
Nonequilibrium Thermodynamics of Porous Electrodes

Todd R. Ferguson1 and Martin Z. Bazant1, 2

1Department of Chemical Engineering, Massachusetts Institute of Technology
2Department of Mathematics, Massachusetts Institute of Technology

(Dated: April 16, 2012)

We review classical porous electrode theory and extend it to non-ideal active materials, including
those capable of phase transformations. Using principles of non-equilibrium thermodynamics, we
relate the cell voltage, ionic fluxes, and Faradaic charge-transfer kinetics to the variational elec-
trochemical potentials of ions and electrons. The Butler-Volmer exchange current is consistently
expressed in terms of the activities of the reduced, oxidized and transition states, and the activation
overpotential is defined relative to the local Nernst potential. We also apply mathematical bounds
on effective diffusivity to estimate porosity and tortuosity corrections. The theory is illustrated for a
Li-ion battery with active solid particles described by a Cahn-Hilliard phase-field model. Depending
on the applied current and porous electrode properties, the dynamics can be limited by electrolyte
transport, solid diffusion and phase separation, or intercalation kinetics. In phase-separating porous
electrodes, the model predicts narrow reaction fronts, mosaic instabilities and voltage fluctuations
at low current, consistent with recent experiments, which could not be described by existing porous
electrode models.

I. INTRODUCTION

Modeling is a key component of any design process. An
accurate model allows one to interpret experimental data,
identify rate limiting steps and predict system behavior,
while providing a deeper understanding of the underly-
ing physical processes. In systems engineering, empirical
models with fitted parameters are often used for design
and control, but it is preferable, whenever possible, to
employ models based on microscopic physical or geomet-
rical parameters, which can be more easily interpreted
and optimized.

In the case of electrochemical energy storage devices,
such as batteries, fuel cells, and supercapacitors, the sys-
tems approach is illustrated by equivalent circuit models,
which are widely used in conjunction with impedance
spectroscopy to fit and predict cell performance and
degradation. This approach is limited, however, by the
difficulty in unambiguously interpreting fitted circuit el-
ements and in making predictions for the nonlinear re-
sponse to large operating currents. There is growing in-
terest, therefore, in developing physics-based porous elec-
trode models and applying them for battery optimization
and control [102]. Quantum mechanical computational
methods have demonstrated the possibility of predict-
ing bulk material properties, such as open circuit poten-
tial and solid diffusivity, from first principles [39], but
coarse-grained continuum models are needed to describe
the many length and time scales of interfacial reactions
and multiphase, multicomponent transport phenomena.

Mathematical models could play a crucial role in guid-
ing the development of new intercalation materials, elec-
trode microstructures, and battery architectures, in or-
der to meet the competing demands in power density and
energy density for different envisioned applications, such
as electric vehicles or renewable (e.g. solar, wind) en-
ergy storage. Porous electrode theory, pioneered by J.
Newman and collaborators, provides the standard mod-

eling framework for battery simulations today [93]. As
reviewed in the next section, this approach has been de-
veloped for over half a century and applied successfully
to many battery systems. The treatment of the active
material, however, remains rather simple, and numerous
parameters are often needed to fit experimental data.

In porous electrode theory for Li-ion batteries, the solid
active particles are modeled as spheres, where interca-
lated lithium undergoes isotropic linear diffusion [47, 48].
For phase separating materials, such as LixFePO4 (LFP),
each particle is assumed to have a spherical phase bound-
ary that moves as a “shrinking core”, as one phase dis-
places the other [43, 110, 116]. In these models, the lo-
cal Nernst equilibrium potential is fitted to the global
open circuit voltage of the cell, but this neglects non-
uniform composition, which makes the voltage plateau an
emergent property of the porous electrode [5, 42, 49, 50].
For thermodynamic consistency, all of these phenomena
should derive from common thermodynamic principles
and cannot be independently fitted to experimental data.
The open circuit voltage reflects the activity of interca-
lated ions, which in turn affects ion transport in the solid
phase and Faradaic reactions involving ions in the elec-
trolyte phase [10, 11].

In this paper, we extend porous electrode theory to
non-ideal active materials, including those capable of
phase transformations. Our starting point is a gen-
eral phase-field theory of ion intercalation kinetics de-
veloped by our group over the past five years [5, 11,
14, 30, 31, 108], which has recently led to a quanti-
tative understanding of phase separation dynamics in
LFP nanoparticles [42]. The ionic fluxes in all phases
are related to electrochemical potential gradients, consis-
tent with non-equilibrium thermodynamics [7, 57]. This
approach has been used extensively in recent years to
model transport in electrochemical systems [15, 19, 69,
74, 75, 83–86, 96] and nonlinear electrokinetic phenom-
ena [13, 14, 18, 111]. For thermodynamic consistency,
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we also relate the Faradaic reaction rate to electrochem-
ical potential differences between the oxidized, reduced,
and transition states, leading to a generalized Butler-
Volmer equation [5, 11, 42] suitable for phase-separating
materials. These elements are integrated in a general
porous electrode theory, where the active material is
described by a Cahn-Hilliard phase-field model [7, 92],
as in nanoscale simulations of Li-ion battery materi-
als [5, 30, 31, 42, 56, 61, 71, 108, 113]. This allows us to
describe the non-equilibrium thermodynamics of porous
battery electrodes in terms of well established physical
principles for ion intercalation in nanoparticles.

II. BRIEF HISTORY OF POROUS
ELECTRODE THEORY

We begin by reviewing volume-averaged porous elec-
trode theory, which has been the standard approach in
battery modeling for the past 50 years. The earliest pa-
pers dealing with porous electrode theory were published
in the late 1950’s and early 1960’s, by Ksenzhek and Sten-
der [78–80] and Euler and Nonnenmacher [52]. This work
treated current density distributions in porous electrodes,
which were characterized by volume averaged properties,
such as porosity, average surface area per volume, and
conductivity.

A few years later, Newman and Tobias expanded
the analysis to account for the effects of concentration
variations on kinetics with concentration independent
electrolyte properties. [95] This paper also introduced
the well known equation for mass conservation inside a
porous electrode undergoing reactions. Around the same
time, de Levie published his work modeling diffusion in-
side pores, capacitance effects, and combined effects of
double layer capacitance, diffusion, and kinetics. [44, 45]
These models included linear capacitance effects for the
double layer and utilized equivalent circuit models for the
porous electrode.

Another notable paper is by Ksenzhek, which incor-
porated concentrated solution theory in the transport
equations inside a porous electrode, and referred to gra-
dients in electrochemical potential as the driving force for
transport. [77] (for more on force and flux coupling, re-
fer to [7]) Ksenzhek’s paper introduced many of the same
concepts used in this paper to treat transport processes
in the electrode. Much of the earlier work on modeling
porous electrodes relied on deriving the volume averaged
governing equations as well as some analytical results for
small overpotential (i.e. linearized) or high overpotential
(i.e. Tafel) regime kinetics. [67] Other notable papers
include modeling transport effects in steady state oper-
ation [58] and transient behavior of a porous electrode
subjected to galvanostatic discharge with sinusoidal per-
turbations. [103]

Many of the volume averaged principles have underly-
ing assumptions regarding properties of the cell that can
be critical to performance. The validity of these assump-

tions was reviewed by Grens. [66] It was found that the
assumption of constant conductivity can be used over
a wide range of operating conditions. The assumption
of constant electrolyte concentration, which was used to
simplify systems in early papers, is only valid over a nar-
row range of operating conditions, as is expected.

In 1975, Newman and Tiedemann published a review
of porous electrode theory. [94] This paper summarized
mass and charge conservation equations and kinetic equa-
tions for batteries and other types of electrochemical
systems. A few years later, Atlung et al. investigated
the dynamics of solid solution (i.e. intercalation) elec-
trodes for different time scales with respect to the lim-
iting current. [4] Pollard and Newman investigated the
transient behavior of porous electrodes at high exchange
current densities (i.e. small overpotential). [100] These
two papers appear to be some of the earliest studies of
the time dependence of porous electrode systems. Up
to this point, the literature was predominantly based on
linearized Butler-Volmer and exponential Tafel kinetics,
due to limited computational power.

As computers and numerical methods advanced, so did
simulations of porous electrodes. West et al. demon-
strated the use of numerical methods to simulate dis-
charge of a porous TiS2 electrode (without the separa-
tor), and how the main limiting factor is the depletion of
the electrolyte. [122] This is one of the earliest demon-
strations of solving the porous electrode equations using
numerical methods. About ten years later, Doyle, Fuller
and Newman modeled a separator and porous electrode
under constant current disharge. [47] This paper was one
of the first to model the reaction rate with the Butler-
Volmer equation, instead of linearized kinetics or a Tafel
equation. The next year, Fuller, Doyle and Newman
published a similar model of a dual lithium-ion inser-
tion cell (graphite anode and manganese oxide cathode)
[54]. Doyle et al. then published a comparison of model
predictions with experimental data for the full lithium-
ion battery (anode and cathode) [48] These papers are
of great importance in the field, as they developed the
first complete simulations of lithium-ion batteries and
solidified the role of porous electrode theory in model-
ing these systems. The same theoretical framework has
been applied to many other types of cells, such as lithium-
sulfur [81] and LFP [43, 110] batteries.

Battery models invariably assume electroneutrality,
but diffuse charge in porous electrodes has received in-
creasing attention over the past decade, driven by appli-
cations in energy storage and desalination. The effects
of double-layer capacitance in a porous electrode were
originally considered using only linearized low-voltage
models [70, 118], which are equivalent to transmission
line circuits [44, 45, 51]. Recently, the full nonlin-
ear dynamics of capacitive charging and salt depletion
have been analyzed and simulated in both flat [16, 96]
and porous [20] electrodes. The combined effects of
electrostatic capacitance and pseudo-capacitance due to
Faradaic reactions have also been incorporated in porous
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electrode theory [21, 22], using Frumkin-Butler-Volmer
kinetics [12, 17, 28, 68, 76]. These models have been suc-
cessfully used to predict the nonlinear dynamics of capac-
itive desalination by porous carbon electrodes [23, 101].

Computational and experimental advances have also
been made to study porous electrodes at the microstruc-
tural level and thus test the formal volume-averaging,
which underlies macroscopic continuum models. Garcia
et al. performed finite-element simulations of ion trans-
port in typical porous microstructures for Li-ion batter-
ies [56], and Garcia and Chang simulated hypothetical
inter-penetrating 3D battery architectures at the particle
level [55]. Recently, Smith, Garcia and Horn analyzed the
effects of microstructure on battery performance for var-
ious sizes and shapes of particles in a Li1−xC6/LixCoO2

cell [109]. The study used 3D image reconstruction of a
real battery microstructure by focused ion beam milling,
which has led to detailed studies of microstructural ef-
fects in porous electrodes [73, 115, 117]. In this paper,
we will discuss mathematical bounds on effective diffusiv-
ities in porous media, which could be compared to results
for actual battery microstructures. Recently, it has also
become possible to observe lithium ion transport at the
scale in individual particles in porous Li-ion battery elec-
trodes [6, 121], which could be invaluable in testing the
dynamical predictions of new mathematical models.

III. PHASE SEPARATING ELECTRODES

A. Lithium Iron Phosphate

The discovery of LFP as a cathode material by the
Goodenough group in 1997 has had a large and unex-
pected impact on the battery field, which provides the
motivation for our work. LFP was first thought to be
a low-power material, and it demonstrated poor capac-
ity at room temperature. [98] The capacity has since
been improved via conductive coatings and the forma-
tion of nanoparticles. [64, 104], and the rate capability
has been improved in similar ways [63, 87]. With high
carbon loading to circumvent electronic conductivity lim-
itations, LFP nanoparticles can now be discharged in 10
seconds [71]. Off-stochiometric phosphate glass coatings
contribute to this high rate, not only in LFP, but also in
LiCoO2 [112].

It has been known since its discovery that LFP is a
phase separating material, as evidenced by a flat voltage
plateau in the open circuit voltage [98, 114]. There are
a wide variety of battery materials with multiple stable
phases at different states of charge [65], but LixFePO4

has a particularly strong tendency for phase separation,
with a miscibility gap (voltage plateau) spanning across
most of the range from x = 0 to x = 1 at room temper-
ature. Padhi et al. first depicted phase separation inside
LFP particles schematically as a “shrinking core” of one
phase being replaced by an outer shell of the other phase
during charge/discharge cycles [98]. Srinivasan and New-

man encoded this concept in a porous electrode theory of
the LFP cathode with spherical active particles, contain-
ing spherical shrinking cores. [110] Recently, Dargaville
and Farrell have expanded this approach to predict active
material utilization in LFP electrodes. [43] Thorat et al.
have also used the model to gain insight into rate-limiting
mechanisms inside LFP cathodes. [116]

To date, the shrinking-core porous electrode model
is the only model to successfully fit the galvanostatic
discharge of an LFP electrode, but the results are not
fully satisfactory. Besides neglecting the microscopic
physics of phase separation, the model relies on fitting a
concentration-dependent solid diffusivity, whose inferred
values are orders of magnitude smaller than ab initio
simulations [87, 91] or impedance measurements [99].
More consistent values of the solid diffusivity have since
been obtained by different models attempting to account
for anisotropic phase separation with elastic coherency
strain. [123] Most troubling for the shrinking core pic-
ture, however, is the direct observation of phase bound-
aries with very different orientations. In 2006, Chen and
Richardson published images showing the orientation of
the phase interface aligned with iron phosphate planes
and reaching the active facet of the particle. [40] This ob-
servation was supported by experiments of Delmas et al.,
who suggested a “domino-cascade model” for the interca-
lation process inside LFP [46]. With further experimen-
tal evidence for anisotropic phase morphologies [97, 121],
it has become clear that a new approach is needed to
capture the non-equilibrium thermodynamics of this ma-
terial.

B. Phase-Field Models

Phase-field models are widely used to describe phase
transformations and microstructural evolution in ma-
terials science [7, 41], but they are relatively new to
electrochemistry. In 2004, Guyer, Boettinger, Warren
and McFadden [59, 60] first modeled the sharp elec-
trode/electrolyte interface with a continuous phase field
varying between stable values 0 and 1, representing the
liquid electrolyte and solid metal phases. As in phase-
field models of dendritic solidification [25–27, 72], they
used a simple quartic function to model a double-welled
homogeneous free energy. They described the kinetics of
electrodeposition [60] (converting ions in the electrolyte
to solid metal) by Allen-Cahn-type kinetics [2, 41], linear
in the thermodynamic driving force, but did not make
connections with the Butler-Volmer equation. Several
groups have used this approach to model dendritic elec-
trodeposition and related processes [1, 3, 106]. Also in
2004, Han, Van der Ven and Ceder [61] first applied the
Cahn-Hilliard equation[7, 32–34, 37, 41] to the diffusion
of intercalated lithium ions in LFP, albeit without mod-
eling reaction kinetics.

Building on these advances, Bazant developed a gen-
eral theory of charge-transfer and Faradaic reaction ki-
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netics in concentrated solutions and solids [9–11], suitable
for use with phase-field models. The exponential Tafel
dependence of the current on the overpotential, defined
in terms of the variational chemical potentials, was first
reported in 2007 by Singh, Ceder and Bazant [107, 108],
but with spurious pre-factor, corrected by Burch [29, 30].
The model was used to predict “intercalation waves” in
small, reaction-limited LFP nanoparticles in 1D [108],
2D [31], and 3D [113], thus providing a mathematical de-
scription of the domino cascade phenomenon [46]. The
complete electrochemical phase-field theory, combining
the Cahn-Hilliard with Butler-Volmer kinetics and the
cell voltage, appeared in 2009 lectures notes [9, 10] and
was applied to LFP nanoparticles [5, 42].

The new theory has led to a quantitative understand-
ing of intercalation dynamics in single nanoparticles of
LFP. Bai, Cogswell and Bazant [5] generalized the Butler-
Volmer equation using variational chemical potentials (as
derived in the supporting information) and used it to de-
velop a mathematical theory of the suppression of phase
separation in LFP nanoparticles with increasing current.
This phenomenon, which helps to explain the remarkable
performance of nano-LFP, was also suggested by Malik
and Ceder based on bulk free energy calculations [88], but
the theory shows that it is entirely controlled by Faradaic
reactions at the particle surface [5, 42]. Cogswell and
Bazant [42] have shown that including elastic coherency
strain in the model leads to a quantitative theory of phase
morphology and lithium solubility. Experimental data
for different particles sizes and temperatures can be fit-
ted with only two parameters (the gradient penalty and
regular solution parameter, defined below).

The goal of the present work is to combine the phase-
field theory of ion intercalation in nanoparticles with clas-
sical porous electrode theory to arrive at a general math-
ematical framework for non-equilibrium thermodynam-
ics of porous electrodes. Our work was first presented
at the Fall Meeting of the Materials Research Society in
2010 and again at the Electrochemical Society Meetings
in Montreal and Boston in 2011. Around the same time,
Lai and Ciucci were thinking along similar lines [83, 85]
and published an important reformulation of Newman’s
porous electrode theory based non-equilibrium thermo-
dynamics [86], but they did not make any connections
with phase-field models or phase transformations at the
macroscopic electrode scale. (Their treatment of reac-
tions also differs from Bazant’s theory based on general-
ized Butler-Volmer kinetics [9–11].)

In this paper, we develop a variational thermodynamic
description of electrolyte transport, electron transport,
electrochemical kinetics, and phase separation, and we
apply to Li-ion batteries in what appears to be the first
mathematical theory and computer simulations of macro-
scopic phase transformations in porous electrodes. Simu-
lations of discharge into a cathode consisting of multiple
phase-separating particles interacting via an electrolyte
reservoir at constant chemical potential were reported by
Burch [29], who observed “mosaic instabilities”, where

particles transform one-by-one at low current. This phe-
nomenon was elegantly described by Dreyer et al. in
terms of a (theoretical and experimental) balloon model,
which helps to explain the noisy voltage plateau and
zero-current voltage gap in slow charge/discharge cycles
of porous LFP electrodes [49, 50]. These studies, how-
ever, did not account for electrolyte transport and associ-
ated macroscopic gradients in porous electrodes undergo-
ing phase transformations, which are the subject of this
work. To do this, we must reformulate Faradaic reac-
tion kinetics for concentrated solutions, consistent with
the Cahn-Hilliard equation for ion intercalation and New-
man’s porous electrode theory for the electrolyte.

IV. GENERAL THEORY OF REACTIONS AND
TRANSPORT IN CONCENTRATED SOLUTIONS

In this section, we begin with a general theory of re-
action rates based on non-equilibrium thermodynamics
and transition state theory. We then expand the model
to treat transport in concentrated solutions (i.e. solids).
Finally, we show that this concentrated solution model
collapses to Fickian diffusion in the dilute limit.

A. General Theory of Reaction Rates

Consider a single step reaction consisting of two states,
State 1 and State 2, which proceeds through some tran-
sition state. Figure 1 gives an energy landscape for this
reaction.

The transition state is assumed to be short lived and
each species that reaches the transition state reacts (i.e.
continues through the transition state) with a probability
of one. This reaction can be represented via the following.

State 1 ⇀↽ Transition State ⇀↽ State 2

Thermal fluctuations cause particles to undergo rapid
changes in energy. These changes in energy, while ran-
dom, can be represented by some statistical distribution
of energy states. This distribution, known as the Boltz-
mann distribution, gives the percentage of particles with
a given energy relative to their local equilibrium state.
This energy difference is expressed as a free energy dif-
ference per particle, which is also referred to as a chem-
ical potential. To develop a model for the reaction rate
in each direction, we start with an attempt frequency,
which gives the number of reaction attemps per second,
and then multiply this by the probability (i.e. fraction
of total particles) that a particle has enough energy to
reach the transition state. The forward and reverse reac-
tion rates are

R→ = Ro,f exp

(
−µ‡ − µ1

kBT

)
(1)
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and

R← = Ro,r exp

(
−µ‡ − µ2

kBT

)
. (2)

The terms Ro,f and Ro,r represent the reaction attempts
for the forward and reverse reactions, respectively, while
the exponential term is the probability that a particle has
enough energy to reach the reaction rate. Here it is as-
sumed that once the particle reaches the transition state,
the probability that it proceeds is one. Another way to
interpret the Ro,f and Ro,r terms is as the “barrier-less”
reaction rate for the reactions. That is, the rate when
the activation energy goes to zero. Typically, for sys-
tems with no temperature gradients or external energy
sources (e.g. electromagnetic), Ro,f = Ro,r. The net re-
action rate of a particle traveling from State 1 to State 2
is given by the difference between the forward and back-
wards reaction rates. Furthermore, for a given tempera-
ture, the number of particles in a system at the transition
state is essentially constant. This allows the ideal com-
ponent of the chemical potential to be absorbed into the
constant. This yields the net reaction rate,

R1→2 = Ro

[
exp

(
−
µex‡ − µ1

kBT

)
− exp

(
−
µex‡ − µ2

kBT

)]
.

(3)
This reaction rate is very general, and can be used to
model any activated reaction that occurs at constant
temperature, where the excess chemical potential barriers
are much larger than the thermal voltage kBT/e. Next,
this reaction rate model will be used to derive a model for
transport in concentrated solutions. Later, this reaction
rate expression will be adopted to form the Butler-Volmer
Equation.

B. General Theory of Transport in Solids and
Concentrated Solutions

Transport in solids and concentrated solutions can also
be treated as reactions. Particles begin in one energy
state, and move through some transition state to a dif-
ferent energy state. In the case of transport, though, the
energy state is related to the particle’s environment (i.e.
surroundings). Figure 2 demonstrates this concept and
shows an energy landscape for a particle moving through
a medium.

Diffusion consists of thermally activated jumps over
some distance between sites. Let’s consider the average
time between these transitions, τ . We know that τ should
approach some limit as the energy barrier between sites
approaches zero. Let’s refer to this value as τo, which τ
should collapse to in the barrier-less limit. Similarly to
how reactions proceed, we need to consider the proba-
bility that a particle has enough energy to overcome the
energy barrier and reach the transition state. The mean
time between transitions should be inversely proportional
to the probability that a particle has enough energy to

reach the transition state. The constant of proportional-
ity can be absorbed into the constant τo.

τ =
τo

exp
(
−µ

ex
‡ −µex
kBT

) (4)

The diffusivity, D is defined as the average jump distance
squared divided by the average time between jumps. Us-
ing this definition, the diffusivity is

D =
(∆x)

2

τ
=

(∆x)
2

τo

(
γ

γ‡

)
= Do

(
γ

γ‡

)
. (5)

1. Diffusivity of an Ideal Solid Solution

To model an ideal solid solution, a lattice gas model
is used, which accounts for finite volume effects in the
medium and treats the particles as hard spheres. Figure
3 illustrates this model.

For an ideal solid solution, we can neglect particle-
particle interactons. The chemical potential for a particle
in an ideal solid solution is

µ = kBT ln

(
c̃

1− c̃

)
+ µo, (6)

where µo is the chemical potential of the reference state.
For a particle, each other particle occupies one available
site. However, the transition state requires two available
sites, effectively doubling the excluded volume contribu-
tion to the chemical potential. Using the definition of
the activity coefficient, µ = kBT ln a = kBT ln (cγ), we
obtain the activity coefficients of the particle in the site,
and in the activated state,

γ =

(
1− c

cmax

)−1

exp

(
−µmin
kBT

)
, (7)

γ‡ =

(
1− c

cmax

)−2

exp

(
− µ‡
kBT

)
. (8)

Inserting these two activity coefficients into Equation 5,
the diffusivity, D, is

D = Do

(
1− c

cmax

)
. (9)

This diffusivity is for an ideal solid solution with a finite
number of lattice sites available for particles. As the
lattice sites fill, the diffusivity of a particle goes to zero,
since the particle is unable to move as it is blocked by
other particles on the lattice.

2. Concentrated Solution Theory Derivation

Here we will derive the general form of concentrated
solution theory, which predicts that the flux can be mod-
eled as

F = −Mc∇µ, (10)
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where M is the mobility. Let’s consider the scenario in
Figure 3, where a particle is sitting in an energy well.
This particle’s energy fluctuates on the order of kBT until
it has enough energy to overcome some energy barrier
that exists between the two states. Figure 4 demonstrates
this in one dimension. The flux, F, is

Fi =
R

A
ei, (11)

where ei is a coordinate vector in the i direction and Fi
is the flux in the i direction.

We see that the particle’s chemical potential is a func-
tion of location, as concentrations and therefore chemical
potentials, will vary with position. First, we begin with
Equation (4). Let’s define the right side of the page as the
positive x-direction. Using our previous defined form of
the reaction rate in Equation (3), we can substitute this
into Equation (11). However, we need an expression for
the barrierless reaction rate. This comes from the bar-
rierless diffusion time in Equation (4). The barrierliess
reaction rate should be equivalent to the inverse of two
times the barrierless diffusion time. The one half comes
from the probability the particle travels in the positive x
direction.

Ro =
1

2τo
(12)

Plugging this into Equation (11) along with Equation (3),
and considering the fact that our chemical potential is a
function of position, we obtain

Fx =
1

2τoAcellγ‡

[
exp

(
µ̃(x)− ∆x

2

∂µ̃(x)

∂x

)
− exp

(
µ̃(x) +

∆x

2

∂µ̃(x)

∂x

)]
, (13)

where µ̃(x) denotes the chemical potential scaled by the
thermal voltage, kBT . Next, we assume that the particle
is close to equilibrium. That is, the difference in chemical
potential between the states is small. This allows us to
linearize Equation (13). Linearizing the equation yields

Fx = − a(x)

τoAγ‡

(
∆x

2

)
∂µ̃(x)

∂x
, (14)

where a(x) is the activity as a function of position. This
can be simplified to a(x) = V γ(x)c(x). Plugging this
into Equation (14), using our definition of the diffusivity,
D, from Equation (5), and the Einstein relation, which
states that M = D/kBT , we obtain the flux as predicted
by concentrated solution theory in the x dimension. We
can easily expand this to other dimensions. Doing so,
we obtain the form of the flux proposed by concentrated
solution theory,

F = −Mc∇µ, (15)

where c = c(x, y, z). Taking the dilute limit, as c →
0, and using the definition of chemical potential, µ =

kBT ln a, where a = γc and γ = 1 (dilute limit), we
obtain Fick’s Law from Equation (15),

F = −D∇c. (16)

V. CHARACTERIZATION OF POROUS MEDIA

In lithium-ion batteries, the electrodes are typically
composites consisting of active material (e.g. graphite
in the anode, iron phosphate in the cathode), conduct-
ing material (e.g. carbon black), and binder. The elec-
trolyte penetrates the pores of this solid matrix. This
porous electrode is advantageous because it substantially
increases the available active area of the electrode. How-
ever, this type of system, which can have variations in
porosity (i.e. volume of electrolyte per volume of the elec-
trode) and loading percent of active material through-
out the volume, presents difficulty in modeling. To ac-
count for the variation in electrode properties, various
volume averaging methods for the electrical conductivity
and transport properties in the electrode are employed.
In this section, we will give a brief overview of model-
ing the conductivity and transport of a heterogeneous
material, consisting of two or more materials with differ-
ent properties. The conductvitiy bounds in this section
include the Wiener bounds, Hashin-Shtrikman bounds,
percolation theory, and the Bruggeman empirical rela-
tion. [10, 90, 105, 119]

A. Electrical Conductivity of the Porous Media

To characterize the electrical conductivity of the
porous media, we will consider upper and lower bounds
for anisotropic and isotropic media. First we consider an
anisotropic material as shown in Figure 5.

The left image in Figure 5 represents the different ma-
terials in parallel. This produces the lowest resistance,
and represents the upper limit of the conductivity of the
heterogeneous material. The right image represents the
materials in series, which produces the lower limit of the
conductivity (i.e. highest effective resistance). These
limits are referred to as the upper and lower Wiener
bounds, respectively. Let Φi be the volume fraction of
material i. For the upper Wiener bound, the equivalent
circuit is resistors in parallel. The effective conductivity
for this system is

σmax = 〈σ〉 =
∑
i

Φiσi. (17)

The lower Wiener bound can be represented by resistors
in series. For this equivalent circuit, an effective conduc-
tivity is

σmin = 〈σ−1〉−1 =
1∑
i

Φi
σi

. (18)
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For an anisotropic material, the effective conductivity, σ,
must lie within the Wiener bounds,

〈σ−1〉−1 ≤ σ ≤ 〈σ〉. (19)

Next, we consider an isotropic material consisting of two
different materials. The Hashin-Shtrikman bounds for
an isotropic material in d dimensions gives the bounds
for the macroscopic conductivity. The bounds are calcu-
lated by creating concentric circles of varying size with
equal volume fractions of two materials of different con-
ductivities. The spheres are in contact, and maximum
conductivity is achieved when σ1 > σ2, as this provides
the highest conductivity pathway. The minimum conduc-
tivity corresponds to the case where σ2 > σ1, then the
only complete pathway is through the material of lower
conductivity. Any combination should lie within these
limits for constant conductivities. Figure 6 depicts the
isotropic material.

For the case where σ1 > σ2, the Hashin-Shtrikman
bounds for an isotropic two-component material in d di-
mensions is

〈σ〉 − (σ1 − σ2)
2

Φ1Φ2

〈σ̃〉+ σ2 (d− 1)
≤ σ ≤ 〈σ〉 − (σ1 − σ2)

2
Φ1Φ2

〈σ̃〉+ σ1 (d− 1)
,

(20)
where

〈σ〉 = Φ1σ1 + Φ2σ2

and

〈σ̃〉 = Φ1σ2 + Φ2σ1.

The Wiener and Hashin-Shtrikman bounds provide us
with suitable ranges for isotropic and anisotropic media
with two components. For the case of a porous elec-
trode, the Hashin-Shtrikman bounds are reasonable for
electron conduction, since the solid electron conducting
matrix typically consists of a solid with high conductiv-
ity, permeated by an electrolyte of very low conductivity.
Figure 7 gives the Wiener and Hashin-Shtrikman bounds
for two materials, with conductivities of 1.0 and 0.1.

Next, we consider ion transport in porous media. Ion
transport in porous media often consists of a solid phase,
which has little to no ionic conductivity (i.e. slow or
no diffusion) permeated by an electrolyte phase which
has very high ionic conductivity (i.e. fast diffusion). In
the next section, we will compare different models for
effective porous media properties.

B. Transport in Porous Media

For the case of ion transport in porous media, there
is an electrolyte phase, which has a non-zero diffusivity,
and the solid phase, through which transport is very slow
(essentially zero compared to the electrolyte diffusivity).
Here, we consider the pores (electrolyte phase) and give

the solid matrix a zero conductivity. The volume fraction
of phase 1 (the pores), Φ1, is the porosity of the media.
That is

Φ1 = εp, σ1 = σp.

The conductivity for all other phases is zero. This re-
duces the Wiener (anisotropic) and Hashin-Shtrikman
(isotropic) lower bounds to zero. If we assume the me-
dia consists of two phases (Φ2 = 1 − εp, σ2 = 0), then
the Wiener and Hashin-Shtrikman upper bounds can be
simplified to

σWiener
max = Φ1σ1 = εpσp, and (21)

σHSmax = σpεp

(
d− 1

d− εp

)
. (22)

In Equation (22), d is the dimensionality. This section
will also compare two other typically used models. The
percolation model, which assumes isotropic media, has
a zero conductivity below some critical porosity. Above
the critical porosity, the conductivity approaches its max-
imum quickly. The critical porosity is the porosity at
which a pathway across the media is attained. The effec-
tive conductivity, using the percolation model for some
critical porosity, εc, is given by

σperc ∼ (εp − εc)t . (23)

Just above the critical porosity, εc, the exponent t = 2
is typically used in three dimensions. This behavior is
captured by

σperc ∼=

σp
(
εp−εc
1−εc

)2

εc ≤ εp ≤ 1

0 0 ≤ εp ≤ εc
. (24)

Finally, we consider the Bruggeman formula, an empir-
ical model which is predominantly used in electrochem-
istry,

σB = ε3/2p σp. (25)

Using these relations for the conductivity, we next re-
late this conductivity to the effective diffusivity for some
volume of a porous medium. Figure (9) demonstrates a
typical volume of porous media.

The porosity is the volume of the electrolyte as a frac-
tion of the total volume. If the porosity is assumed to be
constant throughout the volume, then the area of each
face of the volume is proportional to the porosity. Also,
the total mass inside the volume is given by the volume
averaged concentration, c = εpc. We begin with a mass
balance on the volume,

∂c

∂t
+∇ · F = 0, (26)

where F is the flux at the surfaces of the volume. The
net flux is

F = −σd∇c, (27)
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where c is the concentration in the pores. Regardless of
porosity fluctuations in space, at equilibrium the concen-
tration is constant throughout the volume. This is be-
cause equilibrium depends on chemical potential. Com-
bining Equations (26) and (27), we get

∂c

∂t
= D∇2c, (28)

where the effective diffusivity in a porous medium, D, is
given by

D =
σp
εp
.

The reduction of the diffusivity inside a porous medium
can be interpreted as a reduction of the mean free path.
The factor by which this characteristic length is changed
is defined as the tortuosity, τp. In a porous material, for
some free solution characteristic length, L, the porous
characteristic length is

Lp = τpL. (29)

Given that D ∼ L2/td, the tortuosity scales the charac-
teristic length, L,

D =
Dp

τ2
p

. (30)

Combining this with the above relation between the con-
ductivity and effective diffusivity, the effective conduc-
tivity can be expressed as

σd =
Dpεp
τ2
p

. (31)

Using this relation, along with the conductivities for each
model in the previous section, the tortuosity relation to
the porosity can be derived. Given that the conductiv-
ities shown were the upper bounds for the Wiener and
Hashin-Shtrikman models, the calculated tortuosity val-
ues represent the lower bounds (conductivity is inversely
proportional to the square of the tortuosity). The Wiener
lower bound tortuosity for anisotropic pores is

τWiener
p = 1. (32)

For the Hashin-Shtrikman model, the lower bound of the
tortuosity is

τHSp =

√(
d− εp
d− 1

)
(33)

in d dimensions. The percolation model produces a piece-
wise function for the tortuosity, above and below the crit-
ical porosity, which is given by

τpercp
∼=

{√
εp

(
1−εc
εp−εc

)
εc ≤ εp ≤ 1

∞ 0 ≤ εp ≤ εc
(34)

As the conductivity approaches zero, the tortuosity
makes no physical sense as it no longer represents the
extra path length. Instead it represents the decreas-
ing number of available percolating paths, which are
the cause of the lowered conductivity. Finally, from the
Bruggeman empirical relation we get the empirical tor-
tuosity,

τBp = ε−1/4. (35)

This section represents the most typical models used
to determine effective properties of porous media. The
Hashin-Shtrikman bounds for the effective conductivity
represent appropriate limits for typical porous media.
Porous media does not often demonstrate anisotropic be-
havior. Furthermore, a lithium-ion battery typically con-
sists of two phases: a solid phase (with its own effective
conductivity), and an electrolyte phase. Typically, the
Bruggeman empirical model, which lies within these lim-
its, is used. [47, 54, 110]

VI. POROUS ELECTRODE THEORY

A. Conservation Equations

Using the principles laid out in the first section of this
paper on concentrated solution theory, the Porous Elec-
trode Theory equations will be derived using mass and
charge conservation combined with the Nernst-Planck
Equation and a modified form of the Butler-Volmer
Equation. The derivation will present the equations and
how their properties have deep ties to the thermody-
namics of the system. Then, the equations will be non-
dimensionalized and scaled appropriately using charac-
teristic time and length scales in the system.

1. Mass and Charge Conservation

We begin with the definition of flux based on concen-
trated solution theory. Assuming the system is close to
equilibrium, the mass flux is

Ni = −Mici∇µi, (36)

where Mi is the mobility of species i, ci is the concen-
tration of species i, and µi is the chemical potential of
species i. The conservation equation for concentration is
given by the divergence of the flux,

∂ci
∂t

= −∇ ·Ni −Ri. (37)

In order to express this conservation equation in a form
that is relevant to electrochemical systems, we must first
postulate a suitable form of the chemical potential. We
begin with the standard definition of the chemical po-
tential including the activity contribution, then include
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electrostatic effects to obtain

µi = kBT ln (ai) + zieφ. (38)

This chemical potential can be inserted into Equation
(36). If the activity of the electrolyte is available from
experimental values, then this form of the flux facilitates
its use. However, diffusivities are typically given as a
function of concentration. Simplifying Equation (36) us-
ing Equation (38) for the chemical potential yields the
Nernst-Planck Equation,

Ni = −Di

(
1 +

∂ ln γi
∂ ln ci

)
∇ci −

ezi
kBT

Dici∇φ, (39)

where Di is the diffusivity of species i (which can also be
concentration dependent), γi is the activity coefficient,
and φ is the potential.

For the bulk electrolyte, the electroneutrality approx-
imation will be used. This approximation assumes that
the double layers are thin, which is a reasonable approx-
imation for the typical concentrations of the electrolyte.
(For porous electrode modeling including double layer
effects, see Refs. [20–22].) The electroneutrality approx-
imation assumes

ρ = z+c+ − z−c− ≈ 0, (40)

where z+ and z− are defined as the absolute values of
the charge of the cation and anion, respectively. Next,
it is assumed that the electrolye is a binary electrolyte,
consisting of a single positive species (i.e. Li+) and a
single negative species (e.g. PF−6 ).

For porous electrodes, we also need to account for the
porosity of the medium. The porosity affects the inter-
facial area between volumes of the porous electrode. It
also affects the concentration of a given volume of the
electrode. Accounting for porosity, Equations (37) and
(36) become

ε
∂ci
∂t

= −∇ ·Ni −Ri, and (41)

Ni = −εMici∇µi, (42)

where ε is the porosity, which is the volume of electrolyte
per volume of the electrode. This value may change with
position, but this derivation assumes porosity is constant
with respect to time. With this assumption, the Nernst-
Planck Equation can be defined for the positive and neg-
ative species in the electrolyte. This yields the cation
and anion fluxes,

N+ = −εD+∇c+ − ε
z+e

kBT
D+c+∇φ, and (43)

N− = −εD−∇c− + ε
z−e

kBT
D−c−∇φ. (44)

Next, the flux equations for the cation and anion in Equa-
tions (43) and (44) are inserted into Equation (41) and
combined with the electroneutrality assumption in Equa-
tion (40) to eliminate the potential. If it is assumed that

the anion does not react (which is reasonable if the SEI
is not modeled), the mass conservation equation is

ε
∂c

∂t
= ∇·(εDamb∇c)−∇·

((
t+ − t−

2

)
i

)
− z+R+

2
, (45)

where t+ and t− are the cation and anion transference
numbers, respectively, and Damb is the ambipolar diffu-
sivity. These values are defined as

t± ≡
z±D±

z+D+ + z−D−
, and (46)

Damb ≡
D+D− (z+ + z−)

z+D+ + z−D−
. (47)

In equation (45), i is the current density in the elec-
trolyte, which is given by the sum of the cation and anion
fluxes multiplied by their charge,

i = ez+N+ − ez−N−. (48)

Furthermore, the concentration c, using the electroneu-
trality assumption, is defined as

c ≡ z+c+ = z−c−. (49)

Next, it is necessary to relate the charge conservation to
the mass conservation to simplify Equation (45).

The electroneutrality approximation puts a restriction
on the charge accumulation in the electrolyte. Given that
the total number of anions in the electrolyte is fixed, and
that the anion is neither consumed nor produced in the
system (i.e. R− = 0), then the number of cations that
enter a volume, minus those that leave, must equal the
number produced or consumed by the reactions in that
volume. To determine the charge balance in some vol-
ume of the electrode, we begin with the current density
as given by Equation (48). Simplifying this expression
and combining it with the definition of c based on the
electroneutrality assumption, the current density is

i = −e (D+ −D−) ε∇c− e2

kBT
(z+D+ + z−D−) εc∇φ.

(50)
The divergence of the current density gives the accumu-
lation of charge within a given volume. As stated above,
this value must equal the charge produced or consumed
by the reactions within the given volume, therefore

ez+R+ = eapjin = −∇ · i, (51)

where ap is the area per unit volume of the particles and
jin is the flux into the particles due to Faradaic reactions.
Substituting this expression into Equation (45) and using
the definition t+ + t− = 1, the conservation equation is

ε
∂c

∂t
= ∇ · (εDamb∇c) +∇ ·

(
(1− t+) i

e

)
. (52)

Substituting Equation (51) into Equation (52), the fa-
miliar Porous Electrode Theory equation,

ε
∂c

∂t
+ apjin = ∇ · (εDamb∇c)−∇ ·

(
t+i

e

)
, (53)
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is derived. Since the potential was eliminated in the am-
bipolar derivation, and the potential gradient is depen-
dent on the current density via Equation (50), Equations
(50) and (51) can be used to formulate an expression for
the local electrolyte potential,

apjin = ∇·
[
(D+ −D−) ε∇c+

e2

kBT
(z+D+ + z−D−) εc∇φ

]
.

(54)
Finally, an expression for jin is required to complete the
set of equations. This can be modeled via the Butler-
Volmer Equation.

For phase transforming materials, the activity of the
particles and energy of the transition state can have a
dramatic effect on the reaction rate. To account for this,
a modified form of the Butler-Volmer Equation, which
accounts for the energy of the transition state, will be
derived.

2. Faradaic Reaction Kinetics

The reader is referred to Bazant [10, 11] for detailed,
pedagogical derivations of Faradaic reaction rates in con-
centrated solutions and solids, generalizing both the phe-
nomenological Butler-Volmer equation [24] and the mi-
croscopic Marcus theory of charge transfer [8, 82, 89].
Here we summarize the basic derivation and focus ap-
plications to the case of lithium intercalation in a solid
solution.

In the most general Faradaic reaction, there are n elec-
trons transferred from the electrode to the oxidized state
O to produce the reduced state R:

O + ne− ⇀↽ R.

Typically, one electron transfer is favored [8, 24, 82], but
for now let us keep the derivation as general as possible.
The reaction goes through a transition state, which in-
volves solvent reorganization and charge transfer. The
net reaction rate, Rnet, is the sum of the forward and
reverse reaction rates,

Rnet = k

[
exp

(
−
µex‡ − µ1

kBT

)
− exp

(
−
µex‡ − µ2

kBT

)]
.

(55)
Only the excess of the chemical potential of the transition
state is important, as reactions are considered to be rare
events, and concentrations of the transition state should
not have a large effect on the energy landscape. This
allows the transition state concentration to be factored
into the rate constant.

It is first necessary to postulate forms of the chemical
potentials in the generic Faradaic reaction above. Here
it is assumed that both the oxidant and reductant are
charged species, and that the electron is at a potential
φM , which is the potential of the conducting phase (e.g.
carbon black). The chemical potentials of the oxidant

and reductant are

µO = kBT ln aO + eqOφ− neφM + EO, and (56)

µR = kBT ln aR + eqRφ+ ER, (57)

where EO and ER are the reference energies of the ox-
idant and reductant, respectively. The excess chemical
potential of the transition state is assumed to consist of
some activity coefficient and some linear combination of
the potentials of the oxidant and reductant,

µex‡ = kBT ln γ‡ + αeqRφ+ (1− α)e (qOφ− nφM ) + E‡,
(58)

where α, also known as the transfer coefficient, denotes
the symmetry of the transition state. This value is typi-
cally between 0 and 1. The postulated forms of the chem-
ical potential can be simplified for the lithium-ion battery
system. The charge of the reductant, qR, is 0. Also, the
potential difference φM −φ is defined as ∆φ. Finally, the
chemical potential is scaled by the thermal energy, kBT .
The postulated forms of the chemical potential are

µ̃O = ln aO −∆φ̃+ ẼO, (59)

µ̃R = ln aR + ẼR, and (60)

µ̃ex‡ = ln γ‡ − (1− α)∆φ̃+ Ẽ‡, (61)

where φ̃ is the dimensionless potential, eφ
kBT

. It is im-

portant to note that at equilibrium (i.e. µ̃O = µ̃R), the
Nernst Equation,

∆φ̃eq =
(
ẼO − ẼR

)
− ln

aR
aO

, (62)

is obtained. Equations (59), (60), and (61) can be substi-
tuted directly into Equation (55) to obtain the reaction
rate,

R =
ko
γ‡

[
aO exp

(
ẼO − Ẽ‡

)
exp

(
−α∆φ̃

)
− aR exp

(
ẼR − Ẽ‡

)
exp

(
(1− α) ∆φ̃

)]
.

(63)
Next, the definition of overpotential is substituted into
Equation (63). The overpotential is defined as

η̃ ≡ ∆φ̃−∆φ̃eq. (64)

After simplifying, we arrive at the classical Butler-Volmer
Equation,

ejin = io [exp (−αη̃)− exp ((1− α) η̃)] , (65)

where io, the exchange current density, is defined as

io =
e (kocaO)

1−α
(koaaR)

α

γ‡
. (66)

The only difference is that we have defined the overpo-
tential and exchange current in terms of the activities of
the oxidized, reduced and transition states, each of which
can be expressed variationally in terms of the total free
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energy functional o the system (below). In Equation (66),
the constants koc and koa are

koc = exp
(
ẼO − Ẽ‡

)
, and (67)

koa = exp
(
ẼR − Ẽ‡

)
. (68)

(Note: ko, the rate constant, can be factored out) Using
the Butler-Volmer Equation, the value of jin (the flux
into the particles due to Faradaic reactions) can be mod-
eled. The overpotential is calculated via the definition
given in Equation (64), and the equilibrium potential is
given by the Nernst Equation, where the activity of sur-
face of the active material is used.

3. Potential Drop in the Conducting Solid Phase

The reaction rate at the surface of the particles is de-
pendent on the potential of the electron as well as the
potential of lithium in the electrolyte. This is expressed
as ∆φ, which contributes to the overpotential in Equation
(64). The potential difference is the difference between
the electron and lithium-ion potential,

∆φ = φM − φ,

where φM is the potential of the conducting (e.g. carbon
black) phase and φ is the potential of the electrolyte.
The potential of the electrolyte is determined by the
charge conservation equation in Equation (51). To deter-
mine the potential drop in the conducting phase, we use
current conservation which occurs throughout the entire
electrode, given by

i + iM = I/Asep, (69)

where iM is the current density in the carbon black phase.
For constant current discharge, the relation between the
local reaction rate and the divergence of the current den-
sity in the conducting phase is

eapjin = ∇ · iM . (70)

The current density in the conducting phase can be ex-
pressed using Ohm’s Law. For a given conductivity of
the conducting phase, the current density is

iM = −σm∇φ. (71)

The conductivity of the conducting phase can be mod-
eled or fit to experiment based on porosity, the loading
percent of the carbon black, and/or the lithium concen-
tration in the solid,

σm = σm (c̃s, Lp, ε) .

As lithium concentration increases in the particles, there
are more electrons available for conduction. These are a
few of the cell properties that can have a large impact
on the conductivity of the solid matrix in the porous
electrode.

4. Diffusion in the Solid

Proper handling of diffusion in the solid particles re-
quires the use of concentrated solution theory. Diffu-
sion inside solids is often non-linear, and diffusivities vary
with local concentration due to finite volume and other
interactions inside the solid. The first section on conce-
trated solution theory layed the groundwork for proper
modeling of diffusion inside the solid. Here, we begin
with the flux defined in Equation (36),

Ni = −Mici∇µi,

where Ni is the flux of species i, Mi is the mobility, ci is
the concetration, and µi is the chemical potential. With
no sink or source terms inside the particles, the mass
conservation equation from Equation (37) is

∂ci
∂t

= −∇ ·Ni. (72)

There are many different models which can be used for
the chemical potential. A typical model used for the
free energy is the regular solution model, which incorpo-
rates entropic and enthalpic effects. The regular solution
model free energy is

g = kBT [c̃s ln c̃s + (1− c̃s) ln (1− c̃s)] + Ωc̃s (1− c̃s) ,
(73)

where c̃s is the dimensionless solid concentration (c̃s =
cs/cs,max). Figure 11 demonstrates the effect of the reg-
ular solution parameter (i.e. the pairwise interaction) on
the free energy of the system. The model is capable of
capturing the physics of homogeneous and phase sepa-
rating systems.

Homogeneous particles demonstrate solid solution be-
havior, as all filling fractions are accessible. This behav-
ior is typically indicated by a monotonically decreasing
open circuit voltage curve. In terms of the regular solu-
tion model, a material that demonstrates solid solution
behavior has a regular solution parameter of less than
2kBT , that is Ω < 2kBT . This is related to the free en-
ergy curve. When Ω ≤ 2kBT , there is a single minimum
in the free energy curve over the range of concentrations.
However, for Ω > 2kBT , there are two minima, result-
ing in phase separation and a common tangent, which
corresponds to changing fractions of each phase.

The common tangent construction arises from the fact
that phases in equilibrium have the same chemical po-
tential (i.e. slope). The chemical potential of the regular
solution model is

µ =
∂gi
∂ci

= kBT ln

(
c̃s

1− c̃s

)
+ Ω (1− 2c̃s) . (74)

To obtain an analogous equation to Fick’s First Law,
Equation (36) can be expressed as

Ni = −Do (1− c̃s)
(

1 +
∂ ln γi
∂ ln ci

)
∇ci = −Dchem∇ci,

(75)
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where Do is the diffusivity of species i in the infinitely
dilute limit andDchem is the chemical diffusivity in a con-
centrated solution. It is important to note that Do can
still be a function of concentration. The regular solution
model in Equation (74) can be substituted into Equa-
tion (75) using the definition of the chemical potential,
µ = kBT ln(cγ), to obtain an chemical diffusivity,

Dchem = Do

(
1− 2Ω̃c̃s + 2Ω̃c̃2s

)
, (76)

where Ω̃ = Ω/kBT , the dimensionless interaction energy.
When the interaction parameter, Ω, is zero, the dilute
limit diffusivity (Fick’s Law) is recovered. The mass con-
servation equation using the effective diffusivity is

∂cs
∂t

= ∇ · (Dchem∇cs) . (77)

Phase separating materials (e.g. LiFePO4) require the
use of the Cahn-Hilliard free energy functional.[32] This
is because phase separation causes “uphill diffusion”. To
account for this, a gradient penalty term is included.
This term balances the interfacial energy of a phase trans-
formation with the bulk free energy. The Cahn-Hilliard
free energy functional is

G[c(x)] = NV

∫
V

[
g(c) +

1

2
κ (∇c)2

]
dV, (78)

where g (c) is the homogeneous free energy, and κ is
the gradient energy, with units of energy times length
squared. Note that the gradient energy is actually a
symmetric tensor. Determining the chemical potential
requires a variational derivative and use of the Euler-
Lagrange Equation. The chemical potential is

µ =
δG

δc
= µ (c)−∇ · (κ∇c) , (79)

where µ is the homogeneous chemical potential. A typical
double well free energy function (e.g. regular solution
with Ω > 2kBT ) can be used to model the homogeneous
chemical potential. Determining the diffusion equation
requires use of Equation (36). Using the Cahn-Hilliard
form of the free energy, the flux becomes

Ni = −Mc
[
∇µ (c)− κ∇3c

]
, (80)

assuming κ is constant. Inserting our flux equation into
Equation (72), the conservation equation based on the
Cahn-Hilliard form of the free energy is

∂c

∂t
= ∇ · (Mc∇µ)−∇ ·

(
Mcκ∇3c

)
. (81)

This conservation equation contains a fourth derivative
of concentration, requiring the use of another bound-
ary condition. The condition used is that the gradient
penalty at the surface of the solid is zero. Two examples
of diffusion in the solid based on concentrated solution

theory have been given. The Cahn-Hilliard form is more
general and can be used for any material, while the regu-
lar solution is explicity for use in solid solution materials.

The choice of the gradient and divergence operators
is dependent upon the selected geometry of the particles.
To complete the modeling of the particles, we impose two
flux conditions. One at the surface and the other at the
interior of the particle. For example, consider a spherical
particle with a radius of 1. The boundary conditions are

∂c

∂r

∣∣∣∣
r=0

= 0, and (82)

−Ds
∂c

∂r

∣∣∣∣
r=1

= jin, (83)

where Ds is the solid diffusivity (can be a function of con-
centration). These equations demonstrate the symmetry
condition at the interior of the particle, and the relation
to the reaction rate at the surface of the particle, which
comes from the modified Butler-Volmer Equation.

5. Modeling the Equilibrium Potential

To complete the model, a form of the open circuit
potential (OCP) is required. While traditional battery
models fit the OCP to discharge data, the OCP is actu-
ally a function of the thermodynamics of the material.
The OCP can be modeled using the Nernst Equation
given in Equation (62),

∆φeq = V o − kBT

ne
ln

(
aR
aO

)
,

where V o is the standard potential. Typically, we take
lithium metal as the reference potential for the anode
and cathode materials. For the cathode material, this
allows us to treat the activity of the oxidant as a constant.
Let’s again consider the regular solution model. Using
the definition for chemical potential, µ ≡ kBT ln a, we
substitute in our regular solution chemical potential to
get

∆φeq = V o − kBT

e
ln

(
c̃s

1− c̃s

)
− Ω

e
(1− c̃s) . (84)

Figure 12 shows open circuit potential curves for different
regular solution parameter values. For Ω > 2kBT , the
system is phase separating. This corresponds to a non-
monotonic voltage diagram.

Since the reaction occurs at the surface, and the con-
centration inside the solid is not necessarily uniform, then
surface concentration determines the local OCP. This
in turn affects the overpotential and the reaction rate.
Larger overpotentials are required when the solid has a
slow diffusivity. As lithium builds up at the surface of
the particle, a higher overpotential is required to drive
the intercalation reaction.
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B. Non-Dimensionalization and Scaling

In this section, the equations are non-dimensionalized
for the full three dimensional case. The electrode is as-
sumed to have a constant cross sectional area, which is
typical in rolled electrodes where the area of the separa-
tor is much larger than the electrode thickness. The total
current is the sum of the fluxes into the particles in the
electrode. This is represented by the integral equation

I =

∫
As

FjindAs =

∫
Vs

FapjindVs, (85)

where ap is the area per volume of the particles. The solid
volume, Vs, can be expressed as (1− ε)LpV , where ε is
the porosity, Lp is the volume fraction of active material,
and V is the volume of the cell. Scaling the time by
the diffusive time, td = L2/Damb, and the charge by the
capacity of the entire electrode, the dimensionless current
is

Ĩ =
Itd

F (1− ε)LpV cs,max
=

∫
Ṽ

˜jindṼ , (86)

where the dimensionless reaction flux, j̃in, is defined as

j̃in =
apjintd
cs,max

. (87)

The non-dimensional current density in the electrolyte
is

ĩ = −
(
D̃+ − D̃−

)
∇̃c̃−

(
z+D̃+ + z−D̃−

)
c̃∇̃φ̃, (88)

where the dimensionless current density ĩ is defined as

ĩ =
tdi

LFco
. (89)

Similarly, the non-dimensional charge conservation equa-
tion becomes

βj̃in = −∇̃ · ĩ, (90)

where β = Vscs,max/Veco is the ratio of lithium capacity
in the solid to initial lithium in the electrolyte. This pa-
rameter is important, as it determines the type of cell.
For β � 1, the system has essentially no storage ca-
pability, and the equations are typically used to model
capacitors. At β ≈ 1, the system has comparable stor-
age in the electrolyte and solid. This is typically seen in
pseudocapacitors. The equations for systems like these
typically include a term for double layer charge storage
as well. For β � 1, there is a large storage capacity in
the solid, which is typically found in batteries.

Next, a mass balance on the electrolyte and solid are
performed. Equation (53) is non-dimensionalized for
some control volume inside the electrode. In this control
volume, the electrolyte and solid volumes are represented

by Ve and Vs, respectively. It is assumed that the elec-
trode has the same properties thoughout (e.g. porosity,
loading percent, area per volume, etc.). The dimension-
less mass balance is

Ve
∂c

∂t
+Vsapjin = Ve∇· (Damb∇c)−Ve∇·

(
t+i

F

)
, (91)

where the time is scaled by the diffusive time scale, td,
the gradients are scaled by the electrode length, L, the
diffusivity is scaled by the dilute limit ambipolar diffu-
sivity, Damb,o, the electrolyte concentration is scaled by
the initial electrolyte concentration, co, and the current
density, jin, is scaled as in Equation (87). Simplifying
yields

∂c̃

∂t̃
+ βj̃in = ∇̃ ·

(
D̃amb∇̃c̃

)
− ∇̃ ·

(
t+ ĩ
)
. (92)

Next, we need to find the dimensionless boundary con-
ditions for the system. This can be done via integrating
the equations over the volume of the cell (in this case the
separator and cathode, but this can easily be extended to
include the anode). Integrating Equation (92) over the
volume yields∫

Ṽ

[
∂c̃

∂t̃
+ βj̃in = ∇̃ ·

(
D̃amb∇̃c̃

)
− ∇̃ ·

(
t+ ĩ
)]
dṼ . (93)

First, we deal with the left most term. Given the elec-
troneutrality constraint, this term becomes zero because
the amount of anions in the system remains constant. In-
tegrating the second term, for constant β, reduces to βĨ.
The two terms on the right hand side of the equation fa-
cilitate the use of the Fundamental Theorem of Calculus.
Simplifying, we obtain

βĨ =
(
D̃amb∇̃c̃− t+ ĩ

)∣∣∣1
0
. (94)

Given the no flux conditions in ỹ and z̃, and the no flux
condition at x̃ = 1, the flux into the separator is

−D̃amb∇̃c̃
∣∣∣
x̃=−x̃s

= (1− t+)βĨ. (95)

This set of dimensionless equations and boundary condi-
tions are used in the simulations presented in the results
section.

VII. MODEL RESULTS

To characterize the properties of the model, we will
demonstrate some results from the non-dimensional
model. Results for monotonic (i.e. homogeneous) and
non-monotonic (i.e. phase separating) open circuit po-
tential profiles for particles demonstrating solid solution
behavior will be given for constant current discharge.

The electrolyte concentration, electrolyte potential,
and solid concentration are all coupled via the mass and
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charge conservation equations listed above. The system
of equations was solved using MATLAB and its ode15s
differential algebraic equation (DAE) solver. This code
utilizes the backwards differentiation formula (BDF) for
time stepping and a dogleg trust-region method for its
implicit solution. The spatial equations were discretized
using a finite volume method. Constant current discharge
involves an integral constraint on the system. This inte-
gral constraint makes the system ideal for formulating
the system of equations as a DAE. We hope to write a
future paper detailing how to formulate the porous elec-
trode theory equations for use as a DAE.

These results will try and focus on the important as-
pects of the model, which include electrolyte diffusion
limited discharge and solid diffusion limited discharge.
These two limitations represent the most common situ-
ations in a cell. Another common limitation is electron
conductivity in the solid matrix. This limitation is of-
ten suppressed via proper cell design and increasing the
amount of conductive additive used. Furthermore, some
active materials naturally conduct electrons, alleviating
this effect.

The electrolyte diffusion limitation can also be alle-
viated with proper cell design (i.e. thinner electrode),
but this comes at the cost of capacity of the cell. To
demonstrate the effect of electrolyte diffusivity limita-
tions and solid diffusivity limitations, different discharge
rates were selected and different solid diffusivities were
modeled. First, we consider the case of homogeneous par-
ticles. Then we demonstrate phase separating particles
using the Cahn-Hilliard free energy functional with and
without approximated stress effects. Finally, we demon-
strate the pseudocapacitor model for phase separating
particles, which neglects solid diffusion.

A. Simulation Values

The ambipolar diffusivity (given by Equation (47)) is
taken from literature values for the diffusivity of Li+ and
PF−6 in an EC/EMC non-aqueous electrolyte. Using lit-
erature values for the diffusivities, a value of 1.9× 10−10

m2s−1 was calculated for Damb,o. [38, 120] Suitable cell
size parameters were used, including a cross sectional
area of 1 cm2, separator thickness of 25µm, and an elec-
trode length of 50µm. A porosity value of 0.4 was used,
which is a little larger than typical cell values. While
cell dimensions are typically fixed, the ambipolar diffu-
sivity and porosity values are flexible, and can be varied
(within reason) to fit experimental data.

Using these cell dimensions and ambipolar diffusivity,
the diffusive time scale for the system is 13.125 seconds.
This value is important, as it affects the non-dimensional
total current (which is scaled by the electrode capacity
and the diffusive time), the non-dimensional current den-
sity, and the non-dimensional exchange current density
(i.e. rate constant). Using this value of the ambipo-

lar diffusivity, a dimensionless current of Ĩ = 0.00364

corresponds to approximately a 1C disharge. The solid
diffusivity is incorporated in a dimensionless parameter,

δd =
L2
sDamb

L2Ds
(96)

which is the ratio of the diffusion time in the
solid (L2

s/Ds) to the diffusion time in the electrolyte
(L2/Damb). This parameter, which is typically typically
larger than one, can vary by orders of magnitude for
different materials. Typically, solid diffusivities are un-
known, and this parameter needs to be fit to data.

The rate constant, which directly affects the exchange
current density, is another value that is unknown in the
system. The dimensionless value of the exchange current
density is scaled to the diffusive time. It also depends
on the average particle size, as this gives the surface area
to volume ratio. For 50 nm particles, using the ambipo-
lar diffusivity above, a dimensionless exchange current
density of one corresponds to approximately 1.38 A/m2.
This is a relatively high exchange current density. For
the simulations below, a dimensionless exchange current
density of 0.01 is used.

B. Homogeneous Particles

Homogeneous particles can access all filling fractions as
they are discharged. Figures 15, 17, and 18 demonstrate
the effect of various discharge rates and solid diffusivities
on the voltage profile. Each figure contains three dif-
ferent voltage plots. The red dots on the voltage curves
indicate the filling fraction of the solid concentration con-
tours below. The contour plots are arranged in the same
order as the red dots, going from left to right, top to bot-
tom. Figure 13 gives the axes for the simulations. Each
particle is modeled in 1D, with the intercalation reaction
at the top and diffusion into the bulk of the particle. The
xs axis is the depth into the particle.

The contour plots give the solid concentration profile of
each volume of particles along the length of the electrode.
The y-axis is the depth in the solid particle, with the top
(ỹ = 1) denoting the interface between the particle and
the electrolyte. The x-axis denotes the depth into the
electrode, with the left side represeting the separator-
electrode interface and the right side representing the
current collector. It is important to note that in order for
lithium to travel horizontally, it must first diffuse through
the solid, undergo a Faradaic reaction to leave the solid,
diffuse through the electrolyte, then intercalate into an-
other particle and diffuse. Therefore sharp concentration
gradients in the x-direction are stable, especially for the
case of non-monotonic voltage profiles, as is seen in phase
separating materials.

Figure 15 demonstrates the effect of various discharge
rates on the voltage. At Ĩ = 0.001 (C/3), the discharge
is slow and the solid in the electrode fills homogeneously
throughout. As the discharge rate is increased, increased
overpotential follows. Furthermore, gradients in solid



15

concentration down the length of the electrode begin to
emerge. Concentration gradients within the solid are not
present because of the high solid diffusivity (δd = 1, in-
dicating the solid and electrolyte diffusive time scales are
the same).

As the current is increased, gradients in solid concen-
tration across the electrode begin to become prevalent.
At the same time, transport limitations in the electrolyte
lead to a capacity limitation, as the electrolyte is inca-
pable of delivering lithium quickly enough deeper into
the electrode. Figure 16 demonstrates the electrolyte
depletion leading to the concentration polarization in
the 15C discharge curve. While the voltages appears to
stop, these are actually points where it drops off sharply.
Tighter tolerances, which can significantly increase the
computation time, are needed to get the voltage down to
zero.

It is important to note that δd is not the ratio of dif-
fusivities, but the ratio of diffusive times. Therefore, as
particle size increases, the diffusive time scales as the
square of the particle size. Solid diffusivities are typi-
cally much slower than in the electrolyte. To demonstrate
the effect of increased current with slower solid diffusion,
Figure 17 demonstrates the same discharge rates as the
previous figure, except the solid diffusive time scale has
been increased to 50 times the electrolyte diffusive time
scale.

For decreased solid diffusivity, concentration gradients
in the depth direction of the particles are more prevalent.
At low current (i.e. slow discharge), the gradients in the
electrode and particles are minimal. As the current is
increased, gradients in the particles begin to emerge. At
the fastest discharge rate, these solid concentration gra-
dients become very large. Finite volume effects at the
surface of the particles increase the overpotential sub-
stantially, producing a sharp voltage dropoff and low uti-
lization. This effect is caused by the slow solid diffusion
only. Despite plenty of lithium being available in the elec-
trolyte, high surface concentrations block available sites
for intercalation.

To show the effect of solid diffusion alone, Figure 18
demonstrates the effect of decreasing solid diffusivity at
a constant discharge rate. When the diffusive time scales
of the solid and electrolyte are comparable, each parti-
cle fills homogeneously. There are small variations along
the length of the electrode, but these do not affect the
utilization, as almost 100% of the electrode is utilized.

As the solid diffusivity is decreased, and the diffusive
time scale approaches 50 times the electroloyte diffusive
time scale, we see over a 10% drop is capacity. Concen-
tration gradients in the solid particles begin to emerge.
As the solid diffusivity is further decreased, and the solid
diffusive time scale approaches 100 times the electrolyte
diffusive time scale, the solid concentration gradients be-
come quite large, leading to a 30% drop in capacity.
While these changes in δd seem significant, they repre-
sent approximately a two order of magnitude change in
diffusivity, and a one order of magnitude change in par-

ticle size.

C. Phase Separating Particles

For the case of phase separating materials, the equilib-
rium homogeneous voltage curve is non-monotonic. This
is demonstrated in Figure 12, for regular solution pa-
rameters greater than 2kBT . For these materials, the
free energy curve has two local minima. When the sec-
ond derivative of the free energy with respect to filling
fraction changes sign (positive to negative), the system
is unstable for infinitessimal perturbations, resulting in
phase separation. A tie line represents the free energy of
the system, and the proportion of the two phases changes
as the system fills.

Modeling phase separating materials requires the use
of the Cahn-Hilliard free energy functional as given in
Equation (78), and the Cahn-Hilliard diffusional chem-
ical potential, given in Equation (79). When we insert
the chemical potential into the modified Butler-Volmer
Equation, we obtain a forced Allen-Cahn type equation.
Here, we present the first solution of multiple phase sep-
arating particles in a porous electrode.

For phase separating particles, values of Ω = 4kBT and
κ̃ = 0.001 were used along with a regular solution model
to model the homogeneous chemical potential, µ. The
same exchange current as above was used. The figures
are similar to those of the homogeneous plots, but instead
of the depth direction, we now plot along the surface.
Figure 14 depicts the axes plotted. This assumes that the
diffusion into the particle is fast, and that the process is
essentially surface reaction limited. This is a reasonable
approximation for LiFePO4. [5] Figure 19 demonstrates
slow discharge (approx. C/30).

Initially, the discrete filling of the electrode suppresses
phase separation inside the particles. Towards of the
end of the discharge, decreased electrolyte diffusion (from
longer path length) allow for particles to phase separate.
Another important feature of the simulation is the volt-
age spikes towards the end of the simulation. These volt-
age spikes, which are on the order of the thermal volt-
age, are an artifact of the discrete nature of the model.
Towards the end of the simulation, only a few particles
remain to fill, therefore the voltage is dominated by effec-
tively the single particle response. Dreyer et al. demon-
strated this previously for phase separating particles fill-
ing homogeneously. [49, 50] Recent work by Cogswell
and Bazant demonstrate the importance of stress effects.
[42]

Stress effects can be approximated by the inclusion of
a term comparing local concentration to average particle
concentration. This concept was first introduced by Cahn
and Hilliard. [34–36] Including a volume averaged stress
term, our chemical potential becomes

µ = µ− κ∇2cs + 2b (cs − cs,avg) (97)

The inclusion of this additional term suppresses phase
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separation by promoting homogeneous filling. When the
difference between the local and average global parti-
cle concentration increases, the particle energy increases.
This promotes homogeneous filling. Figure 20 demon-
strates how this additional term suppresses phase sepa-
ration.

Based on the work of Bai et al. [5], which demonstrated
suppression of phase transformation in LiFePO4 parti-
cles for discharge rates higher than the exchange current,
this section will consider the case of phase transforming
particles (namely LiFePO4) that do not undergo phase
transformation. That is, as the particles fill, each par-
ticle will fill homogeneously with a non-monotonic open
circuit voltage profile.

Figure 21 demonstrates different discharge rates for
phase separating particles with a regular solution pa-
rameter of Ω = 4.5kBT . The slowest discharge rate is
a non-dimensional current of 0.00001. This corresponds
to a real C-rate of approximately C/40. At this slow dis-
charge rate, the particles fill discretely down the length
of the electrode from the separator to the current col-
lector. This discrete filling causes the voltage to oscillate
back and forth between the voltage at the miscibility gap
concentration (left part of the common tangent voltage)
and the voltage of the spinodal point (voltage at the local
minimum on the left side). While these spikes appear to
be large, they are actually on the order of the thermal
voltage or smaller. At typical voltage scales (2.0V-3.5V)
these spikes are not seen, resulting in a flat voltage profile
as seen in experimental data for LiFePO4. This demon-
strates that a phase separating material’s flat voltage
profile can be modeled without modeling phase trans-
formation itself.

The voltage spikes are dependent on the value of the
Damköhler number. At larger Damköhler numbers, the
reaction time scale is faster than the diffusive time scale.
The simulation begins with all particles at a filling frac-
tion of 0.01. The electrode initially fills homogeneously to
the voltage at the spinodal point. At this filling fraction,
fewer particles are required to alleviate the discharge
rate. To explain this, consider the equivalent circuit for
a porous electrode in Figure 22.

Consider each of the “particles” in the equivalent cir-
cuit. Each particle (which could also be considered to be
a cluster of particles with similar properties) has a charge
transfer resistance, Rct, and capacitance C. These val-
ues can be non-linear, and vary depending on the particle
filling fraction and/or local potential. For each particle
or cluster of particles, there is a charging time, τ , which
scales as

τ ∼ RctC. (98)

For a given discharge rate at constant current, particles
in the electrode must alleviate a given amount of lithium
per time in the electrode. The number of active particles
scales as

nap ∼ τ Ĩ. (99)

As the discharge rate is increased, the number of active
particles increases until it spans the electrode, resulting
in the electrode filling homogeneously. For fast kinetics
or slow discharge rates, the number of active particles is
small, which produces the discrete filling effect. For the
non-monotonic OCP of homogeneous phase separating
particles, the voltage plateau has three filling fractions
that can exist in equilibrium: the left miscibility gap
filling fraction, half filling fraction, and right miscibility
gap filling fraction. As the particles fill, if the kinetics are
sufficiently fast, then particles close to the active particle
will empty to reach the equilibrium voltage (the plateau
voltage). This increase in voltage for each particle as it
deviates from the voltage at the spinodal concentration
leads to an increase in cell voltage, producing the voltage
spikes.

For slower kinetics, this effect is suppressed by two
mechanisms. First, the charge transfer resistance is
larger, leading to higher charging times and subsequently
a larger number of active particles. Also, slower kinet-
ics hinders the ability of particles to easily insert/remove
lithium, which prevents the particles from emptying and
increasing the voltage, leading to the spikes.

VIII. SUMMARY

In this paper, we have generalized porous electrode
theory using principles of non-equilibrium thermodynam-
ics. A unique feature is the use of Bazant’s variational
formulation of reaction kinetics [10, 11], which allows
the use of phase field models to describe macroscopic
phase transformations in porous electrodes for the first
time. The thermodynamic consistency of all aspects of
the model is crucial. Unlike existing battery simulation
models, the open circuit voltage, reaction rate, and solid
transport properties are not left free to be independently
fitted to experimental data. Instead, these properties
are all linked consistently to the electrochemical poten-
tials of ions and electrons in the different components
of the porous electrode. Moreover, emergent properties
of a phase-separating porous electrode, such as its volt-
age plateau at low current, are not fitted to empirical
functional forms, but rather follow from the microscopic
physics of the material. This allows the model to capture
stochastic, discrete phase transformation events, which
are beyond the reach of traditional diffusion-based porous
electrode theory.

In a companion paper [53], we will apply the model
to predict the electrochemical behavior of composite,
porous graphite anodes [62] and LFP cathodes [50], each
of which have multiple stable phases. Complex nonlin-
ear phenomena, such as narrow reaction fronts, mosaic
instabilities, zero current voltage gap, and voltage fluctu-
ations, naturally follow from the simple physics contained
in the model. The model is able to fit experimental data
for phase transformations in porous electrodes under very
different conditions, limited either by electrolyte diffu-
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sion [62] or by reaction kinetics [50].
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X. FIGURES
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FIG. 1. Typical reaction energy landscape. This figure
demonstrates a typical energy landscape for a reaction. The
particle travels through a transition state as it passes from
one state to the other.
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FIG. 2. Typical diffusion energy landscape. This fig-
ure demonstrates a typical energy landscape for a particle
diffusing. When considering the diffusivity, it is the excess
chemical potential that plays a large role, since in the dilute
limit, diffusivity is roughly constant.

FIG. 3. Lattice gas model for diffusion. This figure
demonstrates the lattice gas model. The particles are as-
sumed to be hard spheres and each occupy a space on the
grid. Particles can only jump to an open space, and the tran-
sition state (red dashed circle) requires two empty spaces.
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A
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FIG. 4. Diffusion through a solid. This figure demon-
strates how a particle diffuses through a lattice. The flux is
given by the reaction rate across the area of the cell, Acell.
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Equation Boundary Conditions

ε ∂c
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TABLE I. Dimensional set of equations. This table lists the set of dimensional equations for Modified Porous Electrode
Theory.
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E, j E, j

FIG. 5. Upper and lower limit for anisotropic material.
The left figure demonstrates the upper conductivity limit for
an anisotropic material. The arrangement of the materials
acts like resistors in parallel. The right figure demonstrates
the lower limit, with the materials arranged to act like resis-
tors in series.
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1
2

FIG. 6. Hashin-Shtrikman bounds model. Isotropic
composite of coated spheres. The white represents material
with conductivity σ1 and the bloack represents material with
conductivity σ2. Maximum conductivity is achieved when
σ1 > σ2 and minimum conductivity is obtained when σ2 > σ1.
The upper and lower bounds are computed based on this. The
volume fractions Φ1 and Φ2 are the same.
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FIG. 7. Conductivity bounds for two material compos-
ite. The above figure shows the Wiener bounds (blue) for an
anisotropic two component material and Hashin-Shtrikman
bounds (red) for an isotropic two component material versus
the volume fraction of material 1. The conductivities used to
produce the figure are σ1 = 1 and σ2 = 0.1.
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FIG. 8. Various models for effective conductivity
in 3D. This figure demonstrates the effective conductiv-
ity (scaled by the pore conductivity) using Wiener bounds,
Hashin-Shtrikman bounds, a percolation model, and the
Bruggeman formula. The percolation model uses a critical
porosity of εc = 0.25.

εp

FIG. 9. Example of a porous volume. This is an example
of a typical porous volume. A mixture of solid particles is
permeated by an electrolyte. The porosity, εp, is the volume
of electrolyte as a fraction of the volume of the cube.
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FIG. 10. Tortuosity versus porosity for different effec-
tive conductivity models. This plot gives the tortuosity
for different porosity values. While the Wiener and Hashin-
Shtrikman models produce finite tortuosities at 0 porosity,
the percolation and Bruggeman models diverge.
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FIG. 11. Regular solution model of free energy. This
figure shows the effect of the regular solution parameter on
the free energy. For Ω < 2kBT , there is a single minimum.
For Ω > 2kBT , there are two minima. This produces phase
separation, as the system is unstable with respect to infinites-
imal perturbations near the spinodal concentration, which is
where the curvature of the free energy changes.
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FIG. 12. Open circuit potential for different regular so-
lution parameter values. The figure demonstrates various
open circuit potentials for different regular solution param-
eter values. Notice how the voltage curve is non-monotonic
when the system is phase separating.
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FIG. 13. Plot axes for homogeneous particles. This fig-
ure shows how the data for homogeneous particles is plotted.
The y-axis of the contour plots represent the depth of the par-
ticles while the x-axis represents the depth into the electrode.
The particles are modeled in 1D.
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FIG. 14. Plot axes for phase separating particles. This
figure shows how the data for phase-separating particles is
plotted. The y-axis of the contour plots represent the length
along the surface of the particle, since diffusion is assumed
to be fast in the depth direction. The x-axis represents the
depth in the electrode.
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FIG. 15. Effect of current on homogeneous particles.
This figure demonstrates the effect of different discharge rates
on the voltage profile. The non-dimensional currents corre-
spond to roughly C/3, 3C, and 15C. The solid diffusion is
fast, with δd = 1.
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rent. This figure shows the depletion of the electrolyte ac-
companying Figure 15 for the 15C discharge. The left figure
shows the solid concentration while the right figure demon-
strates the electrolyte concentration profile in the separator
and electrode.
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FIG. 17. Effect of current on homogeneous particles
with slower solid diffusion. This figure demonstrates the
effect of different discharge rates on the voltage profile. The
non-dimensional currents correspond to roughly C/3, 3C, and
15C. The solid diffusion is slower than the electrolyte diffusion
(δd = 50).
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FIG. 18. Effect of solid diffusivity on homogeneous
particles. This figure demonstrates the effect of decreasing
solid diffusivity on the voltage profile. Each of these simula-
tions was run at a dimensionless exchange current density of
0.01 and a dimensionless current of 0.01.
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FIG. 19. Phase separating particles slowly discharged.
This figure shows slowly discharge (approx. C/30) phase sep-
arating particles. Adequate electrolyte diffusion and discrete
filling don’t allow time for the particles to phase separate
early on. At the end of the discharge, sufficient time allows
the particles to phase separate.
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FIG. 20. Phase separating particles including coherent
stress effects slowly discharged. This figure shows slowly
discharge (approx. C/30) phase separating particles. The
inclusion of the coherent stress effects suppresses phase sepa-
ration inside the particles. This figure is the same as Figure
19, with an additional coherent stress term.
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FIG. 21. Effect of current on phase separating par-
ticles. When the OCP is non-monotonic, the cell behavior
varies with the discharge rate. At slow discharge, parts of the
electrode fill discretely, creating voltage spikes on the order
of the thermal voltage. When the cell is discharge quickly,
this effect is suppressed, resulting in homogeneous filling of
the particles.

FIG. 22. Equivalent circuit model for porous electrode.
This equivalent circuit represents a typical porous electrode.
Resistors represent the contact, transport, and charge transfer
resistances, and the capacitance of the particles is represented
by a capacitor. All elements are not necessarily linear.


	 Nonequilibrium Thermodynamics of Porous Electrodes 
	Abstract
	I Introduction
	II  Brief History of Porous Electrode Theory
	III  Phase Separating Electrodes 
	A  Lithium Iron Phosphate 
	B  Phase-Field Models 

	IV General Theory of Reactions and Transport in Concentrated Solutions
	A General Theory of Reaction Rates
	B General Theory of Transport in Solids and Concentrated Solutions
	1 Diffusivity of an Ideal Solid Solution
	2 Concentrated Solution Theory Derivation


	V Characterization of Porous Media
	A Electrical Conductivity of the Porous Media
	B Transport in Porous Media

	VI Porous Electrode Theory
	A  Conservation Equations 
	1 Mass and Charge Conservation
	2 Faradaic Reaction Kinetics
	3 Potential Drop in the Conducting Solid Phase
	4 Diffusion in the Solid
	5 Modeling the Equilibrium Potential

	B Non-Dimensionalization and Scaling

	VII Model Results
	A Simulation Values
	B Homogeneous Particles
	C Phase Separating Particles

	VIII Summary
	 References
	IX Tables
	X Figures


