ϕ(A) = Ax,
then by iteratively applying ϕ to A we obtain prefixes of the word

ϕω(A) := Axϕ(x)ϕ2(x) · · · ,

which is a fixed point of ϕ. Moreover, this word is the unique fixed
point of ϕ beginning with A. An infinite word (or, equivalently, an
infinite sequence) w is morphic if there is a letter A ∈ Σ and morphisms
ϕ : Σ→ Σ∗ and ψ : Σ→ ∆∗ such that

w = ψ(ϕω(A)).

We see in the following subsections that, for each cellular automaton
with reducible boundary structure, the boundary word is morphic (and
is a word on some finite set ∆ of integers).

In the next three subsections we address fractal automata whose
limiting growth rates exist. We will see that these rates do not approach
the complexity of some of the growth rates observed for eventually
periodic boundary words in Section 3.1. In the final subsection we
discuss automata whose limiting growth rates do not exist. (Many of
the rules discussed have nearly identical behavior when begun from
the two initial conditions; in these cases we only discuss one initial
condition without mentioning this further.)

We refer the reader to the book of Allouche and Shallit [8, Chap-
ters 6–8] for a comprehensive treatment of morphic words. For our
immediate purposes, it suffices mention that prepending a word to a
morphic word produces another morphic word. In particular, every
eventually periodic word is morphic.
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3.3. Square-root growth. Before discussing square-root growth among
2-color rules depending on 4 cells, we first discuss d = 3 rule 106,
which also exhibits square-root growth. Figure 2 shows the evolution
of rule 106 begun from two adjacent black cells. The boundary word
of this automaton is the infinite word

w106 = 11010011000000010000000011010011 · · ·

on the alphabet {0, 1}. Let us rewrite the boundary word as

w106 = 1201110212071108120111021203111032 · · · ,

since the run lengths of each block suggest a pair of morphisms that
generate w106. In particular, observe that replacing each 0 in w106

by 04 causes 08 to become 032. So that 071108 → 03111032, we need
1 → 0001; however, not every 1 can be replaced using this rule, since
this would result in no instances of 12 in the fixed point. Therefore we
introduce some additional letters. Consider the morphism

ϕ = {A→ ABCD, B → CCAB, C → CCCC, D → CCCD}.

The fixed point ϕω(A) of this morphism is

A1B1C1D1C2A1B1C7D1C8A1B1C1D1C2A1B1C31D1C32 · · · .

Applying the morphism ψ = {A → 1, B → 1, C → 0, D → 1} to this
fixed point gives w106 = ψ(ϕω(A)).

From this morphism one can derive that rule 106 grows like
√
t.

Here we show a weaker claim—that 1/2 is a limit point of the sequence
logt `(t). Letting E = ABCDCCAB and Fn = C2·4n−1DC2·4n , one can
check that

φα(A) =

( 2α−2−1∏
k=1

EFν2(k)+1

)
EC22α−1−1D for α ≥ 3,

where ν2(k) is the exponent of the highest power of 2 dividing k. Using

ν2(k) to count occurrences of E and Fk in φα(A) preceding C22α−1−1D
gives

`(22α−1) = `(0) +
22α−1∑
t=0

w106(t) = 3 · 2α−1 + 1 for α ≥ 1.

This agrees with the observation of Gravner and Griffeath [9] that the
configuration at step 22α−1 is

· · ·������� · · ·��︸ ︷︷ ︸
3·2α−1−2

���� · · · .
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Including the trailing C22α−1−1D in φα(A) leads to `(22α) = 3 · 2α−1 + 2
for α ≥ 1.

Among 2-color rules depending on 4 cells, two inequivalent rules ex-
hibit square-root growth from single-cell initial conditions: rules 34394
and 39780. Although they are not equivalent as rules, the automata
obtained by running these rules from a single black cell are equivalent
under left–right reflection, since the tuple on which the rules differ does
not occur in the evolution begun from a single black cell. In particular,
rule 39780 is known to exhibit conditional reversibility, due to the lo-
cal rule being a bijective function in the leftmost position [10], whereas
rule 34394 does not have this property. Figure 3 shows rule 39780.

For both of these automata, the boundary word is

w39780 = 22102211̄11̄11̄1022102211̄11̄11̄11̄ · · · ,
a word on the alphabet {−1, 0, 1, 2}, where we have written 1̄ for −1.
Because of the repeating 11̄ oscillations, the run lengths of the original
sequence do not reveal much. However, partitioning into blocks of
length 2 as

w39780 = (22)1(10)1(22)1(11̄)3(10)1(22)1(10)1(22)1(11̄)15

(10)1(22)1(10)1(22)1(11̄)3(10)1(22)1(10)1(22)1(11̄)63 · · ·
shows some structure. If ϕ is the morphism

{A→ ABC, B → DAB,

C → CECE, D → CECD, E → CECE}

and ψ = {A → 2, B → 2, C → 1, D → 0, E → 1̄}, then w39780 =
ψ(ϕω(A)). To show again that 1/2 is a limit point of logt `(t), let
F = DABCDABC and G(n) = (EC)n. Then for α ≥ 3

Dφα(A) =

( 2α−2−1∏
k=1

FG(22ν2(2k) − 1)

)
FG(22α−3 − 1)E,

where again ν2(k) is the exponent of the highest power of 2 dividing k.
Counting occurrences of F and G(n) in Dφα(A) and computing their
respective lengths and contributions to the boundary, we obtain

`
(
4α−1/2 + 2α−1

)
= 5 · 2α−1 for α ≥ 2.

Note that the morphism ϕ for rule 106 is 4-uniform. Consequently,
the sequence w106 is 2-automatic (meaning that there is a finite au-
tomaton that outputs the tth term when input the binary digits of
t); it follows that `(t) is 2-regular in the sense of Allouche and Shal-
lit [11, 12] and therefore can be computed quickly. On the other hand,
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39 780

3701 8067

7195 27 898

Figure 3. Rule 39780 grows like
√
t. The other four

automata pictured here contain oscillating particles.

the morphism ϕ for rule 39780 is not uniform, and indeed it appears
that the sequence `(t) for this automaton is not k-regular for any small
value of k.

3.4. Oscillating particles. Four rules have boundary words that are
nearly periodic but that are perturbed occasionally by particles that
oscillate in the interior of the automaton. They are shown in Figure 3.

First consider rule 3701 begun from a single black cell. The right
boundary is not perturbed when the particle reflects off of it, but the
left boundary is perturbed at steps (3·5α+5)/4−α for α ≥ 0. However,
since the step numbers of these perturbations decay exponentially, they
do not impact the limiting growth rate, so the limiting growth rate is 1.
The boundary word is generated from A by the morphism ϕ = {A →
AB,B → BC6, C → C5} followed by ψ = {A → ε, B → 30, C → 31̄},
where 1̄ = −1.

Rule 8067 begun from a single black cell is similar, with a single
particle perturbing the left boundary at steps (8 · 7α+1 + 6α − 2)/9.
However, the particle also perturbs the right boundary when it reflects
at steps (20 · 7α + 6α + 79)/9.

Rule 7195 begun from a single black cell contains additional internal
structures, but the net effect is that a single particle oscillates between
the left and right boundary, with the rest of the structure remaining
close to the right boundary. The particle in fact does not perturb
the right boundary when it reflects, although it does perturb the left
boundary.
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Rule 27898 begun from a single black cell differs in two ways from
the others. The oscillating particle does not traverse the entire interior
width of the automaton but reflects off an internal boundary. Addi-
tionally, the “particle” at times looks more like a group of particles,
and not every interaction with the boundary is identical. However,
after four reflections the particle returns to its original state, so the
oscillatory behavior is in fact simple.

The respective limiting growth rates for rules 8067, 7195, and 27898
are 6/5, 5/4, and 3/2. Although we do not determine the morphisms
here, the regularity of the oscillations in these automata imply that the
boundary words are morphic.

3.5. Two automata with limiting growth rates. Figure 4 shows
rule 1273 begun from a single black cell and rule 36226 begun from a
single white cell. The boundary words for these automata are not even-
tually periodic, but they are morphic. Moreover, the limiting growth
rate limt→∞ `(t)/t (Equation 2) exists for each.

We begin with rule 36226 because its boundary is simpler. On a
global scale this automaton exhibits nested structure similar to that
produced by d = 3 rule 90 begun from a single black cell (see Figure 1).
However, the right boundary is fractal. The boundary word

w36226 = 12211221221112212211221221111221 · · · .
can be obtained by dropping the first two letters in the fixed point
2212211 · · · of the morphism ϕ = {1 → 1, 2 → 221}. Recalling that
ν2(n) denotes the exponent of the highest power of 2 dividing n, we
can also write

w36226 =
∏
n≥2

1ν2(n)2.

The limiting growth rate of the automaton is determined by the fre-
quencies of 1 and 2 in w36226. The frequency of a letter x in an infinite
word w0w1 · · · is

lim
t→∞

|{0 ≤ i ≤ t− 1 : wi = x}|
t

.

To compute the letter frequencies, we examine the incidence matrix of
ϕ, which records for each pair of letters x, y the number of occurrences
of x in ϕ(y). The incidence matrix for ϕ is[

1 1
0 2

]
.

If the frequency of each letter in a morphic word ϕω(A) exists, then the
vector whose components are the letter frequencies is an eigenvector of
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Figure 4. Rows 0 through 28 − 1 of rule 1273 and
rule 36226, where the limiting growth rates have been
used to shear the images such that the nonperiodic
boundaries are vertical. The colors of rule 36226 have
been reversed to place it against a white background.

the incidence matrix corresponding to the largest positive eigenvalue [8,
Theorem 8.4.6]. In the case of w36226, the letter frequencies exist, and
that vector is (1/2, 1/2). Therefore the letters 1 and 2 occur with equal
frequency, and on average the automaton grows 3/2 cells per step.

Now consider rule 1273 begun from a single black cell. The interior
is also nested, although the nestedness is not as obvious visually. For
this automaton, the boundary word

w1273 = 31̄303031̄31̄31̄303031̄31̄31̄303031̄3030 · · ·
(where again 1̄ = −1) is given by (31̄)1(30)2ψ(ϕω(A)), where

ϕ = {A→ AC, B → AD, C → BA, D → BB},
and ψ maps

A→ (31̄)3(30)2(31̄)3(30)2(31̄)1(30)2

B → (31̄)3(30)2(31̄)5(30)2

C → (31̄)5(30)2(31̄)3(30)2(31̄)1(30)2

D → (31̄)5(30)2(31̄)5(30)2.

The incidence matrix for ϕ is
1 1 1 0
0 0 1 2
1 0 0 0
0 1 0 0

 ,
so the vector with components equal to the frequencies of the four
letters A,B,C,D is (4/9, 2/9, 2/9, 1/9). The letters A, B, C, and D
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correspond to respective net changes of 32, 28, 36, and 32 cells over
26, 24, 30, and 28 steps, and so one computes that the limiting growth
rate is 6/5 cells per step.

3.6. Automata with no limiting growth rate. Finally, a num-
ber of automata have linear growth in the sense that the limiting
growth exponent limt→∞ logt `(t) is 1 although the limiting growth rate
limt→∞ `(t)/t does not exist.

As a typical example, consider rule 2230 begun from a single black
cell. The boundary word is

w2230 = 21012302260421208224016 · · · .

Replacing 0→ 00 and 2→ 22 produces w2230 again, with the exception
of the first three letters 202. In other words, the structure of w2230 is
that of the fixed point beginning with A of the morphism ϕ = {A →
ABCB,B → BB,C → CC}:

ϕω(A) = A1B1C1B3C2B6C4B12C8B24C16 · · · .

Applying ψ = {A→ ε, B → 2, C → 0} produces w2230.
The frequencies of the letters B and C in ϕω(A) turn out to not exist:

The frequency of B in the first 4 ·2α−2 letters is (3 ·2α−2)/(4 ·2α−2),
and the frequency of B in the first 5·2α−2 letters is (3·2α−2)/(5·2α−2).
Since 3/4 and 3/5 are both limit points of |{0 ≤ i ≤ t−1 : wi = B}|/t,
the frequency of B does not exist. Similarly, the frequency of C does
not exist.

Consequently, the frequencies of 0 and 2 do not exist in w2230, and the
growth rate limt→∞ `(t)/t does not exist. However, the growth can still
be quantified by ainf := lim inf `(t)/t = 6/5 and asup := lim sup `(t)/t =
3/2.

Several other automata have boundaries that are also generated by
the morphism ϕ = {A → ABCB,B → BB,C → CC}, followed by
some morphism ψ. The values ainf and asup can be computed for these
automata as well. Representatives are shown in Figure 5, and bounds
on their growth are given in the following table.
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2230 10 644

3283 11 032

6681 37 018

10 155 39 066

10 389 39 394

10 389 41 114

Figure 5. Some nested automata with boundary
words generated by the morphism {A → ABCB,B →
BB,C → CC}. They are variants on a common under-
lying structure, for which the limiting growth rate does
not exist.
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rule initial condition ψ(A) ψ(B) ψ(C) ainf asup
2230 · · ·������� · · · ε 2 0 6/5 3/2
3283 · · ·������� · · · 21 21̄21 22̄ 3/4 6/7
6681 · · ·������� · · · 31 32̄31 33̄ 15/16 15/14

10155 · · ·������� · · · 2121 1121 11̄ 15/16 15/14
10389 · · ·������� · · · 32 32̄32 33̄ 9/8 9/7
10389 · · ·������� · · · 230 3030 33̄ 9/8 9/7
10644 · · ·������� · · · 2 12 0 9/8 9/7
11032 · · ·������� · · · 12 12 0 9/8 9/7
37018 · · ·������� · · · 2 02 0 3/4 6/7
39066 · · ·������� · · · 1 11 0 3/4 6/7
39394 · · ·������� · · · 12220 12220 00 21/19 21/17
41114 · · ·������� · · · 22 02 0 3/4 6/7

Three additional morphisms ϕ generate the boundary words of au-
tomata with no limiting growth rate.

For rule 15268 begun from a single black cell, the boundary word is
w15268 = ψ(ϕω(A)), where

ϕ = {A→ ABC, B → BB, C → CC}
ψ = {A→ 220, B → 12, C → 00}.

The extremal limit points are ainf = 3/4 and asup = 1.
For rule 4334 begun from a single black cell, the morphisms are

ϕ = {A→ AEDBB, B → BB, C → CC, D → DB, E → EC}
ψ = {A→ 122, B → 22, C → 00, D → 12, E → 10},

and we have ainf = 6/5 and asup = 3/2.
For rule 11172 begun from a single black cell, the morphisms are

ϕ = {A→ AEDB, B → BB, C → CC, D → DB, E → EC}
ψ = {A→ 2, B → 21, C → 00, D → 02, E → 21̄},

and we have ainf = 3/4 and asup = 1.

4. Automata with irreducible boundaries

Among the 25088 equivalence classes of k = 2, d = 4 cellular au-
tomata, 720 automata evaded all attempts to reduce their boundaries.
Among these 720, there are only 688 distinct pictures, since some pairs
of inequivalent rules appear to generate the same evolution. In this sec-
tion we first comment on the variety of unpredictable behavior found
among these boundaries, and then we use tools from Brownian motion
to study them more quantitatively.
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46 728

2020 6629

7077 11 237

Figure 6. Examples of qualitatively different kinds of
boundaries conjectured to be irreducible. Clockwise from
the top: a chaotic interior with a rather stable bound-
ary that is periodic for thousands of time steps at a time
(2020); rough boundaries on both sides (6629); interior
particles collide with (and likely prevent the reducibil-
ity of) the boundary (11237); a light-speed particle out-
runs a slower, more chaotic boundary (7077); an internal
boundary resembling a lazy random walk that occasion-
ally hits the (otherwise straight) external boundary
(46728).

4.1. Qualitative taxonomy. Dependence on a fourth neighbor (d =
4) permits kinds of irregular boundaries that do not occur for the
smaller neighborhood d = 3. Here we attempt to qualitatively sur-
vey the different behavior. Some automata, in spite of their chaotic-
looking interiors, have stable-looking boundaries, but their chaotic in-
teriors likely prevent the boundaries from stabilizing. The growth of
these boundaries may represent an average of the input from the inte-
rior. Examples include rules 2020, 2717, 3223, 3493, 5267, 6116, 6773
(begun from one black cell) and 5603 and 5881 (white cell), two of
which are shown in Figure 6. Some of these boundaries, such as 6773
from black, are periodic for thousands of time steps at a time, but the
chaotic interior seems to perpetually break the boundary’s reducibility.

Even more exotic and nontrivial boundaries exist. For instance, rules
5673, 6629 and 7721 begun from a single black cell appear to have the
rare property of rough boundaries on both sides. Rule 7077 (from
black) jettisons a particle at the speed of light to the left, which the
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slower, apparently chaotic boundary cannot catch. In other cases, inte-
rior rather than exterior particles dominate the behavior of the bound-
aries. For instance, rule 7379 (from either black or white) jettisons
diagonal patterns from the left boundary that run nearly parallel to it,
while rules 8144 (from black) and 11237 (black or white) create parti-
cles that collide with the left boundary at a more oblique angle, which
indicates that growth of boundaries may depend on delicate, internal
patterns. The nonperiodic internal structures of these automata come
remarkably close to the left boundaries; the internal structures seem to
persist, causing the boundaries to be nonperiodic.

Most of these boundaries grow with significant average velocity near
the speed of light (d− 1 cells per time step). Others grow as slowly as
0.02 cells per time step (see Sec. 4.3). For instance, rule 46728 from
white (shown in Figure 6) has an internal boundary resembling a lazy
random walk that occasionally collides with the (otherwise straight) ex-
ternal boundary. To quantify descriptions like these, we next study the
688 unpredictable boundaries by treating them like Brownian motion.

4.2. Random walk statistics. To draw an analogy between unpre-
dictable boundaries and random walks, we note that the average growth
`(t)/t and variance of the difference sequence `(t+ 1)− `(t) of bound-
aries of cellular automata are analogs of the drift and diffusivity of the
Brownian motion of molecular motors [13]. In light of this parallel, we
define the drift U to be the average growth rate

U = lim
t→∞

`(t)/t

and the diffusivity D to be the variance of the difference sequence

D = lim
t→∞

Var(`(1)− `(0), `(2)− `(1), . . . , `(t+ 1)− `(t)).

Continuing the analogy with molecular motors, we define a Peclét num-
ber for boundaries of automata to be the ratio of the drift and diffu-
sivity,

Pe =
|U |
D
.

The Peclét number Pe measures the coherence of the boundary [13]: a
large Pe indicates nearly deterministic movement in a clear direction,
whereas a small Pe indicates a meandering, noisy trajectory. Its inverse
r = 1/Pe is the randomness of the boundary [13].

In Figure 7 we plot the distributions of the four random walk statis-
tics (U,D, r,Pe) of the 688 irreducible boundaries. Sorting and plotting
these on log-linear scales shows that U,D, r,Pe decay approximately
exponentially over two orders of magnitude among the 688 irregular
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boundaries. This observation, and others in this section, are robust
to changes in the number of time steps tmax ∈ {500, 1500, 5000, 10000}
of evaluating the automata.1 The data stored in CellularAutoma-
tonData [6] is for tmax = 104, and we show these results throughout
this section.

We also fit the boundaries to linear (at + c), power law (atb and
atb + c), and logarithmic (a log(bt) + c) functional forms. To select the
“best fit” that maximizes the R2 (for accuracy) and that minimizes the
Akaike Information Criterion (AIC) (for parsimony) [14], we choose the
fit that maximizes R2 · exp((AICmin − AIC)/2), where AICmin is the
minimum AIC among all models [14].

As expected, for reducible boundaries, the slope a of the linear fit
at + c approximately equals both the empirical estimate of the drift,
`(tmax)/tmax, and the growth rate a in Equation 1 computed using
Equation 3. For boundaries conjectured to be irreducible, the slope a
of the linear fit at + c is nearly equal to the empirical estimate of the
drift (for tmax = 104, a and U differ by just 0.002± 0.004).

Irrational limiting growth rates are known to exist for cellular au-
tomata that compute powers of integers in a certain base [15, pages 613–
615]. However, we did not recognize by visual inspection any irrational
numbers among the growth rates of the irregular boundaries, which
suggests that they do not exist for k = 2, d = 4 rules.

No boundaries were deemed best fit by the logarithmic functional
form, but 190 of the 688 irregular boundaries were deemed best fit by
a power law. The exponents b of these power laws all lie in the interval
[0.85, 1.17], except for the two slowest-growing boundaries, 7403 and
7419, both begun from a black cell (with exponents b = 0.03 and 0.01).
(For more on the slowest-growing boundaries, see Sec. 4.3.) We reject
power law fits with exponents |b − 1| < 0.01, because these are more
reasonably deemed linear fits. We conclude that the nearly all the
boundaries that grow as power laws have exponents near 1. Exponents
above 1 occur when the parameter a < 1, which cannot be accurate
for sufficiently large t because `(t) ≤ 3t + 1 for all d = 4 automata
begun from a single-cell initial condition. Neither adjusting tmax nor
dropping tens or hundreds of the first boundary lengths (to allow for
a transient) eliminates the power law exponents larger than 1. This
illustrates the difficulties of fitting irregular boundaries to functional
forms using standard nonlinear fitting algorithms.

1The values of U,D for almost every automaton change little from calculations
up to time tmax = 5000 to calculations up to time tmax = 10000 (e.g., 2/3 of the
diffusivities change by < 0.01, while 90% change by < 0.05).
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Figure 7. The four random walk statistics (drift U ,
diffusivity D, randomness r, Peclét number Pe) of the
688 irreducible boundaries decay approximately expo-
nentially when sorted in decreasing order. Dashed lines
approximate the slopes on log-linear scales. In the right-
most plot, we sort and plot the exponents of the power
law fits for the 190 boundaries deemed to be better fit by
a power law (atb or atb + c) than linear or logarithmic;
not shown are the exceptionally small exponents b = 0.03
and 0.01 of rules 7403 and 7419.

The drift U and diffusivity D characterize what kinds of random
walks these irregular boundaries behave like. Notably, one quarter of
the 688 automata have diffusivity 0.15 < D < 0.25, which creates a
“knee” in Figure 7. For comparison, a simple random walk with steps
1,−1 occurring with probability p, 1 − p has variance 0.25 for p =
1
4

(
2−
√

3
)
≈ 0.067. Such a random walk moves rather coherently in a

certain direction, reflected by its large Peclét number Pe = 2
√

3 ≈ 3.5
that is also common among the irregular boundaries.

Turning our attention to the drift U and diffusivity D of all 688
irregular boundaries, we find a gap in the scatter plot of D and U in
Figure 8. This gap suggests the existence of a threshold: irreducible
boundaries of automata either grow quickly and erratically (large U,D;
upper-right region of Figure 8) or more slowly and deterministically
(small U,D; lower-left region of Figure 8). This scatter plot and its
gap do not change qualitatively for different numbers of time steps
tmax.

4.3. Slow growth. Fast boundary growth is common: the mean growth
rate among the boundaries conjectured to be irreducible is large, 〈U〉 ≈
1.27. Slow growth, by contrast, is delicate and rare (see the sparse re-
gion U < 0.5 in Figure 8). Table 1 shows the ten automata that
grow most slowly among the 688 automata with apparently irreducible
boundaries. The last column depicts the initial terms of the sequences
`(t).
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Figure 8. An unexpected gap in the relationship be-
tween diffusivity D and drift U (computed for 104 steps)
suggests a threshold exists in the behavior of irreducible
boundaries of cellular automata: they either grow errat-
ically and quickly or more deterministically and slowly.

rule initial condition drift U `(t) for t ≤ 500

7403 · · ·������� · · · 0.021404

7419 · · ·������� · · · 0.023805

2295 · · ·������� · · · 0.210042

2295 · · ·������� · · · 0.210042

11411 · · ·������� · · · 0.230046

11411 · · ·������� · · · 0.230446

38538 · · ·������� · · · 0.233647

34490 · · ·������� · · · 0.264053

34458 · · ·������� · · · 0.266853

1690 · · ·������� · · · 0.296859

Table 1. The ten slowest of the presumably irreducible
boundaries (in the first 5000 time steps).

The very slowest automaton (at least in the first 5000 steps) is
rule 7403 begun from · · ·������� · · · , shown in Figure 9, which does
something quite surprising. Its boundary continues to grow slowly for
more than half a million steps, reaching only `(524557) = 174. After
step 524557 the growth increases dramatically, reaching length 277 at
step 525000 and length 36819 at step 106. So while the average growth
rate for the range 0 ≤ t ≤ 500000 is 0.000348, the average growth rate
for 500000 ≤ t ≤ 106 is 0.073290, as if for some reason a growth rate



24 CHARLES D. BRUMMITT AND ERIC ROWLAND

Figure 9. Rules 7403 and 7419 begun from
· · ·������� · · · , the slowest-growing k = 2, d = 4
automata with single-cell initial conditions.

as low as 0.000348 is not sustainable. We have no explanation for this
behavior.

The boundary of rule 7419 begun from · · ·������� · · · (shown
in Figure 9) also exhibits extended slow growth. Unlike rule 7403,
however, its growth rate does not appear to suddenly increase. Due to
its relatively short rows, one can quickly evolve it for a large number
of steps. For example, we compute `(108) = 271, and one suspects
that the growth of this automaton is not linear in general but is better
modeled by atb. We have no explanation for this behavior either.

We remark that the pictures generated by rules 7403 and 7419, shown
in Figure 9, resemble each other significantly. They largely consist of
vertical lines, with structure reminiscent of counting in binary. Further
work should be undertaken to understand these rules and to determine
the extent to which they are reducible.

4.4. Potential for universality. Rule 7555 is interesting as a poten-
tially programmable rule and hence a candidate for universality. Be-
gun from either initial condition, the picture that rule 7555 generates
strongly suggests that it performs some kind of arithmetic, with clear
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particles of varying slopes at times passing through each other and at
other times interacting. Its left boundary depends sensitively on the
computations being performed in the interior, and, for example, after
changing position thirteen times in the range 10000 ≤ t ≤ 20000 when
begun from · · ·������� · · · , it remains constant for more than 3000
steps beginning at step 20555.

5. An automaton with no growth exponent

In this section we show that it is not possible in general to assign a
growth function tb to a cellular automaton. In particular, we construct
an automaton such that the limiting growth exponent

lim
t→∞

logt `(t)

does not exist.
The idea is to take rule 106 begun from · · ·�������� · · · (shown

in Figure 2), which grows like
√
t, and to graft onto it an automaton

that roughly squares the length of a row. We set up the squaring rule
to be activated at certain steps, causing the sequence `(t) to grow to be
on the order of t, and then we allow it to fall back to the boundary of
rule 106 on the order of

√
t before being activated again. As a result, the

sequence `(t) oscillates between square-root growth and linear growth
and satisfies

lim inf
t→∞

logt `(t) =
1

2
, lim sup

t→∞
logt `(t) = 1.

A squaring rule that works by repeated addition was given by Wol-
fram [15, page 639] using k = 8 and d = 3. Begun from the initial
condition

· · · 00011 · · · 11︸ ︷︷ ︸
`−1

3000 · · · ,

this rule produces a row of length `2− ` after 3`2− 5` steps. Figure 10
shows the automaton squaring the integer 6.

A k1-color rule and a k2-color rule can be combined into a single
(k1k2)-color rule that can be thought of as their direct product and
that can run the two rules in parallel. Since of course we do not want
the two rules to run completely independently, we modify the composite
rule so that there is some interaction. In particular, modifications to
the squaring automaton, including the addition of one color, inhibit
future squarings until the current one is finished and the automaton
has shrunk to the width of rule 106. Hence our composite rule uses
2× 9 = 18 colors. The broad outline is as follows.
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Figure 10. Left: A cellular automaton that squares
integers, shown here squaring `−1 = 6. Right: A cellular
automaton with no growth exponent, shown for 128 steps
and 1152 steps.

Step 3 in rule 106 consists of four black cells. We choose the initial
condition so that the squaring automaton is first activated on step 4.
Since the squaring needs to be activated locally, we modify the squar-
ing automaton so that it squares a row using only information from its
two endpoints rather than from the entire interval of cells. The rele-
vant interval for squaring on step 4 has length ` = 5, so the squaring
automaton takes 3`2 − 5` = 50 steps to square. From the time the
squaring begins until it finishes, the squaring automaton runs indepen-
dently of rule 106.

After the squaring completes at step 54, we must clear the cells used
by the squaring automaton. To do this, we add a new color to mark
the leftmost nonempty column. When the last addition is complete,
we send out a particle from this column that travels to the right and
clears the cells involved in squaring.

When the clearing particle reaches the rightmost remnant of the
squaring automaton, we trigger a particle traveling back to the left
to signify that the next squaring can begin. When this particle first
encounters a structure from rule 106, it stops propagating to the left
and remains in that column to trigger the next squaring when rule 106
next has two adjacent black cells at the right endpoint, and the process
begins again.

The result is a rule with k = 18 and d = 4, begun from the initial
condition · · · 0002899003000 · · · . Figure 10 shows two images of this
automaton. The complete rule instructions are available in Cellula-
rAutomatonData [6]. Even though both rule 106 and the squaring
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automaton are functions of 3 cells, it is necessary to shear one of the
rules relative to the other to bring their structures into alignment, hence
d = 4.

We now verify by induction that triggering the initial squaring on
step 3 enables one to easily determine when all future squarings will
occur. (For other initial triggering steps this is not the case.) We claim
that squarings are triggered precisely on steps 24α+2 − 1 for α ≥ 0.

For α = 0 the squaring at step 3 is guaranteed by our choice of initial
condition.

Inductively, assume that a squaring is triggered on step 24α+2 − 1
for a fixed α. On step 24α+2 − 1, rule 106 has a solid black row of
length 3 · 22α + 1. The squaring rule begins squaring 3 · 22α + 2 on
the following step and reaches maximum length 9 · 24α + 9 · 22α + 5 on
step 31 · 24α + 21 · 22α + 2. The length is maximal for three steps, and
then the length shrinks one cell per step until the particle reaches the
boundary of rule 106; this occurs at step 5 ·24α+3+9 ·22α+1+3, because
the length of rule 106 is 3 · 22(α+1) + 1 for all 24α+5 ≤ t ≤ 24α+6 − 1,
and one checks that 24α+5 < 5 · 24α+3 + 9 · 22α+1 + 3 < 24α+6 − 2.
For 24α+5 ≤ t ≤ 24α+6 − 2, the right endpoint of rule 106 is a single
black cell, and the next occurrence of two adjacent black cells is on
step 24(α+1)+2 − 1.

It follows that the subsequence of the steps where squarings begin
has limiting exponent

lim
α→∞

log(3 · 22α + 1)

log(24α+2 − 1)
=

1

2
,

and the subsequence of the steps where squarings end has limiting
exponent

lim
α→∞

log(9 · 24α + 9 · 22α + 5)

log(31 · 24α + 21 · 22α + 2)
= 1.

6. Conclusions and open questions

In this paper we have inventoried the boundaries of all cellular au-
tomaton rules using k = 2 colors and depending on d = 4 cells when
begun from a single cell on a constant background. Within this rule
space we have encountered several kinds of behavior not seen in smaller
spaces. In particular, we find fractal boundaries described by mor-
phic words. By studying the unpredictable boundaries as if they were
random walks, we find approximately exponential distributions of the
mean and variance of the boundaries’ growth and a possible separation
into two classes of automata, ones that grow quickly and erratically
and others that grow slowly and more deterministically.
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For simplicity, we have restricted our attention in many ways. We
have only considered the two initial conditions · · ·������� · · · and
· · ·������� · · · . A more general study of k = 2, d = 4 rules will con-
sider other initial conditions and attempt to determine to what extent
each rule has a representative growth rate. More generally still, one can
consider initial conditions with backgrounds that are not constant but
are periodic, because there still exists a natural notion of the length of
a row. Finally, the rule space we studied is big, but it is not huge, and
one can imagine performing similar analyses on larger spaces of cellu-
lar automata. We hope that researchers in fact do all of these things,
and we have designed CellularAutomatonData to scale to these more
general settings.

Another topic to be addressed is the issue of distinct automata that
nevertheless generate the same evolution (or an evolution equivalent
under reflection or permutation of colors) because certain local config-
urations of cells do not appear. For example, rules 34394 and 39780
can generate identical evolutions, as mentioned in Section 3.3. At the
beginning of Section 4 we encountered this phenomenon again. (Al-
though we did not mention it earlier, among the 688 distinct evolutions
generated by the 720 irreducible automata there appear to be only 658
distinct boundary words.) The prevalence of equivalent evolutions gen-
erated by inequivalent rules suggests that one should use more complex
initial conditions to distinguish such rules. One possible criterion for a
representative initial condition for a given rule is that all kd local con-
figurations that can (for some initial condition) occur infinitely often
in an evolution do occur infinitely often.

This paper concerns external boundaries, which are simply special
cases of general boundaries between distinct regions of a cellular au-
tomaton’s evolution. The advantage of studying external boundaries
is the ease of defining and therefore programmatically detecting them.
However, internal boundaries (or particles) are common in automata,
and several information-theoretic measures have been used to detect
them [16, 17, 18, 19] and their collisions [20]. We expect that our auto-
mated and manual methods could inform a study of general boundaries.
Conversely, information-theoretic tools for internal boundaries may be
applied to external boundaries to systematically measure, for instance,
how much they store and process information [21, 22].

In most cases, the cellular automaton data we computed is empir-
ical and has not been formally proved to be correct. (We welcome
any corrections.) Of course ideally we would like to have proofs. The
automata with morphic boundary words that are not eventually pe-
riodic are few enough, at least in the space k = 2, d = 4, that it is



BOUNDARY GROWTH IN ONE-DIMENSIONAL CELLULAR AUTOMATA 29

reasonable to attempt to prove manually that each boundary word is
described by the morphism claimed. On the other hand, for the 24287
automata with eventually periodic boundary words, obtaining proofs
by hand is not reasonable, and one must develop automated techniques
for examining a rule and initial condition to determine (rigorously) the
growth rate and the eventual period length. Of course, the question of
whether the boundary word is eventually periodic is likely undecidable
in general. However, a symbolic approach capable of proving a large
number of growth rates would be of great interest.

From the results in this paper, several natural questions arise regard-
ing the growth of cellular automata.

• Is there a cellular automaton with a boundary word that is
not a word on a finite subset ∆ of integers but that contains
infinitely many distinct integers? Note that each term of the
boundary word is at most d− 1, so such a word would contain
a subsequence of integers tending to −∞.
• Do there exist irrational growth rates limt→∞ `(t)/t for cellular

automata other than those that compute powers of integers [15,
page 614], and can these irrational growth rates be detected
programmatically?
• For what real numbers 0 ≤ b ≤ 1 is there a cellular automaton

with limiting growth exponent b = limt→∞ logt `(t)? Schaef-
fer [23] has recently constructed cellular automata with row
lengths that grow like t1/m for any integer m ≥ 3, and tlog2 φ

where φ = (1 +
√

5)/2.
• Schaeffer [23] has also constructed an automaton with `(t) =
O(
√
t log t). What can be said in general about possible and

impossible growth functions?
• How does the growth of an automaton depend on k and d? For

example, what is the smallest nonzero rational growth rate that
occurs for given k and d?

These and other questions indicate the breadth of mathematics and
experimentation to be done on the boundaries of cellular automata.
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