On superintegrable Stäckel systems: elliptic and parabolic coordinates.

A V Tsiganov
St.Petersburg State University, St.Petersburg, Russia
e-mail: tsiganov@mph.phys.spbu.ru

Abstract

Recently we proposed a generic construction of the additional integrals of motion for the Stäckel systems applying addition theorems to the angle variables. In this note we show some trivial examples associated with angle variables for elliptic and parabolic coordinate systems on the plane.

1 Introduction

In classical mechanics Hamiltonian system on a $2 n$-dimensional phase space M is called completely integrable in Liouville's sense if it possesses n functionally independent integrals of motion H_{1}, \ldots, H_{n} in involution:

$$
\frac{d H_{i}}{d t}=\left\{H, H_{i}\right\}=0, \quad\left\{H_{i}, H_{j}\right\}=0, \quad i, j=1, \ldots, n
$$

where $H=H_{1}$ is the Hamilton function and $\{.,$.$\} is the Poisson bracket on M$.
Superintegrable system is a system that is integrable in the Liouville sense and that possesses more functionally independent integrals of motion than degrees of freedom. The construction of superintegrable Stäckel systems using angle variables ω_{k} has been proposed in [12, 13, 14, 15].

In generic case the action variables ω_{k} are multi-valued functions on the whole phase space M. In fact, we can extract polynomial integrals of motion from angle variables only when we can apply addition theorems to the corresponding Abelian integrals. As there are only few addition theorems for the Abel equations [1, 3] we can easily classify the corresponding superintegrable systems, see 12, 13, 14, 15.

The goal of this brief note is to present some trivial examples of applying this generic theory associated with elliptic and parabolic coordinate systems on the plane. Superintegrable systems separable in spherical coordinates can be found in [2, 6. The corresponding addition integrals of motion are related with an addition theorem for the logarithmic angle variables. Of course, there is a trivial generalization of the proposed method for all the orthogonal coordinate systems in \mathbb{R}^{3} (ellipsoidal, paraboloidal, cylindrical, prolate and oblate spheroidal coordinates etc).

The non-Stäckel superintegrable systems in classical and quantum mechanics have been considered in [7, 8]. In contrast with the Stäckel case we do not have a generic theory for constructing such superintegrable systems.

2 The Stäckel systems

The system associated with the name of Stäckel [11] is a holonomic system on the phase space $\mathbb{R}^{2 n}$, with the canonical variables $q=\left(q_{1}, \ldots, q_{n}\right)$ and $p=\left(p_{1}, \ldots, p_{n}\right)$:

$$
\begin{equation*}
\Omega=\sum_{j=1}^{n} d p_{j} \wedge d q_{j}, \quad\left\{p_{j}, q_{k}\right\}=\delta_{j k} \tag{2.1}
\end{equation*}
$$

The nondegenerate $n \times n$ Stäckel matrix S, whose j column depends only on coordinate q_{j}, defines n functionally independent integrals of motion

$$
\begin{equation*}
H_{k}=\sum_{j=1}^{n}\left(S^{-1}\right)_{j k}\left(p_{j}^{2}+V_{j}\left(q_{j}\right)\right) \tag{2.2}
\end{equation*}
$$

the separated relations

$$
\begin{equation*}
p_{j}^{2}=\sum_{k=1}^{n} H_{k} S_{k j}\left(q_{j}\right)-V_{j}\left(q_{j}\right) \tag{2.3}
\end{equation*}
$$

and the action variables w_{k}

$$
\begin{equation*}
\omega_{i}=\frac{1}{n} \sum_{j=1}^{n} \int^{q_{j}} \frac{S_{i j}(\lambda)}{\sqrt{\sum_{k=1}^{n} H_{k} S_{k j}(\lambda)-V_{j}(\lambda)}} \mathrm{d} \lambda \tag{2.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left\{H_{j}, H_{k}\right\}=\left\{\omega_{i}, \omega_{k}\right\}=0, \quad\left\{H_{j}, \omega_{k}\right\}=\delta_{i j} \tag{2.5}
\end{equation*}
$$

In generic case the action variables (2.4) are sums of the multi-valued Abelian integrals. However, if we are able to apply the known addition theorems for these Abelian integrals then we can get additional integrals of motion [12, 13, 14 .

Let us discuss addition theorems for the logarithmic (exponential) and elliptic functions [1, 3]. In the first case polynomials

$$
P_{j}=\sum_{k=1}^{n} H_{k} S_{k j}(\lambda)-V_{j}(\lambda)
$$

are the second order polynomials and

$$
\omega=\frac{1}{n} \sum_{j=1}^{m} \int^{q_{j}} \frac{d \lambda}{\sqrt{k_{j}^{2} \lambda^{2}+b_{j} \lambda+c_{j}}}=\sum_{j=1}^{m} \int^{q_{j}} \ln \left(p_{j}+\frac{k_{j}^{2} q_{j}+b_{j}}{k_{j}}\right)^{\frac{1}{n k_{j}}} .
$$

So, we can easily get polynomial or rational function

$$
\begin{equation*}
Z=e^{z \omega}=\prod_{j=1}^{m}\left(p_{j}+\frac{k_{j}^{2} q_{j}+b_{j}}{k_{j}}\right)^{\frac{z}{n k_{j}}} \tag{2.6}
\end{equation*}
$$

at the special choice of k_{j} and z. In the second case $m-1$ angle variables $\omega_{k}, \ldots, \omega_{k+m-1}$ with $1<m \leq n$ have to satisfy to the Abel equations

$$
\begin{align*}
& \frac{d \mathrm{x}_{1}}{\sqrt{f\left(\mathrm{x}_{1}\right)}}+\frac{d \mathrm{x}_{2}}{\sqrt{f\left(\mathrm{x}_{2}\right)}}+\cdots+\frac{d \mathrm{x}_{m}}{\sqrt{f\left(\mathrm{x}_{m}\right)}}=d \omega_{k} \\
& \frac{\mathrm{x}_{1} d \mathrm{x}_{1}}{\sqrt{f\left(\mathrm{x}_{1}\right)}}+\frac{\mathrm{x}_{2} d \mathrm{x}_{2}}{\sqrt{f\left(\mathrm{x}_{2}\right)}}+\cdots+\frac{\mathrm{x}_{m} d \mathrm{x}_{m}}{\sqrt{f\left(\mathrm{x}_{m}\right)}}=d \omega_{k+1} \\
& \cdots \cdot \tag{2.7}\\
& \frac{\mathrm{x}_{1}^{m-2} d \mathrm{x}_{1}}{\sqrt{f\left(\mathrm{x}_{1}\right)}}+\frac{\mathrm{x}_{2}^{m-2} d \mathrm{x}_{2}}{\sqrt{f\left(\mathrm{x}_{2}\right)}}+\cdots+\frac{\mathrm{x}_{m}^{m-2} d \mathrm{x}_{m}}{\sqrt{f\left(\mathrm{x}_{m}\right)}}=d \omega_{k+m-1}
\end{align*}
$$

with a common polynomial of fixed degree $2 m$

$$
\begin{equation*}
f(\mathrm{x}) \equiv A_{2 m} \mathrm{x}^{2 m}+A_{2 m-1} \mathrm{x}^{2 m-1}+\cdots+A_{1} \mathrm{x}+A_{0} \tag{2.8}
\end{equation*}
$$

If this Richelot conditions holds, then there are some additional integrals of motion

$$
\begin{equation*}
C_{k}=\frac{\left[\frac{\sqrt{f\left(\mathrm{x}_{1}\right)}}{F^{\prime}\left(\mathrm{x}_{1}\right)} \cdot \frac{1}{a_{k}-\mathrm{x}_{1}}+\cdots+\frac{\sqrt{f\left(\mathrm{x}_{m}\right)}}{F^{\prime}\left(\mathrm{x}_{m}\right)} \cdot \frac{1}{a_{k}-\mathrm{x}_{m}}\right]^{2}}{\left[\frac{\sqrt{f\left(\mathrm{x}_{1}\right)}}{F^{\prime}\left(\mathrm{x}_{1}\right)}+\cdots+\frac{\sqrt{f\left(\mathrm{x}_{m}\right)}}{F^{\prime}\left(\mathrm{x}_{m}\right)}\right]^{2}-A_{2 m}} F\left(a_{k}\right) \tag{2.9}
\end{equation*}
$$

Here a_{k} are values of x at the branch points of the corresponding hyperelliptic curve and $F(\mathrm{x})=\left(\mathrm{x}-\mathrm{x}_{1}\right)\left(\mathrm{x}-\mathrm{x}_{2}\right) \cdots\left(\mathrm{x}-\mathrm{x}_{m}\right)$ [10, 15]. At $m=2$ we have famous Euler algebraic integral [3.

Below we show how these addition theorems could help us to classify superintegrable systems.

3 Elliptic coordinate system

Let us consider elliptic coordinates on the plane $q_{1,2}$ defined by

$$
1-\frac{x^{2}}{\lambda-\kappa}-\frac{y^{2}}{\lambda+\kappa}=\frac{\left(\lambda-q_{1}\right)\left(\lambda-q_{2}\right)}{\lambda^{2}-\kappa^{2}}, \quad \kappa \in \mathbb{R}
$$

The corresponding momenta reads as

$$
p_{1}=\frac{2 p_{x} x}{q_{1}-\kappa}+\frac{2 p_{y} y}{q_{1}+\kappa}, \quad p_{2}=\frac{2 p_{x} x}{q_{2}-\kappa}+\frac{2 p_{y} y}{q_{2}+\kappa}
$$

The Stäckel matrix and the separated relations

$$
S\left(\begin{array}{cc}
\frac{q_{1}}{q_{1}^{2}-\kappa^{2}} & \frac{q_{2}}{q_{2}^{2}-\kappa^{2}} \tag{3.1}\\
\frac{1}{q_{1}^{2}-\kappa^{2}} & \frac{1}{q_{2}^{2}-\kappa^{2}}
\end{array}\right), \begin{array}{ll}
p_{1}^{2}+V_{1}-\frac{q_{1} H_{1}}{q_{1}^{2}-\kappa^{2}}-\frac{H_{2}}{q_{1}^{2}-\kappa^{2}}=0 \\
& p_{2}^{2}+V_{2}-\frac{q_{2} H_{1}}{q_{2}^{2}-\kappa^{2}}-\frac{H_{2}}{q_{2}^{2}-\kappa^{2}}=0
\end{array}
$$

give rise to the following Hamiltonians in the involution

$$
\begin{aligned}
& H_{1}=\frac{\left(q_{1}^{2}-\kappa^{2}\right)\left(p_{1}^{2}+V_{1}\right)}{q_{2}-q_{1}}+\frac{\left(q_{2}^{2}-\kappa^{2}\right)\left(p_{2}^{2}+V_{2}\right)}{q_{2}-q_{1}}, \\
& H_{2}=\frac{q_{2}\left(q_{1}^{2}-\kappa^{2}\right)\left(p_{1}^{2}+V_{1}\right)}{q_{1}-q_{2}}-\frac{q_{1}\left(q_{2}^{2}-\kappa^{2}\right)\left(p_{2}^{2}+V_{2}\right)}{q_{1}-q_{2}}
\end{aligned}
$$

The Hamiltonian H_{1} commutes with the second angle variable w_{2}, which is equal to

$$
\begin{aligned}
w_{2} & =\frac{1}{2} \int^{q_{1}} \frac{d \lambda}{\sqrt{\left(\lambda^{2}-\kappa^{2}\right)\left(\lambda H_{1}+H_{2}-V_{1} \lambda^{2}+V_{1} \kappa^{2}\right)}} \\
& +\frac{1}{2} \int^{q_{2}} \frac{d \lambda}{\sqrt{\left(\lambda^{2}-\kappa^{2}\right)\left(\lambda H_{1}+H_{2}-V_{2} \lambda^{2}+V_{2} \kappa^{2}\right)}}
\end{aligned}
$$

Polynomials

$$
\begin{equation*}
P_{1,2}=\left(\lambda^{2}-\kappa^{2}\right)\left(\lambda H_{1}+H_{2}-V_{1,2} \lambda^{2}+V_{1,2} \kappa^{2}\right) \tag{3.2}
\end{equation*}
$$

standing under square root in these integrals are at least third order polynomials on λ. So, in this case we can not apply addition theorem for the logarithms.

It is easy to see that we can apply addition theorem for the elliptic functions at

$$
V_{1}=V_{1}=\alpha
$$

Namely, if we put $\lambda=\mathrm{x}$ and $\lambda=\mathrm{y}$ in the first and second integrals (3.2), we could apply the Euler addition theorem

$$
\begin{equation*}
\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{Y}}=\frac{d s}{\sqrt{\mathrm{~S}}} \tag{3.3}
\end{equation*}
$$

to angle variable ω_{2}. Here X is an arbitrary quartic

$$
\begin{equation*}
\mathrm{X}=a \mathrm{x}^{4}+4 b \mathrm{x}^{3}+6 c \mathrm{x}^{2}+4 d \mathrm{x}+e \tag{3.4}
\end{equation*}
$$

and Y, S are the same functions of another variables y and s. In this case, symmetrical biquadratic form of x and y

$$
\begin{equation*}
F(\mathrm{x}, \mathrm{y})=a \mathrm{x}^{2} \mathrm{y}^{2}+2 b \mathrm{xy}(\mathrm{x}+\mathrm{y})+c\left(\mathrm{x}^{2}+4 \mathrm{xy}+\mathrm{y}^{2}\right)+2 d(\mathrm{x}+\mathrm{y})+e=0 \tag{3.5}
\end{equation*}
$$

defines the conic section on the plane (x, y). According to [1, 3, 10, there is a famous Euler integral

$$
\begin{equation*}
C=\frac{F(\mathrm{x}, \mathrm{y})-\sqrt{\mathrm{X}} \sqrt{\mathrm{Y}}}{2(\mathrm{x}-\mathrm{y})^{2}}=\frac{1}{4}\left(\frac{\sqrt{\mathrm{X}}-\sqrt{\mathrm{Y}}}{\mathrm{x}-\mathrm{y}}\right)^{2}-\frac{a(\mathrm{x}+\mathrm{y})^{2}}{4}-b(\mathrm{x}+\mathrm{y})-c \tag{3.6}
\end{equation*}
$$

For the quartic (3.2) associated with the angle variable (3.2) this Euler integral looks like

$$
H_{3}=\frac{\left(p_{1}-p_{2}\right)\left(q_{1}^{2}-\kappa^{2}\right)\left(q_{2}^{2}-\kappa^{2}\right)}{\left(q_{1}-q_{2}\right)^{3}}\left(\alpha\left(q_{1}-q_{2}\right)^{2}-\left(p_{1}-p_{2}\right)^{2} \kappa^{2}+\left(p_{1} q_{1}-p_{2} q_{2}\right)^{2}\right)
$$

Here $q_{1,2}$ and $p_{1,2}$ are elliptic coordinates and momenta.
It is a third order polynomial in momenta which commutes with the Hamiltonian

$$
\left\{H_{1}, H_{2}\right\}=0, \quad\left\{H_{2}, H_{3}\right\}=H_{4} \neq 0
$$

The algebra of the polynomial integrals of motion H_{1}, H_{2}, H_{3} can be closed only after some other polynomial generators are added.

Thus, we easily find the additional integrals of motion for the Hamilton function of the oscillator

$$
4 H_{1}=p_{x}^{2}+p_{y}^{2}+a\left(x^{2}+y^{2}\right)
$$

using the separation of variables in elliptic coordinate system and the corresponding angle variables. Another result is that there is only one superintegrable system separable in elliptic coordinates and associated with the known addition theorems for Abelian integrals.

4 Parabolic coordinate system

Let us consider parabolic coordinates on the plane $q_{1,2}$ defined by

$$
x=q_{1} q_{2}, \quad y=\frac{q_{1}^{2}-q_{2}^{2}}{2}
$$

and the corresponding momenta

$$
p_{x}=\frac{p_{1} q_{2}+p_{2} q_{1}}{q_{1}^{2}+q_{2}^{2}}, \quad p_{y}=\frac{q_{1} p_{1}-q_{2} p_{2}}{q_{1}^{2}+q_{2}^{2}}
$$

The Stäckel matrix and the separated relations

$$
S\left(\begin{array}{cc}
q_{1}^{2} & q_{2}^{2} \tag{4.1}\\
1 & -1
\end{array}\right), \quad \begin{aligned}
& p_{1}^{2}+V_{1}\left(q_{1}\right)-q_{1}^{2} H_{1}-H_{2}=0 \\
& p_{2}^{2}+V_{2}\left(q_{2}\right)-q_{2}^{2} H_{1}+H_{2}=0
\end{aligned}
$$

give rise to the Hamiltonians

$$
H_{1}=\frac{p_{1}^{2}+p_{2}^{+} V_{1}\left(q_{1}\right)+V_{2}\left(q_{2}\right)}{q_{1}^{2}+q_{2}^{2}}, \quad H_{2}=\frac{p_{1}^{2} q_{2}^{2}-p_{2}^{2} q_{1}^{2}+q_{2}^{2} V_{1}\left(q_{1}\right)-q_{1}^{2} V_{2}\left(q_{2}\right)}{q_{1}^{2}+q_{2}^{2}}
$$

The Hamiltonian H_{1} commutes with the second angle variable w_{2}, which is equal to

$$
w_{2}=\frac{1}{2} \int^{q_{1}} \frac{d \lambda}{\sqrt{\lambda^{2} H_{1}+H_{2}-V_{1}(\lambda)}}+\frac{1}{2} \int^{q_{2}} \frac{d \lambda}{\sqrt{\lambda^{2} H_{1}-H_{2}-V_{2}(\lambda)}}
$$

In contrast with the elliptic coordinates, polynomials

$$
P_{1,2}=\lambda^{2} H_{1}+H_{2}-V_{1,2}(\lambda)
$$

standing under square root in these integrals are at least second order polynomials on λ. So, we can apply both known addition theorems to these Abelian integrals.

In fact, these integrals are expressed via logarithmic functions iff:

$$
\begin{array}{lll}
\text { Case } 1: & V_{1}=b_{1} q_{1}+c_{1}, & V_{2}=b_{2} q_{2}+c_{2}, \\
\text { Case 2 }: & V_{1}=a_{1} q_{1}^{-2}+b_{1}, & V_{2}=a_{2} q_{2}^{-2}+b_{1} \tag{4.3}
\end{array}
$$

The addition theorem for the elliptic function is applicable iff:

$$
\begin{equation*}
\text { Case 3: } \quad V_{1}=a_{1} q_{1}^{6}+b_{1} q_{1}^{4}+c_{1} q_{1}^{-2}, \quad V_{2}=a_{1} q_{2}^{6}-b_{1} q_{2}^{4}+c_{1} q_{2}^{-2} \tag{4.4}
\end{equation*}
$$

The corresponding Hamilton functions are deformations of the Kepler-Coulomb and oscillator Hamiltonians:

Case 1: $\quad H_{1}=p_{x}^{2}+p_{y}^{2}+\frac{1}{2 \sqrt{x^{2}+y^{2}}}\left(b_{1} \sqrt{x+\sqrt{x^{2}+y^{2}}}+b_{2} \sqrt{\sqrt{x^{2}+y^{2}}-x}+c_{1}=c_{2}\right)$

$$
=p_{x}^{2}+p_{y}^{2}+\frac{1}{2 r}\left(b_{1} \sqrt{2} \cos \frac{\varphi}{2}+b_{2} \sqrt{2} \sin \frac{\varphi}{2}+c_{1}+c_{2}\right)
$$

Case 2: $\quad H_{1}=p_{x}^{2}+p_{y}^{2}+\frac{1}{2 \sqrt{x^{2}+y^{2}}}\left(\frac{a_{1}}{x+\sqrt{x^{2}+y^{2}}}+\frac{a_{2}}{x-\sqrt{x^{2}+y^{2}}}+b_{1}+b_{2}\right)$

$$
\begin{equation*}
=p_{x}^{2}+p_{y}^{2}+\frac{a_{1}}{2 r^{2}(\cos \varphi+1)}-\frac{a_{2}}{2 r^{2}(\cos \varphi-1)}+\frac{b_{1}+b_{2}}{2 r} \tag{4.5}
\end{equation*}
$$

Case 3: $\quad H_{1}=p_{x}^{2}+p_{y}^{2}+\alpha\left(4 x^{2}+y^{2}\right)+2 \beta x+\frac{\gamma}{y^{2}}$.
Here $r=\sqrt{x^{2}+y^{2}}$ and $\varphi=\arctan x / y$ are polar coordinates on the plane. According to [9] these systems remain superintegrable in the quantum case.

4.1 Case 1

In the first case the second angle variable equals

$$
\begin{aligned}
\omega_{2} & =\frac{1}{2} \int^{q_{1}} \frac{d \lambda}{\sqrt{q_{1}^{2} H_{1}-b_{1} q_{1}+H_{2}-c_{1}}}-\frac{1}{2} \int^{q_{2}} \frac{d \lambda}{\sqrt{q_{2}^{2} H_{1}-b_{2} q_{2}-H_{2}-c_{2}}} \\
& =\frac{\ln \left(p_{1}-\frac{q_{1} H_{1}-b_{1} / 2}{\sqrt{H_{1}}}\right)}{2 \sqrt{H_{1}}}-\frac{\ln \left(p_{2}-\frac{q_{2} H_{1}-b_{2} / 2}{\sqrt{H_{1}}}\right)}{2 \sqrt{H_{1}}} .
\end{aligned}
$$

The application of the addition theorem (2.6) to ω_{2} gives rise to the following rational integral of motion

$$
Z=e^{2 \sqrt{H_{1}} \omega_{2}}=\frac{2 q_{1} H_{1}+2 p_{1} \sqrt{H_{1}}-b_{1}}{2 q_{2} H_{1}+2 p_{2} \sqrt{H_{1}}-b_{2}} .
$$

In order to calculate polynomial integral of motion let us consider a series expansion of the function

$$
f=\frac{1}{\sqrt{H_{1}}}\left(\alpha Z+\beta Z^{-1}\right)=\frac{\alpha\left(4 H_{1} H_{2}-4 H_{1} c_{1}-b_{1}^{2}\right)-\beta\left(4 H_{1} H_{2}+4 H_{1} c_{2}+b_{2}^{2}\right)}{\sqrt{H_{1}\left(4 H_{1} c_{2}+4 H_{1} H_{2}+b_{2}^{2}\right)\left(b_{1}^{2}+4 H_{1} c_{1}-4 H_{1} H_{2}\right)}}+O\left(p_{1,2}\right)
$$

by momenta $p_{1,2}$. Here we substitute the variables $q_{1,2}$ from the separated relations (4.1) into the rational integral Z and α, β are undefined polynomials in $H_{1,2}$.

Equating first coefficient of this expansion to zero one gets the following expressions for these polynomials

$$
\alpha=4 H_{1} H_{2}+4 H_{1} c_{2}+b_{2}^{2}, \quad \beta=4 H_{1} H_{2}-4 H_{1} c_{1}-b_{1}^{2}
$$

At this values of α and β the function f becomes a third order polynomial in momenta

$$
\begin{aligned}
H_{3} & =\frac{1}{\sqrt{H_{1}}}\left(\alpha Z+\beta Z^{-1}\right)=\frac{1}{\sqrt{H_{1}}}\left(\alpha e^{2 \sqrt{H_{1}} \omega_{2}}+\beta e^{-2 \sqrt{H_{1}} \omega_{2}}\right) \\
& =\frac{8\left(p_{1} q_{2}-p_{2} q_{1}\right)\left(p_{1}^{2}+p_{2}^{2}+c_{1}+c_{2}\right)}{q_{1}^{2}+q_{2}^{2}}+\frac{4\left(2 p_{1} q_{1} q_{2}-p_{2}\left(q_{1}^{2}-q_{2}^{2}\right)\right) b_{1}}{q_{1}^{2}+q_{2}^{2}}-\frac{4\left(2 p_{2} q_{1} q_{2}+p_{1}\left(q_{1}^{2}-q_{2}^{2}\right)\right) b_{2}}{q_{1}^{2}+q_{2}^{2}},
\end{aligned}
$$

such that

$$
\left\{H_{1}, H_{3}\right\}=0
$$

In order to close the algebra of the polynomial integrals of motion H_{1}, H_{2}, H_{3} we have to add one more polynomial generator

$$
H_{4}=\left\{H_{2}, H_{3}\right\}=2 \alpha e^{2 \sqrt{H_{1}} \omega_{2}}-2 \beta e^{-2 \sqrt{H_{1}} \omega_{2}} .
$$

by analogy with $\exp (\omega), \sin (\omega)$ and $\cos (\omega)$ functions.

4.2 Case 2

In the second case the angle variable is equal to

$$
\omega_{2}=\frac{1}{2} \int^{q_{1}} \frac{\lambda d \lambda}{\sqrt{\lambda^{4} H_{1}+\left(H_{2}-b_{1}\right) \lambda^{2}-a_{1}}}-\frac{1}{2} \int^{q_{2}} \frac{\lambda d \lambda}{\sqrt{\lambda^{4} H_{1}-\left(H_{2}+b_{2}\right) \lambda^{2}-a_{2}}} .
$$

Changing variables $\mu=\lambda^{2}$ one gets second order polynomials

$$
P_{j}=\mu^{2} H_{1} \pm\left(H_{2} \mp b_{j}\right) \mu-a_{j}
$$

under the square root and desired sum of the logarithms

$$
\omega_{2}=\frac{\left.\ln \left(2 q_{1}^{2} H_{1}+2 q_{1} p_{1} \sqrt{H_{1}}+H_{2}-b_{1}\right)\right)}{4 \sqrt{H_{1}}}-\frac{\left.\ln \left(2 q_{2}^{2} H_{1}+2 q_{2} p_{2} \sqrt{H_{1}}-H_{2}-b_{2}\right)\right)}{4 \sqrt{H_{1}}}
$$

The rational integral of motion (2.6) is equal to

$$
Z=e^{4 \sqrt{H_{1}} \omega_{2}}=\frac{2 q_{1}^{2} H_{1}+2 q_{1} p_{1} \sqrt{H 1}+H_{2}-b_{1}}{2 q_{2}^{2} H_{1}+2 q_{2} p_{2} \sqrt{H_{1}}-H_{2}-b_{2}} .
$$

As above we consider the expansion of the function

$$
f=\frac{1}{\sqrt{H_{1}}}\left(\alpha Z+\beta Z^{-1}\right)
$$

by momenta $p_{1,2}$. Equating first coefficient of this expansion to zero one gets polynomials α, β

$$
\alpha=4 H_{1} a_{2}+b_{2}^{2}+2 b_{2} H_{2}+H_{2}^{2}, \quad \beta=-4 H_{1} a_{1}-b_{1}^{2}+2 b_{1} H_{2}-H_{2}^{2} .
$$

At this values of α and β the function f becomes a third order polynomial in momenta

$$
\begin{aligned}
H_{3} & =\frac{1}{\sqrt{H_{1}}}\left(\alpha Z+\beta Z^{-1}\right)=\frac{1}{\sqrt{H_{1}}}\left(\alpha e^{4 \sqrt{H_{1}} \omega_{2}}+\beta e^{-4 \sqrt{H_{1}} \omega_{2}}\right)=\frac{4\left(q_{1} p_{1}-q_{2} p_{2}\right)\left(q_{2} p_{1}-q_{1} p_{2}\right)^{2}}{q_{1}^{2}+q_{2}^{2}} \\
& +\frac{4 q_{1} q_{2}\left(q_{2} p_{1}-q_{1} p_{2}\right)\left(b_{1}+b_{2}\right)}{q_{1}^{2}+q_{2}^{2}}+\frac{4 a_{1} q_{2}\left(q_{2} q_{1} p_{1}-\left(2 q_{1}^{2}+q_{2}^{2}\right) p_{2}\right)}{q_{1}^{2}\left(q_{1}^{2}+q_{2}^{2}\right)}-\frac{4 a_{2} q_{1}\left(q_{2} q_{1} p_{2}-\left(2 q_{2}^{2}+q_{1}^{2}\right) p_{1}\right)}{q_{2}^{2}\left(q_{1}^{2}+q_{2}^{2}\right)} .
\end{aligned}
$$

such that

$$
\left\{H_{1}, H_{3}\right\}=0
$$

In order to close the algebra of the polynomial integrals of motion H_{1}, H_{2}, H_{3} we have to add one more polynomial generator

$$
H_{4}=\left\{H_{2}, H_{3}\right\}=4 \alpha e^{4 \sqrt{H_{1}} \omega_{2}}-4 \beta e^{-4 \sqrt{H_{1}} \omega_{2}}
$$

4.3 Case 3

In the third case the angle variable is equal to

$$
\omega_{2}=\int^{q_{1}} \frac{\lambda d \lambda}{\sqrt{-a_{1} \lambda^{8}-b_{1} \lambda^{6}+H_{1} \lambda^{4}+H_{2} \lambda^{2}-c_{1}}}-\int^{q_{2}} \frac{\lambda d \lambda}{\sqrt{-a_{1} \lambda^{8}+b_{1} \lambda^{6}+H_{1} \lambda^{4}-H_{2} \lambda^{2}-c_{1}}}
$$

Changing variables $\lambda=\mathrm{x}$ and $\lambda=i \sqrt{\mathrm{y}}$ at the first and second integral one gets the Euler addition theorem (3.3). In fact, this example has been considered in Euler's book 3] too.

Identifying quartic

$$
P=-a_{1} \mu^{4}-b_{1} \mu^{3}+H_{1} \mu^{2}+H_{2} \mu-c_{1}
$$

with X (3.4) we can easily calculate the Euler integral of motion (3.6) in parabolic coordinates

$$
\begin{aligned}
H_{3}=s & =\frac{\left(q_{1} p_{1}-q_{2} p_{2}\right)\left(q_{1} p_{2}+q_{2} p_{1}\right)^{2}}{\left(q_{1}^{2}+q_{2}^{2}\right)^{3}}+\frac{a_{1} q_{1} q_{2}\left(2 q_{1}^{3} p_{2}+q_{2} q_{1}^{2} p_{1}-q_{1} q_{2}^{2} p_{2}-2 q_{2}^{3} p_{1}\right)}{q_{1}^{2}+q_{2}^{2}}+\frac{b_{1} q_{1} q_{2}\left(q_{1} p_{2}+q_{2} p_{1}\right)}{q_{1}^{2}+q_{2}^{2}} \\
& +\frac{c_{1}\left(q_{1} p_{1}-q_{2} p_{2}\right.}{q_{1}^{2} q_{2}^{2}\left(q_{1}^{2}+q_{2}^{2}\right)} .
\end{aligned}
$$

The algebra of the integrals of motion H_{1}, H_{2}, H_{3} is more complicated then the algebra associated with the addition theorem for logarithms. In fact, in order to close this algebra we have to introduce the counterparts of the Jacobi elliptic functions $\operatorname{sn}(\omega), \operatorname{cn}(\omega)$ and $\operatorname{dn}(\omega)$ instead of the trigonometric functions $\sin (\omega)$ and $\cos (\omega)$, which we used for the superintegrable systems associated with the addition theorem for logarithms.

5 Conclusion

It is known that orthogonal coordinate systems on Riemaniann manifolds can be viewed as an orthogonal sum of certain basic coordinate systems and these basic systems can be obtained from the elliptic coordinate system [5] using a degeneration procedure. This degeneration decreases the degree of polynomials standing under square roots into the angle variables (2.4). Thus, we have only one superintegrable systems separable in elliptic coordinates, whereas for degenerations we have a lot of different superintegrable systems. As usual, the addition theorem for logarithms allows us to get additional integrals of higher order in momenta [13].

References

[1] H.F. Baker, Abel's theorem and the allied theory including the theory of the theta functions, Cambridge: University Press, 1897.
[2] A.V. Borisov, A.A. Kilin, I.S. Mamaev, Superintegrable system on a sphere with the integral of higher degree, Regular and Chaotic Dynamics, v. 14 (6), p. 615-620, 2009.
[3] L. Euler, Institutiones Calculi integralis, Acta Petropolitana, 1761, (Russian translation GITL, Moskow, 1956.)
[4] Yu. A. Grigoryev, V. A. Khudobakhshov, A.V. Tsiganov, On the Euler superintegrable systems, J. Phys. A: Math. Theor., v.42, 075202, (11pp), 2009.
[5] E.G. Kalnins, Separation of variables for Riemannian spaces of constant curvature, Addison-Wesley Educational Publishers Inc.,U.S., 1986.
[6] E. G. Kalnins, Willard Miller Jr, Structure theory for extended Kepler-Coulomb 3D classical superintegrable systems, Preprint: arXiv:1202.0197v1, 2012.
[7] A.J. Maciejewski, M. Przybylska, A.V. Tsiganov, On algebraic construction of certain integrable and super-integrable systems, Physica D, v. 240, p.1426-1448, 2011.
[8] S. Post, P. Winternitz, A nonseparable quantum superintegrable system in 2D real Euclidean space, Preprint: arXiv:1101.5405v1, 2011.
[9] I. Popperi, S. Post, P. Winternitz, Third-order superintegrable systems separable in parabolic coordinates, Preprint: arXiv:1204.0700v1, 2012.
[10] F. Richelot, Ueber die Integration eines merkwürdigen Systems von Differentialgleichungen, J. Reine Angew. Math. v.23, p.354-369,1842.
[11] P. Stäckel. Comptes Rendus, v. 116 and v.121, p.485, p. 1284 and p.489, 1893 and 1895.
[12] A.V. Tsiganov, On maximally superintegrable systems, Regular and Chaotic Dynamics, v.13, n.3, p.178-190, 2008.
[13] A.V. Tsiganov, Addition theorem and the Drach superintegrable systems, J. Phys. A: Math. Theor., v.41(33), 335204 (16pp), 2008.
[14] A.V. Tsiganov, Leonard Euler: addition theorems and superintegrable systems, Regular and Chaotic Dynamics, v.14, n.3, 389-406, 2009.
[15] A.V. Tsiganov, On the superintegrable Richelot systems, Journal of Physics A: Math. Theor., v. 43, 055201 (14pp), 2010.

