通信系统原理教程

第2讲 概论之二

通信教研室 杨春萍

本讲内容

- ■通信的发展
- ■消息、信息和信号
- ■数字通信
- **■** <u>信道</u>
- ■信道中的噪声

信道

- ■信道定义
- 信道类型
- 无线信道
- ■有线信道
- 信道模型
- ■信道特性对信号传输的影响

信道

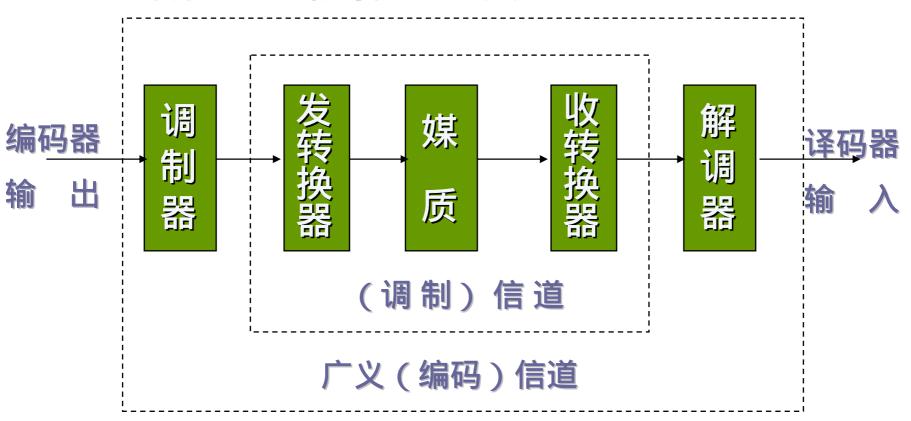
■ 信道定义

信号的传输媒质叫信道。如明线、电缆、光纤、波导管等。

■ 信道分类

狭义信道:指的是传输媒质。例如:

有线信道:明线、电缆、光纤等。


无线信道:长波、中波、人造卫星中继等。

广义信道:除了传输媒质之外,还包括其它收发设备。

*调制信道(模拟信道):*传输模拟信号。 *编码信道(数字信道):*传输数字信号。

调制信道与编码信道的关系

广义信道除媒质外,还包含一些设备。调制信道除了传输 媒质外还包含发、收转换器;编码信道除了包含整个调制信 道外还包含调制器和解调器。

无线信道

- □无线电通信的起源
- □电磁波发射对波长的要求
- □频段(波长)划分

频段(波长)划分

频率范围 (kHz)	名 称	典型应用
3 – 30 (10-100 km)	甚低频(VLF)	远程导航、水下通信 声纳、授时
30 – 300 (1-10 km)	低频(LF)	导航、水下通信 无线电信标
300 – 3000 (100-1000m)	中频(MF)	广播、海事通信、测向、 遇险求救、海岸警卫

频段(波长)划分

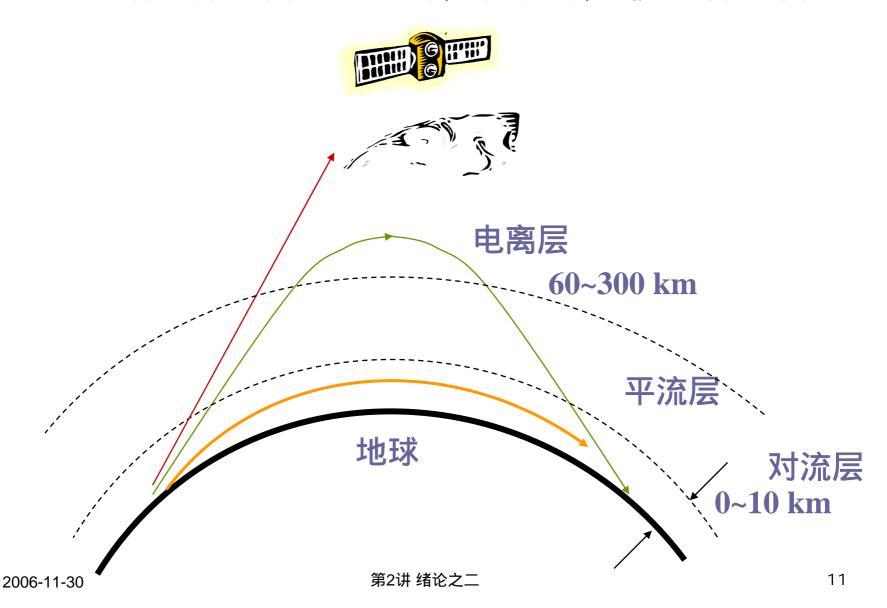
频率范围	名 称	典型应用	
(MHz)			
3 – 30 (10-100m)	高频(HF)	远程广播、电报、电话、飞机 与船只间通信、船 - 岸通信、 业余无线电	
30 - 300 (米波)	甚高频(VHF)	电视、调频广播、陆地交通、 空中交通管制、出租汽车、 警察、导航、飞机通信	
300 – 3000 (分米波)	特高频(UHF)	电视、蜂窝网、微波链路、 无线电探空仪、导航、卫星 通信、GPS、监视雷达、 无线电高度计	

频段(波长)划分

频率范围 (GHz)	名 称	典型应用
3-30 (厘米波)	超高频(HF)	卫星通信、无线电高度计 微波链路、机载雷达、气象 雷 达、公用陆地移动通信
30 - 300 (毫米波)	极高频(VHF)	铁路业务、雷达着陆系统、 实验用
300 – 3000 (0.1 – 1 mm)	亚毫米波	实验用

频率范围 (THz)	名 称	典型应用	
43 – 430	红外线	光通信系统	
	(7 – 0.7 μ m)		
430 – 750	可见光	光通信系统	
	(0.7 – 0.4 μ m)		
750 – 3000	紫外线	光通信系统	
	(0.4 – 0.1 μm)		

注:kHz = 10³ Hz,

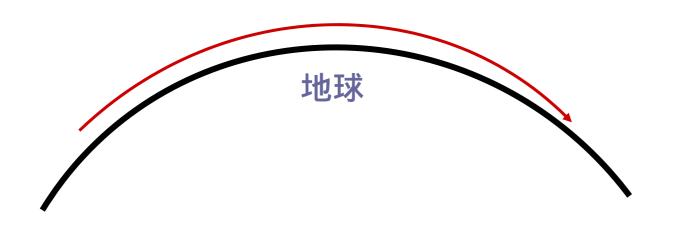

 $MHz = 10^6 Hz,$

 $GHz = 10^9 Hz,$

THz = 10^{12} Hz, mm = 10^{-3} m,

 μ **m** = 10⁻⁶ **m**

电磁波传播:地波、天波、视线传播



地波

□频率:2MHz 以下

□绕射:发生在波长~障碍物尺寸可比时

□通信距离:可达数百~数千 km

W

电离层的结构

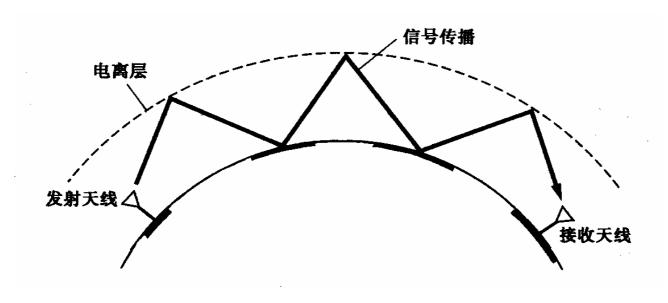
□D层:高60~80 km

□E层:高100~120 km

□F层:高150~400 km

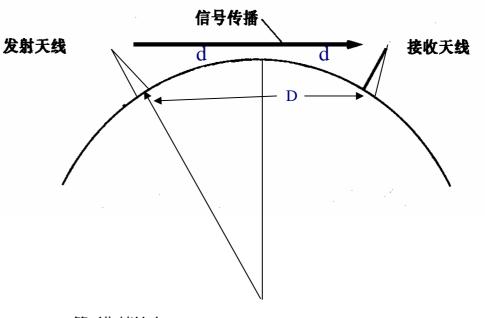
■F₁层:140~200 km

■F₂层:250 ~ 400 km

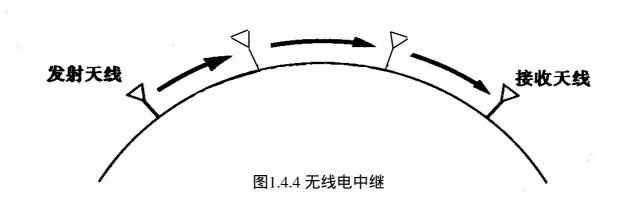

□晚上:D层、F₁层消失

E层、F₂层减弱

天 波


- □电离层高度:60 ~ 300 km
- □单跳最大距离:4000 km
- □多跳可以环球
- □频率:2 ~ 30 MHz

视线传播


- □频率:>30 MHz
- □传播距离: d² + r² =(h+r)²,

h ≈ D²/50 (m) 式中 D - km

无线电中继

静止卫星中继通信

平流层中继通信

HAPS(High Altitude Platform Station)

大气对电磁波传播的影响

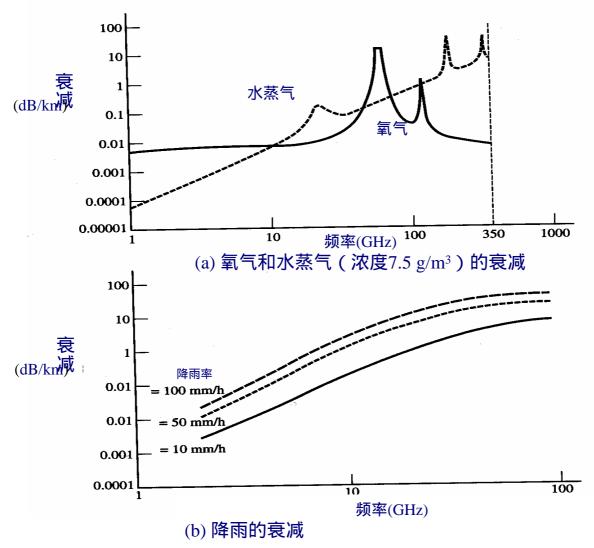
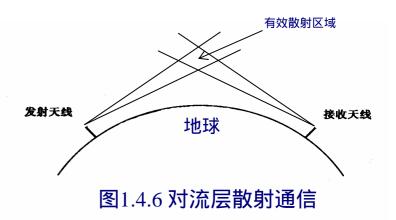
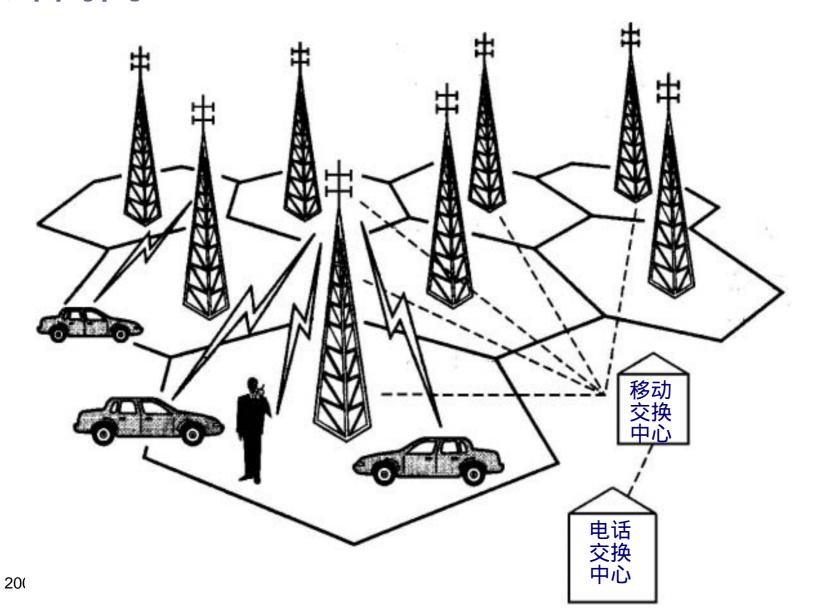



图1.4.5 大气衰减


散射通信

- 电离层散射
 - □ 频率: 30~60 MHz
- 对流层散射
 - □ 频率: 100 ~ 4000 MHz
- 流星余迹散射
 - □ 频率: 30 ~ 100 MHz

蜂窝网

21

有线信道

- □明线
- □对称电缆
- □同轴电缆

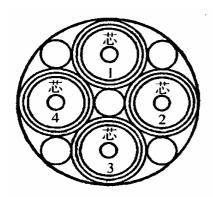
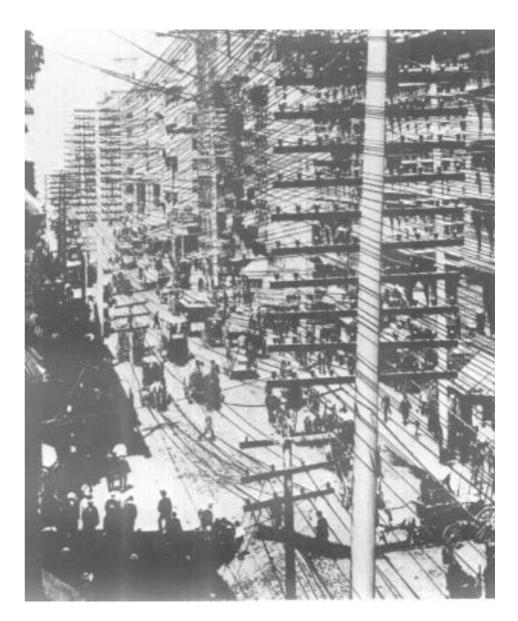
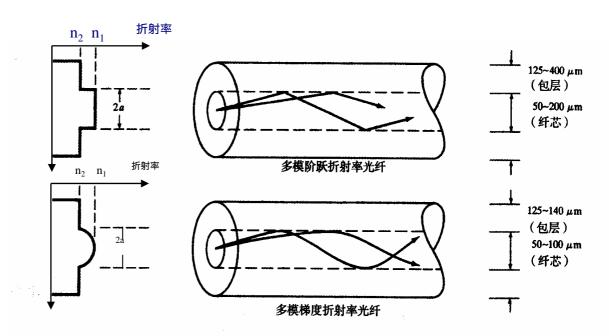
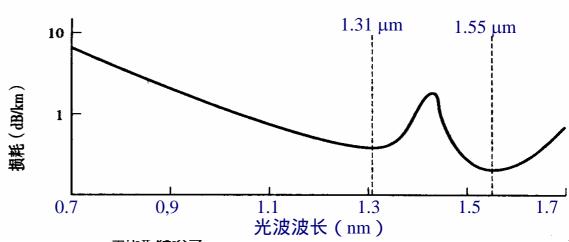



图1.4.8 同轴电缆截面示意图




有线电信道电气特性

信道类型	通话容量(路)	频率范围(kHz)	传输距离(km)
明线	1+3	0.3 ~ 27	300
明线	1+3+12	0.3 ~ 150	120
对称电缆	24	12 ~ 108	35
对称电缆	60	12 ~ 252	12 ~ 18
小同轴电缆	300	60 ~ 1 300	8
小同轴电缆	960	60 ~ 4 100	4
中同轴电缆	1 800	300 ~ 9 000	6
中同轴电缆	2 700	300 ~ 12 000	4.5
中同轴电缆	10 800	300 ~ 60 000	1.5

光纤

- ■结构
- ■损耗

信道模型

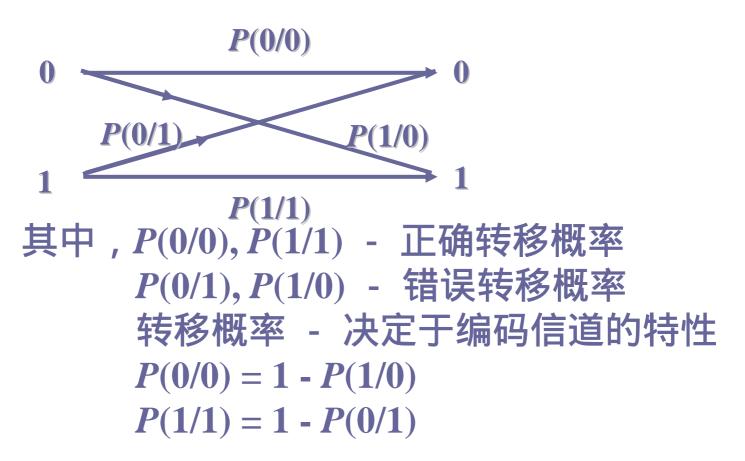
•调制信道模型:对于单"端对"信道

 $e_{o}(t) = f[e_{i}(t)] + n(t)$ 式中 $e_{i}(t)$ - 输入的已调信号; $e_{o}(t)$ - 输出信号; n(t) - 加性噪声,它与 $e_{i}(t)$ 相互独立。 $f[e_{i}(\underline{t})]$ - 与输入有关的一个函数, 表示信道对于信号的影响。

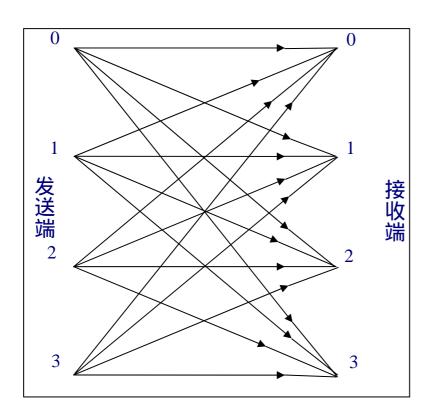
通常, $f[e_i(t)]$ 可以表示为: $k(t)e_i(t)$,

此时, $e_o(t) = k(t) e_i(t) + n(t)$

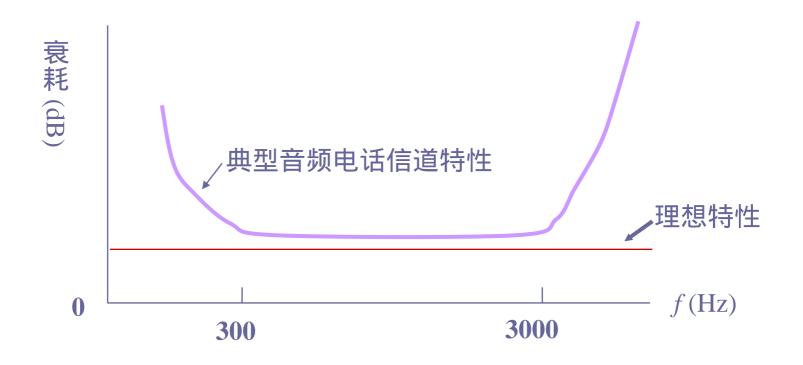
其中k(t)表示时变线性网络的特性,称为乘性干扰。

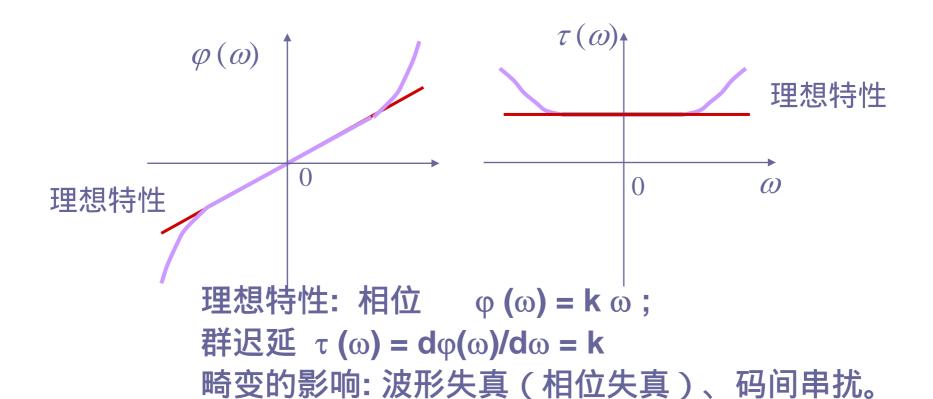

k(t) - 一个复杂的函数,反映信道的衰减、线性失真、非线性失真、延迟 ... 等。最简单情况:k(t) = 常数,表示衰减。

当k(t) =常数,称为恒(定)参(量)信道.例如,同轴电缆当k(t)≠常数,称为随(机)参(量)信道.例如,移动蜂窝网通信信道


•编码信道模型:

▶二进制信号、无记忆信道


≻四进制



信道特性对信号传输的影响

- □恒参信道: ~ 非时变线性网络
 - ■振幅~频率特性

■线性失真

频率失真和相位失真,属于线性失真,可用"线性补偿网络"纠正,"均衡"

■非线性失真

振幅特性非线性、频率偏移、相位抖动 ... 非线性失真难以消除

□变参信道

■ 变参信道的共性

衰 落: 衰减随机变化

传输时延: 随机变化

多径效应: 快衰落

设发送信号为 $A\cos\omega_0 t$,则经过n条路径传播后的接收信号R(t)可以表示为:

$$R(t) = \sum_{i=1}^{n} r_i(t) \cos \omega_0[t - \tau_i(t)] = \sum_{i=1}^{n} r_i(t) \cos[\omega_0 t + \varphi_i(t)]$$

式中 $r_i(t)$ - 第 i 条路径的接收信号振幅;

 $\tau_i(t)$ - 第 i 条路径的传输时延

$$\varphi_{i}(t) = -\omega_{0} \tau_{i}(t)$$

$$R(t) = \sum_{i=1}^{n} r_i(t) \cos \varphi_i(t) \cos \omega_0 t - \sum_{i=1}^{n} r_i(t) \sin \varphi_i(t) \sin \omega_0 t$$

 $X_{c}(t)$

 $X_s(t)$

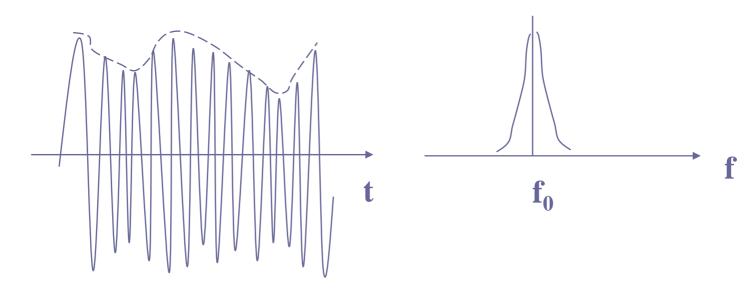
$$R(t) = X_c(t)\cos\omega_0 t - X_s(t)\sin\omega_0 t = V(t)\cos[\omega_0 t + \varphi(t)]$$

式中 V(t) - 合成波R(t)的包络; 〖多径衰落〗

 $\varphi(t)$ - 合成波R(t)的相位。

即有

$$V(t) = \sqrt{X_c^2(t) + X_s^2(t)}$$


$$\varphi(t) = \arctan \frac{X_s(t)}{X_c(t)}$$

由于,相对于 ω 而言, $r_i(t)$ 和 $\phi_i(t)$ 变化缓慢,故 $X_c(t)$, $X_s(t)$ 及V(t), $\phi(t)$ 也是缓慢变化的。

所以,R(t)可以视为一个窄带信号(随机过程)。

由下式可见, $R(t) = V(t) \cos[\omega_0 t + \phi(t)]$ 原发送信号 $A\cos\omega_0 t$,经过传输后:

- * 恒定振幅A,变成慢变振幅V(t);
- * 恒定相位 $\mathbf{0}$, 变成慢变相位 $\phi(\mathbf{t})$;
- *因而,频谱由单一频率变成窄带频谱。

■频率选择性衰落

设:只有两条多径传播路径,且衰减相同,时延不同;

发射信号为f(t),接收信号为 $af(t - \tau_0)$ 和 $af(t - \tau_0 - \tau)$; 发射信号的频谱为 $F(\omega)$ 。 $|\tau_0| = \tau_0$

则有 $f(t) \Leftrightarrow F(\omega)$

$$af(t - \tau_0) \Leftrightarrow a F(\omega) e^{-j\omega\tau_0}$$

 $af(t - \tau_0 - \tau) \Leftrightarrow a F(\omega) e^{-j\omega(\tau_0 + \tau)}$

$$af(t - \tau_0) + af(t - \tau_0 - \tau) \Leftrightarrow a F(\omega) e^{-j\omega\tau_0} (1 + e^{-j\omega\tau})$$

$$H(ω) = a F(ω) e^{-jωτ_0} (1+e^{-jωτ})/F(ω) = ae^{-jωτ_0} (1+e^{-jωτ})$$

$$|1+e^{-jωτ}| = |1+cosωτ-jsinωτ| = |[(1+cosωτ)^2+sin^2ωτ]^{1/2}|$$

$$= 2|cos(ωτ/2)|$$

2006-11-30 第2讲 绪论之二 36

 $\frac{4\pi}{\tau}$

W

- ■三类信号
 - *确知信号
 - *随相信号
 - *起伏信号

信道中的噪声

- □按照来源分类:
 - 人为噪声:电火花、家用电器...
 - 自然噪声:闪电、大气噪声、热噪声...
- □按照性质分类:
 - ■脉冲噪声
 - ■窄带噪声
 - ■起伏噪声
- □今后讨论通信系统时主要涉及: 白噪声 - 热噪声是一种典型白噪声。

