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Abstract

A new method, ’Resolved-Super-Transition-Arrays’, for calculation of the spectral absorption

coefficient in hot plasmas is presented. The formulae of the traditional Super-Transition-Arrays

method [A. Bar Shalom, J. Oreg, W.H. Goldstein, D. Shvarts and A. Zigler, Phys. Rev. A 40,

3183 (1989)] are recovered from the formulae of the new method by an approximation based on a

cumulant expansion truncated at the third term. In the new method an expression for the many-

electron two-time dipole autocorrelation function of ions in hot dense plasmas in terms of Complex

Pseudo Partition Functions is derived. The Fourier transform with respect to time together with

the fluctuation-dissipation theorem yields an expression for the spectral absorption coefficient.

In this expression a multitude of Gaussian Super-Transition-Arrays sharing the same set of one-

electron solutions, required by the traditional method to resolve the detailed spectrum, is replaced

by a single Complex Pseudo Partition Function which represents the exact analytical sum of the

contributions of all relevant transition arrays. A new computer program is presented, capable of

evaluating the absorption coefficient by both the new and the traditional Super-Transition-Arrays

methods. A numerical example of gold at temperature 1keV and density 0.5 gr/cm3 , is presented,

demonstrating the simplicity, efficiency and accuracy of the new method.
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I. INTRODUCTION

The radiative opacity is an essential factor governing the structure and evolution of stars

[1],[2] as well as laboratory plasmas[3]. In plasmas containing medium to high Z elements,

at least some of the electrons remain bound to the ions even at very high temperatures and

densities (e.g. iron at the center of the sun). As was first recognized by Edward Teller[4], in

part of the spectral range, the opacity in these plasmas is dominated by photo-absorption

of dipolar radiative transitions between electronic states of the ions (line absorption).

The present work focuses on line absorption in plasmas in Local Thermodynamic Equilib-

rium (LTE). Historically, the development of the theory and computational approach to this

process required a major theoretical effort(e.g. [5], [6], [7]). The atomic states are evaluated,

in all methods, by a perturbation expansion, using the radial average potential approxima-

tion as the zero order. In this order, the equation for the many-electron states is reduced to

equations for the one-electron states in an average radial self-consistent potential due to all

other electrons. For light elements, Shroedinger equation is sufficient, for heavier elements

relativistic treatment is required and the Dirac equation should be solved. The zero order

many-electron states (”configurations”) and energies are characterized by the occupation

numbers of degenerate groups of one-electron states (”shells”). Mutual electron-electron

interaction removes the degeneracy and splits the configurational energy. This effect is eval-

uated as a first order correction. i.e. as the sum of expectation values, in the zero order

states, of energies due to coulomb interaction between all pairs of electrons. The well known

Slater integrals represent the radial part of these expectation values.

The evaluation of the absorption coefficient requires a compromise between the needed

spectral resolution and the available computer resources (for a representative list of codes

see e.g. [8],[9],[10]). Existing methods may be classified according to the resolution of the

description of electronic states, and of the contribution of transitions between them to the

absorption coefficient. The most resolved treatment available is the Detailed Line Account-

ing (DLA, e.g. [11]). For complex configurations with many states, the number of transitions

becomes prohibitive for numerical calculations. In this case, one may turn to the Unresolved-

Transition-Arrays (UTA) method. In this method the spectral absorption coefficient due

to a transition array consisting of all single-electron transitions between a specific pair of

configurations is assumed to be of a Gaussian shape. This method is made practical by
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the analytical formulae for the three lowest energy-moments (actually cumulants[12]) of the

UTA spectrum[13], in terms of reduced matrix elements of the dipole operator, Slater inte-

grals and shell occupation numbers. For heavy ions, the UTA method becomes unpractical

due to the enormous number of possible configurations. The Super-Transition-Array (STA)

method[14],[15] represents a further compromise which allows the evaluation of opacity with

less computational effort at the cost of spectral coarse graining. The coarse graining is

obtained by grouping shells with adjacent energies into supershells configurations into su-

perconfigurations (SCs) and correspondingly transition arrays into supertransitions arrays.

The relative simplicity of the evaluation of the coarse-grained spectral absorption coefficient

is based on three assumptions (on top of the UTA assumption):

a) The basic superconfiguration assumption: All configurations which form a supercon-

figuration share the same radial potential with the same set of one-particle solutions.

b)The high-temperature approximation: The spread of the energies of configurations

within a superconfiguation is much smaller than the plasma temperature. In this limit

the Boltzmann factor which determines the relative probability for a configuration within

a superconfiguration may be evaluated to zero order only, i.e. as the sum of single-electron

energies in the mean potential. Electron-electron interaction energy adds a superconfig-

urational average factor common to all configurations within a superconfiguration. This

corresponds to the use of the Gibbs-Bogoliubov-Feynman bound [17] as an estimate for the

Boltzmann factor.

c) The unresolved supertransition array assumption: The spectra of all UTAs which form

a STA merge into a single Gaussian shape.

With these three approximations the summation of contributions of all UTAs to a STA

may be performed analytically [14],[15]. By the third approximation, one needs only to eval-

uate the three lowest energy cumulants of the STA spectrum. By the second approximation,

the relative probabilities of configurations are the same as of those in a system of indepen-

dent particles in a potential well[18]. This enables the derivation of analytical formulae for

the moments (and cumulants) in terms of Slater integrals and partition functions[14],[16]

which may be evaluated by recursion relations [14],[19],[20].

In reference[21] a way to avoid the high-temperature approximation was shown. An

analytical formula was written for the partition function with the full Hamiltonian including

electron-electron interaction. This result was enabled by the application of the Hubbard-
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Stratonovich transformation[23] which eliminates of the quadratic dependence of the energy

on the shell occupation number (at the cost of introduction of an auxiliary random field).

The approximations in assumptions (a)-(c) are controlled by the choice of the degree of

spectral coarse graining. In the extreme choice of one shell in a supershell and one config-

uration in a superconfiguration, and a different average radial potential with a different set

of one-electron states separately for each configuration, one reaches the UTA limit. Clearly,

within the framework of the UTA model, assumptions, (a)-(c) are exactly obeyed. The op-

posite extreme choice is of one supershell consisting of all shells and one superconfiguration

consisting of all configurations in all degrees of ionization. In reference [14] it was shown

that this choice of maximum spectral coarse graining reproduces the results of the average

atom model presented in reference [22].

As mentioned above, for heavy ions, calculations with the UTA resolution are unpracti-

cal due to the enormous number of possible configurations. On the other hand the average

atom model is too crude since it wipes out the spectral structure observed in experiments[14].

The STA method allows for a tune up of the resolution by an iterative refinement proce-

dure starting from the average atom model, increasing the number of superconfigurations

and number of different radial potentials with different sets of one-particle solutions. The

refinement process is stopped when both the values Rosseland and Planck mean free path

(mfp)[1] converge to constant values. A typical STA run reaches convergence with a few

to a few tens of SCF solutions per degree of ionization and many more superconfigurations

sharing the same potential and set of single particle energies and orbitals. Actually, as will

be demonstrated by the numerical example in the present work, when a strict convergence

test based on the spectral details rather than the integrated values of Rosseland and Planck

mfp is imposed, convergence of the STA refinement process in heavy elements is not fully

reached even with half a million STAs.

In the present work, we derive a formula for the spectrum of Resolved-Super-Ttransition-

Arrays (RSTA) which represents the exact sum of the spectra of all UTAs sharing the same

SCF solution. As a consistency check we show that the radiation intensity, average energy

and variance of the standard STAs are recovered from the RSTA by an approximation based

on a cumulant expansion truncated at the third term.

The plan of the manuscript is as follows: In section II, some well known formulae required

for the evaluation of the absorption coefficient in terms of the two-time dipole autocorre-
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lation function[24],[12],[25],[26] expanded in the eigenstates of the atomic Hamiltonian are

summarized. The STA order of summation is briefly reviewed in section III. In section IV

the formula for the RSTA spectrum is derived. This formula is limited to the simple case

where the Boltzmann factor is evaluated only with zero-order energies and the widths of the

UTA are neglected (as in the original STA paper[14]). The derivation of the formula for the

general case with the effect of electron-electron interaction in the Boltzmann factor and with

the inclusion of the width of the UTA is derived in the Appendix. Section V contains a brief

description of our new code, for the evaluation of the spectral absorption coefficient by both

the standard STA and the new RSTA methods and a numerical example demonstrating the

simplicity efficiency and accuracy of the new RSTA method. A Summary and discussion

are presented in section VI.

II. THE ABSORPTION COEFFICIENT

The absorption coefficient, in hot dense plasmas in LTE, may be written in terms of the

two-time autocorrelation function of the atomic many-electron dipole [12],[24],[25],[26],[27]:

µat (E) = E2 4π
3

e2

~c
n0Re

{∫∞

0
CK (τ) eiEτ/~dτ

}

. (1)

µat is defined as the fraction of the net absorbed radiation energy at energy E per unit

radiation propagation length. n0 is the atoms number density, CK (τ) is the two-time auto-

correlation function of the atomic many-electron dipole[24]:

CK (τ) = βtrace
(

ρeqd (τ) d̃ (β)
)

. (2)

Eq. (1) is just one of many manifestations of the fluctuation-dissipation theorem connect-

ing between the response of a given system to an external disturbance and the correlation

of internal fluctuations of the system in the absence of the disturbance[27]. In Eq. (2), ρeq

is the equilibrium density matrix; d (τ) is the the projection of the Heisenberg representa-

tion of the atomic dipole operator,
∑

i

~ri, on the polarization vector of the radiation field,

(averaging over all possible polarizations is implied). ~ri is the position operator of the i’th

electron. d̃ denotes the Kubo transform of d:

d̃ (β) = 1
β

∫ β

0
d (i~λ) dλ. (3)
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(For the relation between the correlation function CK and more commonly used functions

such as the symmetrized correlation function C (τ) = 1
i~
trace (ρeq (d (τ) d (0) + d (0) d (τ))) ,

see references [24],[12],[25] ).

Expanding the dipole and the density operators in eigenfunctions of the atomic Hamil-

tonian, H , with energies {En} using:

(ρeq)nn = e−β(En−Qµ)
∑

n

e−β(En−Qµ)

,
(4)

where Q is the number of electrons, the formula for µat becomes:

µat (E) = E2 4π
3

e2

~c
n0

1
~

1−e−βE

E
Re
∫∞

0
ϑ (τ, E, β) e−iEτ/~dτ, (5)

with

ϑ (τ, β) = 1
∑

i

e−β(Ei−Qµ)

∑

i,f

e−β(Ei−Qµ) |dif |
2 ei(Ei−Ef)τ/~

(6)

and ~dif =
〈

i|~d|f
〉

. Eq. ( 5) is equivalent to the Fermi golden rule in the form used

in [14][15]. This can be easily seen by performing the τ integral and using the relation

δ (Ef − Ei − E) = 1
π
limγ−>0 Im

{

1
Ef−Ei−E−iγ

}

. However, as will become clear from the

results below, the summation over states becomes an easier task when performed prior to

the τ integration.

III. SUMMATION OVER CONFIGURATIONS

Eq. (6) is a formula for ϑ in terms of the exact many-electron energies and dipole matrix

elements. As described in the introduction, in practice, these quantities are evaluated by a

perturbation expansion, using the radial average potential approximation as the zero order.

A configuration is a zero order many-electron state described by the occupation numbers

of the shells. Symbolically a configuration is written as C =
∏

s

(nslsjs)
qs where a shell is

defined by the principal quantum number ns, the orbital angular momentum of the large

component in the Dirac wave function, ls, and the total orbital+spin angular momentum

js ; qs is the occupation number of the shell. Configurations are degenerate states. Mutual

electron-electron interaction lifts the degeneracy and splits the configurational energy. This

effect is evaluated as a first order correction, i.e., as the sum of expectation values, in the zero
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order states, of energies due to coulomb interaction between all pairs of electrons. In prin-

ciple, to evaluate the first-order correction one should diagonalize the perturbation within

each degenerate subspace. The methods discussed here involve only configurational averaged

quantities, i.e. taking the trace, a process which does not require the diagonalization.

Based on this picture, the STA method [14][15] splits the summation in Eq. (6) into

a few stages. First, the spectrum is split into the different contributions of one-electron

transitions, i.e.:

ϑ =
∑

a,b

ϑab, (7)

where ϑab is the spectrum due to all possible transitions in which an electron transits from

the shell nalaja to another shell nblbjb . The summation is over all configurations C in which

the shell a has at least one electron i.e. the occupation number is qa > 0 and the shell b

has at least one hole, i.e. qb < 2jb + 1 . The summation over all accessible configurations is

further partitioned by introducing an intermediate summation step over superconfigurations

Ξ[14][15]:

ϑab = 1
N

∑

Ξ

(

∑

C∈Ξ

gC exp (−β (EC −Qµ))

)

∑

C∈Ξ

gC exp(−β(EC−Qµ))
∑

C∈Ξ

gC exp(−β(EC−Qµ))

ϑab
C , (8)

where N =
∑

Ξ

∑

C∈Ξ

gC exp (−β (EC −Qµ)) =
∑

AllC

gC exp (−β (EC −Qµ)).

Each superconfiguration represents a particular distribution of the electrons between

supershells ( a group of energetically adjacent atomic shells).

In Eq.( 8) ϑab
C represents the contributions from the transition array Cab composed of

all transitions from the shell nalaja in the configuration C to the shell nblbjb and gC is

the zeroth order degeneracy. Following the STA method we adopt the assumption of the

UTA approach[13] that these transitions merge into an unresolved spectrum of a Gaussian

shape(i.e a UTA). Thus the three lowest energy moments of the UTA fab
C Eab

C

(

∆Eab
C

)2
are

used to construct the spectrum. In the context of the present work this means

ϑab
C (τ, β) = fab

C exp
{

−1
2

(

∆Eab
C

)2
τ 2 + iEab

C τ
}

(9)
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and:

ϑab
Ξ ≡

1
∑

C∈Ξ

gCe−β(EC−Qµ)

∑

C∈Ξ

gC exp (−β (EC −Qµ))ϑab
C (τ, β)

= 1
∑

C∈Ξ

gCe−β(EC−Qµ)

∑

C∈Ξ

fab
C gC exp

{

Φab
C ({qC} , β, τ 2, iτ)

}

,
(10)

where.

Φab
C ({qC} , β, τ 2, iτ) ≡ −β (EC −Qµ)− 1

2

(

∆Eab
C

)2
τ 2 + iEab

C τ. (11)

The moments of the UTA are represented in the following compact formulae [14]: The

strength of a transition is:

fab
C = qCa

(

gb − qCb
)

(〈a ||r|| b〉)2 (12)

where 〈a ||r|| b〉 is the reduced matrix element of the dipole. The configurational average

of the energy is:

EC =
∑

s

qs 〈s〉+
1
2

∑

s

∑

r

qs (qr − δrs) 〈s, r〉 (13)

with

〈s〉 ≡ εs +
〈

s
∣

∣−V (r)− Z
r

∣

∣ s
〉

(14)

and

〈s, r〉 = F 0 (s, r)− 1
2

gs
gs−δs,r

∑

k

(1− δsrδk0)





js k jr

1/2 0 −1/2





2

G(k) (s, r) , (15)

where F (k), G(k) are the Slater integrals corresponding to direct and exchange interaction

and





js k jr

1/2 0 −1/2



 is the 3j Symbol and ls, k, lr obey the triangle inequality.

The center of gravity of the UTA is:

Eab
C = Dab

0 +
∑

s

(qs − δsa)
(

Dab
s +

(

δsa
gs−1
− δsb

gs−1

)

ϕ (a, b)
)

, (16)

where:

Dab
0 = 〈b〉 − 〈a〉 , (17)

Dab
s = (〈s, b〉 − 〈s, b〉) (18)

8



and

ϕ (a, b) ≡ −
∑

k 6=0
even

gagb







k ja ja

1 jb jb











ja k ja
1
2

0 −1
2









jb k jb
1
2

0 −1
2



F (k) (a, b)

+
∑

k

gagbδk,1−3

3





ja k jb
1
2

0 −1
2





2

1+(−1)la+lb+k

2
G(k) (a, b) .

(19)

The variance of the UTA is:

(

∆Eab
C

)2
=
∑

s

(qs − δsa) (gs − qs − δsb) (∆
2)

ab
s , (20)

where (∆2)
ab
s is independentof the occupation numbers.

These are all the building blocks necessary for the summation in formula 10.

IV. RESOLVED-SUPER-TRANSITION-ARRAYS

For the simplicity of presentation we focus on the case in which the width of the UTA,
(

∆Eab
C

)2
, as well as the electron-electron interaction terms in the Boltzmann factor, i.e.

in EC (but not in Eab
C ) are ignored. The treatment of the general case is deferred to the

Appendix. Ignoring the width of the UTA, as well as the electron-electron interaction terms

in EC , Eq.( 9) is reduced to:

ϑab
Ξ = 1

∑

C∈Ξ

gCe−β(EC−Qµ)

∑

C∈Ξ

gCe
−β(EC−Qµ)fab

C eiE
ab
C τ/~,

(21)

where the zeroth order degeneracy is: gC =
∏

s∈C





gs

qCs



. The Fourier transform yields the

STA spectrum. The standard STA method[14] may be obtained by a cumulant expansion (

[12]) of formula 21 and truncation at the third cumulant. This may be seen by writing the

Taylor series for the factor eiE
ab
C τ/~, to obtain the expansion:

ϑab
Ξ = 1

UΞ
fab
Ξ

∞
∑

n=0

1
n!
(iτ/~)n µΞab

n , (22)

where:

µΞab
n = 1

fab
Ξ

∑

C∈Ξ

gCe
−β(EC−Qµ)fab

C

(

Eab
C

)n

(23)

and fab
Ξ =

∑

C∈Ξ

gCe
−β(EC−Qµ)fab

C = µΞab

0 .

9



Using the Gaussianity assumption;

ϑab
Ξ (τ, β) = IabΞ

1
2π

∫∞

−∞
1

√

2π(∆εabΞ )
2 exp

[

−1
2

(E−εabΞ )
2

(∆εabΞ )
2

]

eiEτ/~dE

= IabΞ e−iεabΞ τ− 1
2(∆εabΞ )

2
τ2

yields the total radiation intensity, average energy and variance of the STA. Explicitly:

IabΞ =
[

ϑab
Ξ (τ, β)

]

τ=0
= 1

UΞ
fab
Ξ , (24)

εabΞ =
[

∂
∂(−iτ/~)

ln
(

ϑab
Ξ (τ,β)

IabΞ

)]

τ=0
=

µΞab
1

µΞab
0

, (25)

(

∆εabΞ
)2

=
[

∂2

∂(−iτ/~)2
ln
(

ϑab
Ξ (τ,β)

IabΞ

)]

τ=0
=

µΞab
2

µΞab
0

−
(

µΞab
1

µΞab
0

)2

. (26)

These results coincide with Eqs. (20),(21),(22) in reference [14]. In the practical application

of the standard STA method, one is forced to represent the spectrum by a large number of

narrow Gaussian STAs in order to minimize the error due to the truncation of the series.

Typically a STA run uses only a few self-consistent potentials (and sets of one-particle states

and energies) for every degree of ionization, but a multitude of STAs. Thus a multitude of

STAs (and many more UTAs) share the same set of one-particle states and energies.

Our new RSTA method avoids the approximation of Gaussian STAs (i.e. the approxi-

mation in the truncation at the second cumulant). This is done by the application of the

mathematical machinery of partition functions of independent particles directly to the con-

tribution of transition arrays (actually their Fourier transform) to obtain the exact sum

of all UTAs sharing the same one-particle states and energies. Explicitly, this is done by

absorbing the time dependent exponent in the Boltzmann factor and using Eqs.( 13) and

(16) to write the exponential factors in Eq. (21) as :

gCe
−β(EC−Qµ)eiE

ab
C τ/~

= e−i(Dab
0 −Dab

a )τ/~
∏

s∈C





gs

qCs



 e−qCs {β(εs−µ)+iDab
a τ/~}

= e−i(Dab
0 −Dab

α )τ/~
∏

s∈C





gs

qCs





(

Xab
a (β, τ)

)qCs ,

(27)

where:

Xab
s (β, τ) = e−{β(εs−µ)+iDab

s τ/~}. (28)
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Next, we define the ”superconfigurational degeneracy vector” with components (~g)s = gs

and the ”complex supertransitional pseudo partition function”:

Uab
Ξ (~g, β, τ) =

∑

C∈Ξ

∏

s∈C





gs

qCs





(

Xab
s (β, τ)

)qCs (29)

and

Uab (~g, β, τ) =
∑

Ξ

Uab
Ξ (~g, β, τ) . (30)

Using the well known combinatorial relations q





g

q



 = g





g − 1

q − 1



 and

(g − q)





g

q



 = g





g − 1

q



 ,

one gets:

ϑab
Ξ = (〈a||r||b〉)2e

−i(Dab
0 −Dab

a )τ/~

Uab
Ξ |τ=0

∑

C∈Ξ

∏

s∈C





gs

qCs





(

Xab
s

)qCs qCa
(

gb − qCb
)

= (〈a||r||b〉)2e
−i(Dab

0 −Dab
a )τ/~

Uab
Ξ |τ=0

gagbX
ab
a

∑

C∈Ξ

∏

s∈C





gs − δsa − δsb

qCs − δsa





(

Xab
s

)qCs −δsa

= (〈a||r||b〉)2e
−i(Dab

0 −Dab
a )τ/~

Uab
Ξ |τ=0

gagbX
ab
a Uab

Ξ,Q−1

(

~g − ~δa − ~δb, β, τ
)

.

(31)

In Eq.(31) the length of the vector ~δa equals to the number of shells. all components vanish

except for the a component which has the value of 1.

Note that the algebraic dependence of the formula for the partition function 29 on the

degeneracies, shell occupation numbers and X is the same as of the standard partition

function, therefore it obeys the same recursion relations and is accessible to the efficient

evaluation methods [14][15],[19],[20]. Unlike references[14][15],[19],[20] where the partition

function is used for the evaluation of the energy-moments of the spectrum, Eqs (31) when

Fourier Transformed with respect to time expresses the STA spectrum itself as a partition

function.

Finally, the formula for the spectral absorption coefficient is obtained by using Eqs.( 31)
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and (5):

µat (E) = 4π
3

e2

~c
E
~
n0

(

1− e−βE
)

1
U |τ=0

∑

Ξ,a,b

(〈a ||r|| b〉)2 gagb

×Re
∫∞

0
e−i(Dab

0 −Dab
a )τ/~Xab

a Uab
Ξ,Q−1

(

~g − ~δa − ~δb, β, τ
)

e−iEτ/~dτ.

(32)

V. NUMERICAL EXAMPLE

We have written, from scratch, a new numerical code called RSTA. This code can calculate

the spectral absorption by two optional methods, the standard STA[14] method and our

new RSTA method. In the STA method, single-particle energies are used to construct

the real partition functions, which in turn are used together with the Slater integrals to

construct the total intensity, average energy and variance of the STA. The spectrum of

each STA is constructed as a Voigt function, which accounts for STA width as well as

Doppler and electron impact effects. The absorption spectrum is obtained by the summation

of contributions from all STA’s. In the RSTA method single-particle energies and Slater

integrals are used to construct the CPPF at different times (eq. 29), from which the spectral

absorption coefficient is evaluated by EQ.( 32).

In both methods, the relativistic single-particle radial eigenfunctions and eigenvalues are

generated by a self consistent solution of the radial Dirac equation with the Hartree-Fock-

Slater (HFS) potential in an ion-sphere.

The STA method requires two refinement loops. In the external refinement loop, the

number of SCs sharing one-particle solutions with the same HFS potential is decreased. For

example, in the average atom limit, only one potential is used for all possible configurations

sharing the same potential. In reference [14] a different potential is used for each degree of

ionization. Further refinement and convergence is obtained when few potentials are used

for each degree of ionization. Yet, further spectral resolution is obtained by an additional

internal loop in which the number of Gaussian STAs sharing the same HFS solution is

increased. In the RSTA method, the internal loop of refinement is not necessary, since the

exact analytical sum of contributions from all configurations sharing the same potential is

represented by a single CPPF. On the other hand, the RSTA method requires evaluation of

CPPF on a time grid. In our calculation, for each SCF potential, Vj , and allowed transition,

aj → bj , where aj and bj are bound ionic shells we define a time grid. The resolution

and size of the time grid are determined from the zeroth order transition energies , and an
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estimation of the expected width, Γ. Rapid oscillations in the integrand are elliminated by

utilizing the fact that the Fourier transform (FT) in Eq.32 equals to the FT of the function

Xab
a (τ)Uab

Ξ,Q−1

(

~g − ~δa − ~δb, β, τ
)

, shifted by the energy Dab
0 −Dab

a . The time resolution, ∆t,

is estimated as 2π/∆t = n×|εβ − εα|×w, and the time interval as [0, 2m/Γ], where typically

2 < n < 5, m ≥ 4 and 0.1 ≤ w < 0.3. In order to incorporate impact broadening effects,

we also multiply by the factor exp(−Γ/2τ) prior to the Fourier Transform. Typically, only

some 100-1000 CPPF calculations are required for each transition aj → bj ,in order to obtain

a UTA like resolution of the spectrum.

Figure (1) shows the b-b absorption spectrum of the 3p3/2 → 4d5/2 transition in a Gold

plasma at temperature of 1keV and density of 0.5gr/cm3,(see similar example in p. 227 in

Ref. [7]). Only zero order energies are used in the evaluation of the partition function and

the widths of the UTAs are ignored [14]. (See however reference [15] and the Appendix VII ).

Also, for the sake of simplicity we have used a single potential for each degree of ionization,

having the ionic states Q = 11..21 (shells below 3s shell remain fully occupied for these

Q-states). The time grids contain 2000 grid points and resolution of 0.15a.u. The electron

impact parameter, Γ ≈ 0.04a.u., is calculated from the simple model of section 7.1.2 in Ref.

[6]. For comparison, we have evaluated the spectrum also by the STA method with increasing

number of supershells and correspondingly increasing number of superconfigurations, and

Gaussian STAs. Figure (2) focuses on the energy range 3420-3460 eV. Clearly, a convergence

is obtained only when a huge number of STAs (half a million) is used. Note that in the

range 3420-3430 eV even half a million of STAs do not fully reveal the spectral details.

In this case, half a million partition functions and half a million recursion formulas were

calculated for the energy and variance of each STA. In addition, half a million Voigt profiles

were calculated for each STA. On the other hand, in the RSTA calculation, only 22, 000

CPPF and 11 FTs were calculated. In order to check the analytical convergence of the STA

spectru to the RSTA spectru, we have also calculated an extreme case of a UTA spectrum

of a low ionic state, Q = 14, where only four electrons out of the 14 remain unfrozen and

play an active combinatorial role. For this check, the STA spectrum is calculated as a sum

of Lorentzian profiles, rather than Gaussians. The RSTA and STA spectral profiles in this

extreme case( not shown here,) completely coincide.

13
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Figure(1): b-b absorption spertrum of gold at T = 1Kev and ρ = 0.5 g/cm3
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Figure(2) Zoom of the energy range 3420-3460 eV in Figure(1)

VI. SUMMARY AND DISCUSSION

In this paper we have developed a new method by which, the same mathematical machin-

ery used in the standard STA method for the evaluation of moments of the STA spectrum,

in terms of partition functions, is used for the exact evaluation of spectrum itself in terms

of complex pseudo partition function (Eq.( 31)). The STA moments may be recovered as an

approximation based on a cumulant expansion truncated at the third term (Eqs (24)-(26)).

14



The numerical example presented in figures (1)-(2) show that a detailed spectrum which

requires half a million STAs may be presented as a single RSTA.

The traditional STA concept was originally developed for plasmas at LTE. Later on, the

idea was adapted also to the treatment of non-LTE plasma conditions (e.g. [30],[31]), and

also to the treatment of the electronic degrees of freedom in the equation of state (e.g. [32]).

The RSTA method may be adapted also to these tasks.

The possibility to extend the method to resolutions beyond the UTA should also be

explored. Another direction which should be explored is the incorporation of the RSTA

method with screened hydrogenic model (SHM e.g.[28]) into a code for rapid (possibly

in-line) evaluation of opacity. The RSTA method removes the calculational bottleneck of

summation over transitions while the SHM removes the calculational bottleneck of the SCF

process and the evaluation of Slater integrals.
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VII. APPENDIX A: A FORMULA FOR THE SPECTRAL ABSORPTION COEF-

FICIENT ACCOUNTING FOR UTA WIDTH AND FIRST ORDER CORRECTION

IN THE BOLTZMANN FACTOR.

The occupation numbers may be written as a vector of length of the number of shells,

Nshell:
(

~qC
)

r
≡ qCr .

Using this definition and the explicit form of the configurational average energy, center of

gravity and variance of a UTA (Eqs.( 13), (16) and (20) respectively) the scalar exponent

Φab
C ({qC} , β, τ 2, iτ) (Eq. (11)) may be written as a sum of three scalars; A scalar, Θab which

is independent of ~qC , a scalar product between ~qC and a vector of coefficients ~Υab which is

independent of ~qC and a quadratic form in the vector ~qC with a real symmetric Nshell ∗Nshell

matrix of coefficients,
←→
Ω ab, which is independent of ~qC .

The quadratic form prevents a direct application of the combinatorial manipulations of

Eqs (27)-(31). To cure this problem we diagonalize the matrix of coefficients,
←→
Ω ab and

apply the Hubbard-Stratonovich transformation[23] (Eq. (33) below) which eliminates the

nonlinear dependence on occupation numbers. Explicitly this is done as follows:

First, the quadratic form is evaluated in a rotated system;

~pC = ~qC ·
←→
R ab,

which is chosen so that the matrix
←→
Ω ab is diagonal. Explicitly, the elements of the k

eigencector of
←→
Ω ab ,obey:

∑

s

Ωab
rsRsk = λkRrk.

i.e.
←→
Ω ab is diagonalized by a matrix with the elements Rrk,

(←→
Λ
)

jk
≡
∑

s,r

RjrΩrsRsk =
∑

r

RjrλkRrk

= λk

∑

r

RjrRrk = λkδjk,

and
←→
Ω is obtained from

←→
Λ by the inverse of this symmetric transformation:

←→
Ω =

←→
R ·
←→
Λ ·

(←→
R
)T

.

Using Eq. (12) for the dipole matrix element together with the integral identity:

exp
(

−
(

pCr
)2

λab
r

)

=
√

cr
2π

∫∞

−∞
exp

(

−1
2
|cr|x

2 + ixpCr
√

2λab
r |cr|

)

dx (33)
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the sum in Eq.( 10) is written as:

UΞϑ
ab
Ξ =

=
∑

C∈Ξ

{

fab
C gC exp

{

−Θ−
∑

s

qCs Υs

}}

Aab
C

with

Aab
C =

∏

r

exp
{

−
(

pCr
)2

λr

}

=
∏

r

{

√

cr
2π

∫∞

−∞
exp

(

−1
2
|cr|x

2
r + ixrp

C
r

√

2λab
r |cr|

)

dxr

}

=
∫∞

−∞
...
∫∞

−∞
exp

(

−1
2

∑

r

|cr|x
2
r + i

∑

s

qCs
∑

r

xrR
ab
sr

√

2λab
r |cr|

)

∏

r

√

cr
2π
dxr

=
∫∞

−∞
...
∫∞

−∞
exp

(

−1
2

∑

t

∑

s

Pstξsξt + i
∑

s

qCs ξs

) ∣

∣

∣

∣

(←→
T
)−1
∣

∣

∣

∣

∏

r

√

cr
2π
dξr.

(34)

The matrices
←→
T and

←→
P and the vector ~ξ in Eq.( 34) are defined by:

(←→
T
)

sr
= Rab

sr

√

2λab
r |cr|,

(←→
P
)

st
=

(

∑

r

cr

(

(←→
T
)−1
)

rs

(

(←→
T
)−1
)

rt

)

,

and:

~ξ =
←→
T · ~x.

Next, define:

Γab
(

~ξ
)

= exp

(

−1
2

∑

t

∑

s

Pstξsξt

) ∣

∣

∣

∣

(←→
T
)−1
∣

∣

∣

∣

∏

r

√

cr
2π
.

With this definition, the summation over configuration takes the form:

UΞϑ
ab
Ξ =

=
∑

C∈Ξ

{

fab
C gC exp

{

−Θ−
∑

s

qCs Υs

}}

Aab
C

=
∑

C∈Ξ

{

fab
C gC exp

{

−Θ−
∑

s

qCs Υs

}}

×
∫∞

−∞
...
∫∞

−∞
exp

(

−1
2

∑

t

∑

s

Pstξsξt + i
∑

s

qCs ξs

) ∣

∣

∣

∣

(←→
T
)−1
∣

∣

∣

∣

∏

r

√

cr
2π
dξr

= exp {−Θ} (〈a ||r|| b〉)2

×
∫∞

−∞
...
∫∞

−∞







∑

C∈Ξ

qCa
(

gb − qCb
)

∏

s∈C





gs

qCs



 [exp {− (Υs − iξs)}]
qCs







Γab
(

~ξ
)

dNshell~ξ.
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where the expression gC =
∏

s∈C





gs

qCs



 for the configurational degeneracy was used.

Now define

X̃ab
s (β, τ) = exp

{

−Υab
s + iξabs

}

and the complex pseudo partition function:

Ũab
Q ≡

∑

C∈Ξ

∏

s∈C





gs

qCs





(

X̃ab
s

)qCs

=
∑

C{Sum(qCs )=Q}

∏

s∈C





gs

qCs





(

X̃ab
s

)qCs
,

(35)

and apply the same combinatorial steps as in Eq.( 31). The result is a the generalization of

Eq. (32):

µat (E) = 4π
3

e2

~c
E
~
n0

(

1− e−βE
)

1
U |τ=0

∑

Ξ,a,b

(〈a ||r|| b〉)2 gagb

×Re
∫∞

0
dτ
{

exp
{

−Θab (τ)
} ∫∞

−∞
dN~ξ

{

X̃ab
a

(

~ξ
)

Ũab
Ξ,Q−1

(

~g − ~δa − ~δb, β, τ, ~ξ
)

Γab
(

~ξ
)}}

.

(36)

Eq.( 36) is a formula for the spectral absorption coefficient which accounts for the width of

the UTA as well as the first order correction in the Boltzmann factor without the restriction

of the high temperature approximation.
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