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Abstract

We present a systematic hierarchy of approximations for local exact-decoupling of four-component

quantum chemical Hamiltonians based on the Dirac equation. Our ansatz reaches beyond the trivial

local approximation that is based on a unitary transformation of only the atomic block-diagonal part of

the Hamiltonian. Systematically, off-diagonal Hamiltonian matrix blocks can be subjected to a unitary

transformation to yield relativistically corrected matrix elements. The full hierarchy is investigated

with respect to the accuracy reached for the electronic energy and molecular properties on a balanced

test molecule set that comprises molecules with heavy elements in different bonding situations. Our

atomic (local) assembly of the unitary transformation needed for exact decoupling provides an excellent

local approximation for any relativistic exact-decoupling approach. Its order-N2 scaling can be further

reduced to linear scaling by employing the neighboring-atomic-blocks approximation. Therefore, it is

an efficient relativistic method perfectly well suited for relativistic calculations on large molecules. If

a large molecule contains many light atoms (typically hydrogen atoms), the computational costs can

be further reduced by employing a well-defined non-relativistic approximation for these light atoms

without significant loss of accuracy.
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I. INTRODUCTION

The consideration of relativistic effects is essential to the proper understanding of the chem-

istry of heavy-element containing molecules [1, 2]. The Dirac equation provides the relativistic

quantum mechanical description of a single electron in the presence of external electromagnetic

potentials. As the Dirac operator comprises four-dimensional operators, its eigenfunctions are

four-component. The relativistic many-electron Hamiltonian is composed of the one-electron

Dirac operators and two-electron interaction operators. The Coulomb interaction turned out

to be sufficiently accurate for the description of chemical phenomena and the corresponding

many-electron Hamiltonian is called the Dirac–Coulomb Hamiltonian.

A relativistic method based on the Dirac–Coulomb Hamiltonian and four-component one-

electron states to calculate the total energy and other physical properties of a many-electron atom

or molecule is called a four-component method. A four-component method also yields negative-

energy solutions, which are pathologic and of no use in chemistry. Also, a large number of basis

functions is required to properly describe the negative-energy states. These are two drawbacks

of four-component methods that motivated the development of two-component methods, which

remove the negative energy solutions and could in principle exactly reproduce the results of

four-component calculation [2].

Several relativistic two-component methods were developed in the past decades. For exam-

ple, one of the widely used approaches is the second-order Douglas–Kroll–Hess method (DKH2)

[3, 4]. It employs the free-particle Foldy–Wouthuysen (FW) [5] transformation as well as se-

quential Douglas–Kroll [6] transformations to decouple the four-component operator. High or-

der (more than 2) [7–10] and even arbitrary order [11–16] DKH methods have been developed.

The zeroth-order regular approximation (ZORA) [17–19] is another highly successful relativistic

two-component method. Within the ZORA framework, it is particularly easy to implement the

calculation of molecular properties; see Refs. [20, 21] for very recent examples and Ref. [22] for

a review.

In recent years it was shown that, if the goal is to exactly decouple the four-component

Hamiltonian matrix instead of the Hamiltonian operator, the formulae of exact decoupling can

be directly obtained. The Barysz–Sadlej–Snijders (BSS) [23–26] method aims to exactly decou-

ple the free-particle FW-transformed four-component Hamiltonian matrix by a matrix operator

of the form derived in Ref. [27]. The key matrix operator, which is used to construct the de-

coupling transformation matrix, is obtained by solving an iterative equation. However, invoking
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the free-particle FW transformation turns out to be not necessary for the construction of the

exact decoupling transformation which has led to the formulation of a one-step protocol. The

pioneering work of this one-step transformation was provided by Dyall [28–32] in the form of

the so-called normalized elimination of the small component (NESC) approach. Later it was

generalized to the so-called X2C method by several groups [33–44]. Since the DKH method

also employs matrix techniques to evaluate the Douglas-Kroll transformation, it is also able

to exactly decouple the four-component Hamiltonian matrix. This has been shown within the

arbitrary-order approach [11–14, 16, 45]. For reviews of these developments see Refs. [46–52]

Even within a scalar relativistic approximation, where the spin-dependent operators are ne-

glected, the construction of the relativistic Hamiltonian matrix dominates the step of the one-

electron integral evaluation. This is the case because the relativistic transformation is done

within an un-contracted basis set and involves many matrix manipulations such as multiplica-

tion and diagonalization. For a large molecule including only one or a few heavy atoms, this

would waste computational resources since the relativistic effects are highly local and thus only

significant for heavy atoms. It is therefore clear that a local relativistic method is desirable.

Even for a molecule containing only heavy atoms, such a local relativistic approach would be

preferable as we shall see. This is evident from the relativistic effective core potential (ECP)

approach or from the frozen-core approximation which turned out to be accurate approaches for

the calculation of valence electron properties [53]. However, a standard ECP cannot respond

to the change of environment and we cannot obtain accurate results for the properties which

require the electronic wavefunction in the core region of atoms. This also holds true for the

frozen-core approximation. Therefore, an all-electron local relativistic method is desired.

The relativistic Hamiltonian operator is universal in coordinate space and a local approach

is unfeasible at the operator level. However, since most of quantum chemical calculations apply

a linear combination of atom-centered basis functions, we may employ these basis functions to

construct atomic projectors as it is done in charge and spin population analysis [54]. For those

Hamiltonian matrix blocks for which relativistic corrections are important, we shall derive a local

relativistic Hamiltonian matrix to evaluate it. The locality is then exploited in the basis-function

space instead of coordinate space. A crucial aspect to determine will be which block of the

Hamiltonian matrix requires a relativistic correction and how to evaluate it. Undoubtedly, the

heavy atom diagonal blocks will need a relativistic description, while the relativistic correction

of heavy atom off-diagonal blocks depends on their contribution to physical observables and on
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the feasibility of applying the relativistic correction. For relativistic transformation techniques,

such as DKH and X2C, it is impossible to apply the relativistic transformation to an off-diagonal

block alone without information about other blocks. It requires the information of a full square

block to construct the relativistic transformation. Such a difficulty disappears if one employs an

operator-based relativistic methods such as ZORA. The off-diagonal block of Hamiltonian matrix

can be directly computed from relativistic integrals. However, the ZORA method provides a

very poor description of atomic inner-shell orbitals, which carry the largest part of relativistic

effects. In this sense, the exact decoupling methods are the best candidate for applying a local

relativistic scheme since they do not neglect important relativistic corrections.

All current exact decoupling methods employ the transformation technique. It is therefore

not trivial to apply the relativistic correction to heavy-atom off-diagonal Hamiltonian matrix

elements. However, in this work we propose that if the local approximation is applied to the

decoupling transformation instead of the Hamiltonian matrix, one could obtain results which

include the relativistic correction to heavy atom off-diagonal blocks. We also note that the

main effort for the construction of the relativistic Hamiltonian matrix with exact-decoupling

methods is due to the evaluation of the decoupling transformation matrices. Therefore, a local

approximation to the decoupling transformation would also lead to a significant reduction of the

computational cost.

II. RELATIVISTICALLY LOCAL STRUCTURE OF THE HAMILTONIAN MATRIX

The following notation will be used throughout our discussions. Upper case labels A,B,C de-

note heavy atoms which require relativistic corrections, while lower case labels a, b, c denote light

atoms for which a (standard) non-relativistic description can be assumed to be accurate enough

based on numerical evidence compiled within computational chemistry in the past decades. To

be more precise, the former labels refer to nuclei with high nuclear charge numbers, while the

latter refer to those with low nuclear charge numbers (typically with nuclear charges of less than

two dozen protons). Of course, the distinction whether a nucleus is considered heavy or light

bears some sort of arbitrariness and it will be made on the basis of the accuracy required in

a quantum chemical calculation. In general, there are then five different types of Hamiltonian

matrix blocks HAA, HAB, HAa, Haa, and Hab that need to be considered.

The evaluation of relativistic Hamiltonian matrix with exact-decoupling approaches requires
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a set of square matrices. They are the non-relativistic kinetic energy matrix T ,

Tij =
1

2
〈λi|p2|λj〉, (1)

the external potential matrix V ,

Vij = 〈λi|V|λj〉, (2)

and the overlap matrix S,

Sij = 〈λi|λj〉, (3)

as well as an additional relativistic matrix W

Wij =
1

4c2
〈λi|σ · pVσ · p|λj〉, (4)

(note that all expressions are given in Hartree atomic units, in which the rest mass of the

electron takes a numerical value of one). In the above equations, λi denotes the i-th 2-spinor

atom-centered basis function, V the external potential, c the speed of light, σ the vector of

Pauli spin matrices. The basis functions λi may be grouped according to the atomic nucleus

to which they are assigned, which is key to the local approaches discussed in the following.

The matrix representation of the relativistic Hamiltonian is then evaluated as a function of the

above-mentioned matrices

H = H(T, V,W, S). (5)

A straightforward idea for a trivial local approximation is to apply the evaluation of the

relativistic Hamiltonian matrix only to atomic (i.e., diagonal) blocks

HAA = f(TAA, VAA,WAA, SAA), (6)

(instead of to the full matrix, but where A may also represent a group of atoms) and to ignore

the relativistic correction to all off-diagonal blocks

HAB = TAB + VAB. (7)

Adding more atoms to a group A will improve the accuracy, but the computational advances

will be lost when a group A becomes very large. This approach was employed in Ref. [55, 56]

and explored in detail in Ref. [57] for the low-order DKH method. We refer to it as the diagonal

local approximation to the Hamiltonian (DLH) matrix. It is clear that the DLH approximation

can also be applied to relativistic exact-decoupling approaches. The DLH approximation works
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well at large interatomic distances, but the difference to a reference energy increases with shorter

distance.

However, relativistic corrections to off-diagonal blocks are also important especially when

inter-atomic distances are short. The necessity of applying the relativistic corrections to off-

diagonal blocks has already been discussed in Ref. [58] with a so-called two-center approximation.

In Ref. [58], the DKH transformation was applied to pairs of atoms (A⊕ B)

HA⊕B = H(TA⊕B, VA⊕B,WA⊕B, SA⊕B), (8)

with

HA⊕B =


 HAA HAB

HBA HBB


 , (9)

to obtain a relativistically corrected off-diagonal Hamiltonian matrix HAB. Unfortunately, such a

two-center approximation introduces an inconsistent treatment to diagonal blocks. For instance,

HAA can be obtained from either the pair (A⊕ B) or from another pair (A⊕ C).

So far, we have only discussed the AA and AB blocks which, by definition, require a relativistic

description for both two atoms. Since relativistic corrections for light atoms are very small and

can be neglected, Haa and Hab can be approximated by the non-relativistic Hamiltonian matrices

Haa = Taa + Vaa, (10)

Hab = Tab + Vab. (11)

A relativistic scheme for the heavy–light hybrid off-diagonal blocks HAa should, however, be

considered explicitly.

III. LOCAL DECOMPOSITION OF THE X-OPERATOR

The general expression of exact decoupling transformations can be written as

U =




Z+ 1√
1+X†X

Z+ 1√
1+X†X

X†

−Z− 1√
1+XX†

X Z− 1√
1+XX†


 ≡


 ULL ULS

USL USS


 . (12)

Z+ and Z− are two-component unitary operators, and only Z+ is required for the evaluation

of the electrons-only Hamiltonian. The X-operator generates the electronic small-component

functions ϕ+
S from the large-component functions ϕ+

L

ϕ+
S = Xϕ+

L . (13)
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Two-dimensional Hamiltonians are then obtained by applying the unitary transformation of Eq.

(12) to blockdiagonalize (’bd’) the four-dimensional Dirac-based Hamiltonian D

Hbd = UDU †. (14)

It yields both the electrons-only Hamiltonian H (as the upper left block in Hbd) and the one for

negative-energy solutions, although the latter will be discarded.

As discussed by Dyall in Ref. [29] for the NESC method, the Breit-Pauli approximation to

the X matrix, which is used to construct the relativistic transformation matrix, is

X = I, (15)

where I denotes the identity matrix. Such X = I approximation are not variational stable and

thus cannot be used for variational calculation. However, one could employ this approximation

for light atoms only

Xaa = I, (16)

since the corrections to light atoms are small and may not affect variational calculations. This

idea was suggested in Ref. [42] for the X2C method but no results were presented.

Although the lowest level approximation to X Eq. (15) did not provides useful results, the

atomic approximation to the X matrix gave results with very small errors. As discussed by

Dyall in Ref. [30, 31], the X matrix can be approximate as the direct sum of atomic blocks

X = XAA ⊕XBB ⊕ · · · (17)

This approximation resembles the linear combination of atomic four-spinors ansatz in four-

component calculations. The same approach was also employed in Ref. [59] in the sense of an

atomic approximation to the projection on electronic states. If the electronic states are further

transformed to a two-component picture by a renormalization matrix, this gives rise to a local

X2C method. As discussed in Refs. [38, 42], the local approximation to the X matrix Eq. (17)

works well for spectroscopic constants of diatomic molecules.

However, there are some drawbacks of the local-X matrix approximation to the X2C method.

Firstly, it only reduced the cost for the evaluation of X matrix, while the exact-decoupling

transformation matrices are still of molecular dimension as the renormalization matrix is not

atomic block diagonal even if the X matrix is. The computational demandings for the evaluation
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of the relativistic approximation are thus still tremendous for large molecules. Secondly, the X =

I approximation did not provide a satisfactory treatment of the Aa blocks, since it may suffer

from variational collapse and Eqs. (10) and (11) cannot be fulfilled within this approximation.

IV. LOCAL APPROXIMATIONS TO THE EXACT-DECOUPLING TRANSFORMA-

TION

In this article, we suggest an local approximation to the exact-decoupling transformation. We

may approximate the unitary transformation by taking only the ’atomic’ diagonal blocks (all

off-diagonal blocks are then set to zero)

U = UAA ⊕ UBB ⊕ · · · , (18)

where the atomic unitary transformations UAA are obtained from the diagonalization of the

corresponding DAA blocks of matrix operator D. We denote this approximation to U as the

diagonal local approximation to the unitary decoupling transformation (DLU).

If we now substitute the approximate unitary transformation of Eq. (18) into Eq. (14), the

diagonal blocks,

Hbd
AA = UAADAAU

†
AA, (19)

turn out to be the same as in the DLH approach, while the off-diagonal blocks then read

Hbd
AB = UAADABU

†
BB , (20)

which is to be compared with the expression

Hbd
AB =

∑

I,J

UAIDIJU
†
JB, (21)

where U has not been approximated (here, I and J run over all atomic blocks). Hence, the

DLU approach also introduces a relativistic correction to off-diagonal ’interatomic’ blocks when

compared with the DLH approximation.

The cost for the assembly of the unitary transformation U within the DLU approach is then of

orderN , where N measures the system size, namely the number of atoms. It is linear scaling since

the atomic approximation is directly applied to the unitary transformation. However, the next

step of applying the unitary decoupling transformation to obtain the relativistic Hamiltonian
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matrices is no longer linear scaling. If no local approximation was applied for the unitary

decoupling transformation, according to Eq. (21) where the summation indices I, J run over all

atomic blocks, the calculation of HAB matrix will require 2N2 number of matrix multiplications.

Since the number of matrices to be calculated is of order N2, the total cost of relativistic

transformation without local approximation is therefore of order N4. If the DLU approximation

is applied, no summation will be needed and only two matrix multiplications will be required

for each heavy–heavy block HAB. The total cost is then of order N2.

If the distance of two atoms A and B is sufficiently large, the relativistic correction to HAB

can be neglected. Thus, we may define neighboring atomic pairs according to their distances.

Then, only the Hamiltonian matrix Hbd
AB of neighboring pairs requires the transformation

Hbd
AB = UAADABU

†
BB , ∀A,B being neighbors, (22)

whereas all other pairs are simply taken in their non-relativistic form. Since the number of

neighboring pairs is usually a linear function of system size. The total cost is then reduced to

order N .

To investigate the relativistic correction to hybrid HAa blocks of the electrons-only Hamilto-

nian H , we need to consider the explicit structure of the unitary decoupling transformation to

yield H

H =
(
ULL, ULS

)

 V T

T (W−T )





 ULL,†

ULS,†


 , (23)

where only the electronic part of the exact-decoupling transformation represented by ULL and

ULS [which are the upper part of Eq. (12)] is employed. From Eq. (23) it is easy to see that the

electrons-only Hamiltonian reads

H = ULSTULL,† + ULLTULS,† − ULSTULS,†

+ULLV ULL,† + ULSWULS,†. (24)

In the non-relativistic (NR) limit, where the speed of light approaches infinity, we have

ULL,NR = I, ULS,NR = I, and WNR = 0. (25)

If we insert them into the form of relativistic electrons-only Hamiltonian (24), we arrive at the

non-relativistic Hamiltonian matrix,

HNR = T + V. (26)

9



This suggests a solution for the relativistic treatment of the hybrid heavy–light blocks HAa,

because we may set all light-atom diagonal blocks in the unitary transformation to identity

matrices

ULL
aa = I and ULS

aa = I. (27)

To reproduce the non-relativistic Hamiltonian matrices of light-atom-only blocks, we must set

the W matrix of light atoms to zero,

Waa = 0. (28)

The WAa matrices are also set to zero

WAa = 0. (29)

We denote this approximation for the treatment of hybrid blocks as the DLU(NR) approach.

If we do not introduce any approximations to the W matrices, the transformation will yield

a Hamiltonian that differs from the non-relativistic Hamiltonian matrix on the order of 1/c2,

which corresponds to the order achieved in the Breit–Pauli approximation. We therefore denote

it as the DLU(BP) approach.

The final local approximation to the unitary matrices are then

ULL = ULL
AA ⊕ ULL

BB ⊕ · · ·ULL
aa ⊕ ULL

bb ⊕ · · · , (30)

ULS = ULS
AA ⊕ ULS

BB ⊕ · · ·ULS
aa ⊕ ULS

bb ⊕ · · · , (31)

Where the atomic unitary transformation matrices of heavy atoms are evaluated by the rela-

tivistic exact decoupling approaches. The explicit expressions of Hamiltonian matrix blocks HAA

and HAB are

HAA = ULS
AATAAU

LL,†
AA + ULL

AATAAU
LS,†
AA

−ULS
AATAAU

LS,†
AA + ULL

AAVAAU
LL,†
AA

+ULS
AAWAAU

LS,†
AA , (32)

HAB = ULS
AATABU

LL,†
BB + ULL

AATABU
LS,†
BB

−ULS
AATABU

LS,†
BB + ULL

AAVABU
LL,†
BB

+ULS
AAWABU

LS,†
BB . (33)

10



If the DLU(NR) approach is employed, the unitary transform matrices of light atoms are simply

set to identity matrices and the explicit form of HAa, Haa, and Hab is

HAa = ULL
AATAa + ULL

AAVAa, (34)

Haa = Taa + Vaa, (35)

Hab = Tab + Vab. (36)

In the DLU(BP) approach, however, they read

HAa = ULL
AATAa + ULL

AAVAa + ULS
AAWAa, (37)

Haa = Taa + Vaa +Waa, (38)

Hab = Tab + Vab +Wab. (39)

The relativistic transformation of a property operator P [13, 14, 16, 45, 60, 61], however,

requires an additional matrix Q and its matrix elements are given by

Qij =
1

4c2
〈λi|σ · pPσ · p|λj〉. (40)

And the relativistic corrected property matrix is

P = ULLPULL,† + ULSQULS,†. (41)

V. DLU EVALUATION WITHIN EXACT-DECOUPLING APPROACHES

A. The X2C approach

The X2C method employs

UX2C =




1√
1+X†X

1√
1+X†X

X†

− 1√
1+XX†

X 1√
1+XX†


 , (42)

as the exact-decoupling unitary transformation. The unitary operators for the electronic states

are then

ULL
X2C =

1√
1 +X†X

, (43)

ULS
X2C = ULL

X2CX
† =

1√
1 +X†X

X†, (44)
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For an actual implementation, we need their matrix representations in a finite non-orthogonal

space of the atom-centered basis functions. The X-matrix is evaluated by diagonalizing the

following generalized eigenvalue equation


 V T

T (W−T )





 C+

L

C+
S


 =


 S 0

0 1
2c2

T





 C+

L

C+
S


 ǫ+, (45)

where C+
L and C+

S denote the large- and small-component molecular-orbital coefficients, respec-

tively. We obtain the X matrix by the following equation

X = C+
S

(
C+

L

)−1
. (46)

The matrix representation of ULL and ULS is then given by

ULL
X2C = S1/2(S−1/2S̃S−1/2)−1/2S−1/2, (47)

ULS
X2C = ULL

X2CX
†, (48)

with S̃ defined as

S̃ = S +
1

2c2
X†TX. (49)

In our atomic approximation to the unitary transformation U , we need to evaluate the above

equation for each ’atomic’ block of the original Hamiltonian in order to obtain the diagonal

blocks ULL
AA and ULS

AA. The decoupling transformations are then assembled according to Eqs. (30)

and (31) and the relativistic Hamiltonian matrix follows from Eq. (23).

B. The BSS approach

In the BSS approach, all matrices are transformed to an orthonormal basis-function space first.

It is convenient to calculate the transformation matrix K by diagonalizing the non-relativistic

kinetic energy matrix

TK = SKt, (50)

since the eigenvalues t can be used for later evaluation of the free-particle FW transformation.

The eigenvector matrix K has the following properties:

K†SK = I and K†TK = t. (51)

12



The free-particle FW (fpFW) transformation features four diagonal block matrices

U0 =



 ULL,fpFW ULS,fpFW

USL,fpFW USS,fpFW



 =





√
E0+c2

2E0

√
E0−c2

2E0

f

−
√

E0−c2

2E0

√
E0+c2

2E0

f



 , (52)

with E0 =
√
2tc2 + c4 and f =

√
2c2/t. It is then applied to yield a transformed four-dimensional

Hamiltonian matrix D0

D0 = U0


K 0

0 K




†
 V T

T (W−T )





K 0

0 K


U †

0 . (53)

Next, the exact-decoupling BSS transformation,

U1 =




1√
1+R†R

1√
1+R†R

R†

− 1√
1+RR†

R 1√
1+RR†


 , (54)

which has same structure as the exact-decoupling transformation UX2C, is applied. The R ma-

trix is obtained by diagonalizing the free-particle FW transformed four-component Hamiltonian

matrix D0 and employing a similar relation to the one in Eq. (46).

After the exact-decoupling BSS transformation has been carried out, the Hamiltonian matrix

is back-transformed to the original (non-orthogonal) basis

H =



K−1 0

0 K−1




†

U1D0U
†
1



K−1 0

0 K−1



 . (55)

Consequently, we obtain the matrix form of ULL
BSS and ULS

BSS for the BSS approach as

ULL
BSS = (K−1)†(1 +RR†)−

1

2 (ULL,fpFW +R†USL,fpFW)K†, (56)

ULS
BSS = (K−1)†(1 +RR†)−

1

2 (ULS,fpFW +R†USS,fpFW)K†. (57)

The expressions for obtaining the relativistic Hamiltonian matrix (and property matrices) are

then as given above.

C. The DKH approach

The DKH approach features the same initial transformation as the BSS approach to obtain

the transformed Hamiltonian matrix D0. Subsequent decoupling transformations are expressed

as

U (m) =

1∏

k=m

Uk (58)
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with the generalized parametrization of the Uk [9],

Uk =

[m/k]∑

i=0

ak,iW
i
k, (59)

where Wk are anti-hermitian matrix operators and m is related to the order of the DKH expan-

sion. Since the expression of Wk is too lengthy to be presented here, we refer the reader to Ref.

[16] for details. If m is large (strictly, if it approaches infinity), exact decoupling is achieved.

Usually, a low value for m is often sufficient for calculations of relative energies and valence-shell

properties (i.e., m=1 for the original DKH2 approach).

With the complete decoupling DKH transformation written as

UDKH =


 ULL,DKH ULS,DKH

USL,DKH USS,DKH


 . (60)

the matrix forms of ULL
DKH and ULS

DKH are

ULL
DKH = (K−1)†(ULL,(m)ULL,fpFW + ULS,(m)USL,fpFW)K†, (61)

ULS
DKH = (K−1)†(ULL,(m)ULS,fpFW + ULS,(m)USS,fpFW)K†. (62)

We should note that the finite-order DKH Hamiltonian matrices are not the result of directly

applying the decoupling transformation. To give consistent results, the transformation in Eq.

(23) is only used to obtain the off-diagonal blocks while the diagonal blocks are replaced by the

traditional finite-order DKH Hamiltonian. However, for high-order calculations, the differences

of with/without replacing the diagonal blocks are very small.

VI. RESULTS AND DISCUSSIONS

As we have shown, there exists a systematic hierarchy of several levels for the local relativistic

approximation to Hamiltonian matrix elements. In this section, we study the accuracy of the

different levels on a test molecule set and introduce the following notation to distinguish the

results:

1. FULL: Full molecular relativistic transformation, no approximation.

2. DLU: Diagonal local approximation to decoupling transformations, ULL and ULS are

evaluated for each atomic (diagonal) block. However, three variants are possible:
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i) DLU(ALL): Calculate relativistic transformation for all atoms (all atoms are treated

as ’heavy’ elements). I.e., apply the ’atomic’ unitary transformation to the diagonal

and to all off-diagonal blocks of the Hamiltonian

ii) DLU(NB): Calculate relativistic transformation for all atoms (all atoms are treated

as ’heavy’ elements), but apply the relativistic transformation only to blocks of the

Hamiltonian assigned to neighboring atoms (and to the diagonal blocks, of course) to

achieve linear scaling.

iii) DLU(ABC,BP): Distinguish heavy and light atoms, where ABC denote the heavy

atoms and apply the BP approximation to the light atoms.

iv) DLU(ABC,NR): Distinguish heavy and light atoms, where ABC denote the heavy

atoms and apply the NR approximation to the light atoms.

3. DLH: Diagonal local approximation to Hamiltonian matrix blocks. The relativistic cor-

rection for off-diagonal ’interatomic’ blocks are neglected.

i) DLH(ALL) : Calculate relativistic correction to all diagonal ’atomic’ blocks.

ii) DLH(ABC,NR/BP) : Only heavy-atom blocks are considered for the relativistic

description.

Note that this classification system does not account for all possible local relativistic approxima-

tions: i) A could also represents a group of atoms and ii) additional off-diagonal approximations

may also be included.

We have been implemented the local relativistic schemes discussed so far for the X2C, BSS,

and DKH exact-decoupling approaches into the Molcas programme package [62], into which

we have recently implemented X2C, BSS, and the polynomial-cost DKH schemes [52]. In our

scalar-relativistic calculations the definition of the W matrix was

Wij =
1

4c2
〈λi|p · Vp|λj〉, (63)

and λi now refers to scalar basis functions instead of 2-spinor basis functions. All other expres-

sions derived in this work are the same for the scalar-relativistic X2C, BSS, and DKH variants.

For our test molecule set, we should rely on closed-shell molecules with heavy elements in

the vicinity of other heavy elements and of light elements. Four molecules were selected to test

the validity of the different local schemes: I+5 , WH6(PH3)3, W(CH3)6 and Pb2+
9 . Moreover, two
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reactions

I+5 −→ I+3 + I2 (64)

WH6(PH3)3 −→ WH6(PH3)2 + PH3 (65)

were chosen to study the relative energies. Their structures (see Fig. 1) have been optimized

with the Turbomole program package [63] employing the BP86 density functional [64, 65] with

a valence triple-zeta basis set with polarization functions on all atoms [66] in combination with

Stuttgart ECPs for W, Pb, and I as implemented in Turbomole.
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FIG. 1: Structures of the test molecule set (white spheres are hydrogen atoms; selected bond length

are given in Å).

All molecules are closed-shell and for our analysis all-electron Hartree–Fock calculations were

then performed with the Molcas programme package. Since our aim is to test the validity of

local relativistic approximations instead of obtaining accurate results which can be compared

to experiments, we do not need to consider electron-correlation effects in our calculations. The

all-electron atomic natural orbital (ANO) basis sets [67–69] were employed at a double-zeta

level for all atoms. The exact-decoupling DKH calculations were performed at 35-th order, since
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higher order results did not improve the accuracy for our purpose so that this high DKH order

can be considered exact. Results of finite-order (standard) DKH2 calculations are also given for

the sake of comparison.

We performed DLU(ALL) and DLH(ALL) calculations for all four molecules in order to

analyze the general error that is introduced by these local approximations. The differences

of total electronic energies with respect to the FULL reference calculation without any local

approximation are presented in Table I. Since the errors of total energies are rather small,

all values are given in milli-Hartree (mH) atomic units. The errors in total energies can be

understood as errors on atomization energies that one would observe when atomization energies

are to be calculated with one of the local approaches compared to the FULL one.

TABLE I: Total energy differences introduced by local approximations DLU(ALL) and DLH(ALL) with

respect to the FULL reference energy. The FULL total electronic energies are given in Hartree and all

deviations are in milli-Hartree atomic units.

Method Approximation I+5 WH6(PH3)3 W(CH3)6 Pb2+9

DKH35 FULL -35562819.0554 -17170991.3602 -16375243.0202 -187905906.7440

DLU(ALL) -0.0119 -0.0126 -0.0204 0.0376

DLH(ALL) 0.2471 -30.8580 -6.3823 2.0376

BSS FULL -35562831.5438 -17171044.3875 -16375296.0488 -187906906.7440

DLU(ALL) -0.0119 -0.0125 -0.0204 0.0371

DLH(ALL) 0.2461 -30.8303 -6.3749 2.0065

X2C FULL -35561841.0814 -17171053.6272 -16375311.3620 -187911251.8227

DLU(ALL) -0.0133 -0.0306 -0.0367 0.0523

DLH(ALL) 0.2629 -33.3336 -7.0463 2.8362

DKH2 FULL -35553068.6409 -17158776.3373 -16363031.9017 -187712096.3579

DLU(ALL) -0.0083 0.0011 0.0143 0.0240

DLH(ALL) 0.2897 -33.4347 -6.9555 1.6040

For the I+5 molecule, which possesses a pseudo-one-dimensional structure with iodine atoms

connected to at most two other iodine atoms, the DLU(ALL) scheme produces an error of

about 0.012 mH for both DKH and BSS, while X2C has a sightly larger error of 0.013 mH.

Interestingly, it is smallest for DKH2, i.e., only 0.008 mH. The DLH(ALL) local scheme produces
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relatively large errors on the total electronic energies, they are 0.24 mH for DKH and BSS, 0.26

mH for X2C, and 0.29 for DKH2. Clearly, DLU(ALL) provides more accurate total energies

than DLH(ALL), as it includes the relativistic form of the atom–other-atom off-diagonal blocks,

while DLH(ALL) only takes into account the atom–same-atom diagonal blocks. The errors of

DLH(ALL) are about 20 times larger than those of DLU(ALL) for the I+5 molecule. This indicate

the relativistic corrections to off-diagonal blocks are quite important. Apparently, DLU(ALL)

provides a very good scheme to take into account the off-diagonal relativistic correction.

The Pb2+
9 molecule features a more compact structure where more than two heavy atoms

bind to a central lead atom. Moreover, lead atoms are heavier than iodine atoms and relativistic

effects are more pronounced. As we can see from Table I, errors of Pb2+
9 molecule are all larger

than those observed for the I+5 molecule. The deviations of DLU(ALL) electronic energies from

the FULL reference energy are 0.037 mH for BSS and DKH, while X2C is still slightly larger

with a value 0.052 mH (again DKH2 features the smallest deviation of only 0.024 mH). However,

deviations of DLH(ALL) results from the reference have become significantly larger, they are

2.03, 2.01, and 2.84 mH for DKH, BSS, and X2C, respectively (but only 1.60 mH for DKH2).

Hence, the errors of DLU(ALL) are roughly 60 times smaller than those observed for DLH(ALL).

Considering now molecules that also contain light atoms, the relative accuracy of DLU(ALL)

vs. DLH(ALL) changes dramatically. First of all, we note that our DLU(ALL) scheme preserves

its accuracy and the deviations from the FULL reference electronic energy are in between those

obtained for I+5 and Pb2+
9 with the same trends as already discussed. The errors of DLH(ALL)

energies obtained for the WH6(PH3)3 molecule are, however, larger than 30 mH. I.e., they are

significantly larger than those observed for Pb2+
9 . For W(CH3)6 molecule, the deviations from

the reference are around 6 mH, which are also still larger than Pb2+
9 and certainly nonnegligible.

Note that the DLH(ALL) errors obtained for WH6(PH3)3 and W(CH3)6 are not all below those

of the Pb2+
9 molecule although the nuclear charge number of tungsten is smaller than that of

lead. This is in contrast to the results obtained for our DLU(ALL) scheme. Since DLH neglects

any relativistic correction to off-diagonal ’interatomic’ blocks, the large errors must be due to

the strong coupling between tungsten and its surrounding lighter atoms (phosphorus and car-

bon). Apparently, if a heavy-element-containing molecule has several strong bonds to this heavy

element, the off-diagonal blocks of neighboring atom pairs can have significant contributions to

the total electronic energy. Therefore, the DLH may introduce significant errors for systems

including strong bond with its heavy atoms.
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Since DLU(ALL) gives a balanced description for all blocks, it will still work in those cases

where DLH(ALL) fails. DLU can therefore even be recommended for calculations of molecular

systems in different geometries, as for example required for the calculation of potential energy

surfaces. DLH would be unfit for this case as it will introduce large errors when the inter-atomic

distances become short.

DLU(ALL) also works well for the finite-order (standard) DKH2 method. The errors are even

smaller compare to exact-decoupling approaches. However, note that the reference energies of

the different relativistic approaches are not the same. Since the DLU(ALL) scheme only discards

the off-diagonal blocks of the decoupling transformation compare to the FULL reference scheme,

the small errors in the total electronic energies indicate that neglecting off-diagonal terms in

the decoupling transformation produces negligible errors for the total energies. This conclusion

holds for both exact-decoupling and finite-order DKH approaches. With the DLH(ALL) scheme,

however, the errors in the DKH2 calculation that are due to the local DLH approximation are

of the same order as those introduced by the finite, i.e., second order when compared to the

exact-decoupling approaches. This observation leads to the very important conclusion that none

of the exact-decoupling approaches is superior to a finite-order DKH approach if one employs

a DLH scheme as this would render the accuracy gained by exact decoupling meaningless! In

fact, if DLH is for some reason the local approximation of choice, a standard DKH2 approach

would yield a more efficient relativistic scheme and nothing would be gained by achieving exact

decoupling.

Besides total energies, we also study the effects of local approximations on molecular proper-

ties. We calculated the picture change corrected quadrupole moments. The property matrices

are transformed according to Eq. (41). The values for the components of the quadrupole mo-

ment depend on the orientation of the molecule. Therefore, we present the spherically averaged

quadrupole moments defined as
√

(Q2
XX +Q2

YY +Q2
ZZ)/3, in Table II. Where QXX denotes the

XX (diagonal) component of the quadrupole moment. The spherically averaged quadrupole

moments are isotropic and thus independent of molecular orientation.
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TABLE II: Spherically averaged quadrupole moments for our test set of molecules. All values are given

in Hartree atomic units.

Method Approximation I+5 WH6(PH3)3 W(CH3)6 Pb2+9

DKH35 FULL 83.84331 57.61285 57.29508 173.68894

DLU(ALL)–FULL -0.00009 0.00018 0.00025 0.00416

DLH(ALL)–FULL 0.02176 -0.02448 -0.00218 -0.20252

BSS FULL 83.84329 57.61285 57.29507 173.68873

DLU(ALL)–FULL -0.00009 0.00018 0.00025 0.00417

DLH(ALL)–FULL 0.02177 -0.02449 -0.00218 -0.20231

X2C FULL 83.84406 57.61240 57.29499 173.68292

DLU(ALL)–FULL -0.00017 0.00029 0.00027 0.00590

DLH(ALL)–FULL 0.02199 -0.02483 -0.00197 -0.21653

DKH2 FULL 83.85310 57.61393 57.29674 173.80677

DLU(ALL)–FULL 0.00009 -0.00012 0.00018 -0.00003

DLH(ALL)–FULL 0.02196 -0.02458 -0.00186 -0.20760

The relative errors of DLU(ALL) are all below 10−5 a.u., this upper limit can be further

reduced to 10−6 a.u. if we do not include Pb2+
9 . Hence, DLU(ALL) is not only a good approxi-

mation for total electronic energies but also for molecular properties like quadrupole moments.

The errors introduced by DLU(ALL) are all negligible, while DLH(ALL) shows large errors for

quadrupole moments. While for total electronic energies, the largest error of the DLH(ALL)

scheme shows up in WH6(PH3)3 and the smallest in I+5 , it is, for the quadrupole moments,

largest for Pb2+
9 and smallest for W(CH3)6. This different behavior of DLH(ALL) indicates

again the important contribution of off-diagonal ’interatomic’ blocks, whose importance must be

different for electronic energies and for properties. In our DLU(ALL) scheme, I+5 has the smallest

error and Pb2+
9 the largest one for both, energies and properties. Therefore, DLU(ALL) turns

out to give a consistent description of relativistic effects, while DLH(ALL) yields an unbalanced

relativistic treatment. We should note that we have investigated also other properties (radial

moments, electric field gradients, contact densities) with similar conclusions, which is the reason,

why we do not report those data here.
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For both, energies and quadrupole moments, in the DLU(ALL) scheme, DKH and BSS yields

almost the same deviations from the reference and X2C always has larger ones than DKH

and BSS. This similarity of DKH and BSS can be well understood since both of them employ

the free-particle FW transformation as well as the subsequent exact-decoupling transformation.

The close results of DKH and BSS were also observed in Ref. [52]. The slightly larger errors

of X2C indicate that the off-diagonal blocks of the X2C exact-decoupling transformation have

slightly larger contributions compared to DKH and BSS. However, such differences of errors are

too small to be considered a serious drawback for the X2C approach; they are smaller than

the differences of the total values. We may use WH6(PH3)3 as an example. The difference

of total isotropic quadrupole moments (57.61285−57.61240) is 0.45 mH, while the difference of

errors by DLU(ALL) (0.00029−0.00018) is 0.11 mH. The errors introduced by the DLU(ALL)

approximation are smaller than the differences between exact-decoupling approaches. This is also

the case for the differences between DKH2 and exact-decoupling approaches. As we can see, the

difference between DKH2 and BSS of total isotropic quadrupole moments (57.61393-57.61285)

is 1.08 mH, which are much larger than the DLU(ALL) errors.

For chemical purposes, comparisons of total electronic energies are meaningless, because chem-

ical reaction kinetics and thermodynamics are governed by energy differences. We therefore

calculated the electronic reaction energies of the two reactions mentioned above. The results are

given in Table III and Table IV. The errors of relative energies are less than that of absolute

total energies. For example with the DKH approach, the error of I+5 is reduced from 0.012 mH

to 0.002 mH for DLU(ALL), 0.24 mH to 0.12 mH for DLH(ALL). As the WH6(PH3)3 molecule,

the error is decreased from 0.0126 mH to 0.0006 mH for DLU(ALL), 30.9 mH to 19.4 mH for

DLH(ALL). It also holds for other relativistic approaches.

TABLE III: Electronic Hartree–Fock reaction energies for the reaction I+5 −→ I+3 + I2. All values are

in milli-Hartree atomic units (note that 1 mH is equivalent to about 2.6 kJ/mol).

DKH35 BSS X2C DKH2

FULL 13.9797 13.9798 13.9739 13.9550

DLU(ALL)–FULL 0.0022 0.0022 0.0026 0.0011

DLU(NB)–FULL 0.0040 0.0040 0.0044 0.0027

DLH(ALL)–FULL -0.1190 -0.1190 -0.1214 -0.1231
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Next, we study the neighboring-atomic-block (NB) approximation at the example of the I+5

molecule. As shown in Figure 1, it is composed of a chain of iodine atoms and thus suitable

for applying the neighboring approximation. Only the pairs of atoms which are connected with

a bond displayed in Figure 1 are considered as neighbors. The neighboring groups could also

be determined by introducing a cut-off distance parameter. Then, the pair of atoms which has

shorter distance than the given parameter is counted as a neighboring pair. The relativistic

transformations are now only applied to such neighboring pairs according to Eq. (22) within the

DLU scheme. As we can see from Table III, the neighboring approximation DLU(NB) gives very

small errors for relative energies. Therefore it is a very good (additional) approximation within

our DLU scheme. Hence, with DLU(NB) the computational cost will become linear scaling, while

the DLU(ALL) scheme has an order-N2 scaling, which may be a bottleneck for calculations on

very large molecules. But be aware that the success of NB approximation depends on how one

defines the neighboring atoms. If the cut-off distance is too small, the DLU scheme will be

reduced to the DLH scheme since no neighbors could be found.

Reduction in terms of computational costs can also be achieved by employing the BP or NR

approximation to the light atoms. It should be a good approximation if a molecule has many light

atoms such as hydrogen. We study these approximations for the phosphine ligand dissociation

energy of WH6(PH3)3 molecule. The results are presented in Table IV, where DLU(WP,NR)

denotes the NR approximation applied to the H atoms while W and P atoms are relativistically

described. By contrast, DLU(W,NR) denotes application of the relativistic transformation only

to the W atom, while for P and H apply the NR approximation. From Table IV we can see

that the results of the BP approximation are very bad, especially if the BP approximation was

employed for the phosphorus atoms. The BP approximation to P and H atoms gives errors

which are roughly seven times the value for the reactions energy. Hence, this is approximation

turns out to be completely useless. Such huge errors stem from the variational collapse of the

BP approximation.
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TABLE IV: Relative energy difference of the reaction WH6(PH3)3 −→ WH6(PH3)2 + PH3. All values

are in milli-Hartree atomic units.

DKH35 BSS X2C DKH2

FULL 35.8447 35.8448 35.8439 35.9064

DLU(ALL)–FULL -0.0006 -0.0007 0.0040 0.0101

DLU(WP,NR)–FULL -0.1579 -0.1579 -0.1533 -0.1476

DLU(W,NR)–FULL 0.3648 0.3648 0.3684 0.3737

DLU(WP,BP)–FULL 1.2501 1.2500 1.2547 1.2608

DLU(W,BP)–FULL 254.4914 254.4914 254.4951 254.5018

DLH(ALL)–FULL 19.4202 19.4024 21.0255 21.1635

DLH(WP,NR)–FULL 19.4229 19.4051 21.0284 21.1663

DLH(W,NR)–FULL 19.6722 19.6544 21.2789 21.4146

DLH(WP,BP)–FULL 20.3668 20.3490 21.9743 22.1116

DLH(W,BP)–FULL 273.0474 273.0296 274.6570 274.7922

However, the NR approximation is much better. The errors on the reaction energy within

the DLU(NR) scheme, which are in the range of 0.1 to 0.3 mH and thus less than 1 kJ/mol, are

perfectly acceptable. This success is due to the correct NR limit of the NR approximation within

the DLU scheme. Not unexpectedly, the DLH(NR) results have quite larger errors, because

DLH(ALL) already does not provide good results for the phosphine dissociation energy from

the WH6(PH3)3 complex. If we study the difference between DLH(NR) and DLH(ALL), we can

find that the NR approximation to actually give small errors on top of DLH(ALL). However, the

DLH scheme is not recommended since its accuracy is not guaranteed at all. Only in those cases

for which the DLH scheme may work, we can further add the NR approximation on top of it for

light atoms. As can be seen from both Table III and Table IV, different relativistic approaches

behave basically identical with respect to the discussion of the NB and NR approximations.

Therefore, the approximations for the reduction of computational cost discussed in this article

can be applied to all relativistic transformation approaches.
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VII. CONCLUSIONS

In this work, we aimed at a rigorous local approximation to relativistic transformation

schemes, which makes them applicable to and efficient for calculations on large molecules. We

developed a systematic hierarchy of approximations that is based on the assembly of the unitary

transformation from ’atomic’ contributions (DLU) rather than on a local approximation directly

applied to the matrix representation of the Hamiltonian (DLH).

The straightforward DLH scheme, which has evolved in the development of the DKH2 method

(see references given above), turns out to be not a good local approximation since it only covers

the relativistic treatment of the atom–same-atom diagonal blocks in the Hamiltonian. It may

fail if inter-atomic distances become short so that a relativistic treatment of the off-diagonal ’in-

teratomic’ blocks becomes important. As a consequence, the DLH approximation is not suitable,

for example, in studies that crucially depend on accurate electronic energy surfaces. Even if the

molecular geometry is fixed, the DLH approach does not provide a balanced description for dif-

ferent molecular properties, since the contributions of the off-diagonal blocks to total observables

are quite different for different properties.

By contrast, the DLU scheme proposed by us in this paper overcomes the drawbacks of

the DLH scheme. It is an excellent approach to take into account the atom–other-atom (i.e.,

’interatomic’) off-diagonal relativistic transformations. It does not show an instability for varying

molecular structures (i.e, for electronic energy surfaces) and properties. The size of the error

introduced by DLU is much smaller than that of DLH; it is typically only 1% of the latter. The

errors of the DLU approach when compared to the full relativistic transformation without any

local approximation turn out to be very small. They are even smaller than the difference of

among the different exact-decoupling approaches, which are already very tiny.

The DLU scheme is valid for all exact-decoupling approaches, while the localX-matrix scheme

only works for the X2C approach. Furthermore, the DLU scheme can also be applied to finite-

order DKH approaches such as DKH2, which has been very successful in computational chemistry

and whose computational costs are less than those of any exact-decoupling approach.

If one has to use the DLH scheme for some reason, such as the lack of a DLU implementation

or because of its linear-scaling behavior, the selection of a relativistic approaches is not decisive

as the errors introduced by the DLH scheme are already higher than the difference of different

relativistic approaches.

However, the linear-scaling behavior of DLH is no good reason since the DLU scheme can

24



also be linear-scaling within the neighboring-atomic-blocks approximation, which produces neg-

ligible errors. One can further reduce the computational costs by employing the BP or NR

approximation to all light atoms. However, the BP approximation turns out to be not suitable

for variational calculations since it introduces large errors. Only the NR approximation yields

acceptable results. The errors of the NR approximation will be larger if the charge of the atom

for which the NR approximation is invoked becomes larger. Therefore, the application of the

NR approximation will depend on the balance of accuracy and computational cost in an actual

calculation.
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[66] A. Schäfer, C. Huber, and R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994).

[67] B. O. Roos, R. Lindh, P.-A. Malmqvist, V. Veryazov, and P.-O. Widmark, J. Phys. Chem. A 109,

6575 (2005).

[68] B. O. Roos, R. Lindh, P.-A. Malmqvist, V. Veryazov, and P.-O. Widmark, Chem. Phys. Lett. 409,

295 (2005).

[69] B. O. Roos, R. Lindh, P.-A. Malmqvist, V. Veryazov, P.-O. Widmark, and A. C. Borin, J. Phys.

Chem. A 112, 11431 (2008).

27


	I Introduction
	II Relativistically local structure of the Hamiltonian matrix
	III Local Decomposition of the X-Operator
	IV Local approximations to the exact-decoupling transformation
	V DLU Evaluation within Exact-Decoupling Approaches
	A The X2C approach
	B The BSS approach
	C The DKH approach

	VI Results and discussions
	VII Conclusions
	 Acknowledgments
	 References

