三七总皂苷肠溶胶囊在比格犬体内的药代动力学

秦艳娥¹, 刘华钢¹, 赖 玲¹, 陆仕华¹, 文 丽², 陈 明³, 刘冠萍³ (1. 广西医科大学药学院, 广西 南宁 530021; 2. 广西中医学院, 广西 南宁 530001; 3. 广西梧州制药(集团)股份有限公司, 广西 梧州 543000)

摘要: 目的 探讨三七总皂苷(PNS)肠溶胶囊在比格犬体内的药代动力学。方法 比格犬采用随机交叉给药方案,口服 PNS 肠溶胶囊 86.2 mg·kg $^{-1}$ 或血栓通胶囊 111.8 mg·kg $^{-1}$ 后,用反相高效液相色谱法同时测定犬血浆中三七皂苷 R_1 、人参皂苷 R_2 和 Rb_1 的血药浓度,采用 3P97 药动学软件计算药动学参数和基于曲线下面积(AUC $_{0-\infty}$)自定义权重系数整合血药浓度后的药动学参数。结果 与参比制剂血栓通比较,受试制剂 PNS R_1 、 Rg_1 、 Rb_1 的达峰时间延长: R_1 0. 18 ± 0. 09 vs (0. 16 ± 0. 06) h, Rg_1 2. 03 ± 0. 76 vs (1. 74 ± 0. 27) h, Rb_1 0. 76 ± 0. 39 vs (0. 74 ± 0. 17) h; 吸收延迟时间延长: R_1 0. 96 ± 0. 16 vs (0. 50 ± 0. 11) h, Rg_1 0. 87 ± 0. 05 vs (0. 02 ± 0. 01) h, Rb_1 0. 92 ± 0. 12 vs (0. 44 ± 0. 07) h, 3 种成分及其整合后 PNS 的相对生物利用度分别为248. 41%,107. 19%,152. 94%和155. 31%。整合后,血栓通胶囊和 PNS 肠溶胶囊的主要药动学参数分别为:AUC $_{0\rightarrow 1}$ 39. 17 ± 3. 89 vs (46. 91 ± 3. 86) mg·L $^{-1}$ ·h, Lag 时间 0. 45 ± 0. 18 vs (0. 92 ± 0. 13) h, t_{max} 0. 74 ± 0. 17 vs (0. 77 ± 0. 13) h, Cl (3. 84 ± 0. 24 vs 1. 84 ± 0. 97 L·kg $^{-1}$ ·h $^{-1}$)。结论 本实验制备的 PNS 肠溶胶囊能提高 PNS 的口服生物利用度。

关键词: 药代动力学; 三七总皂苷; 比格犬; 血药浓度

中图分类号: R969.1, R285 文献标志码: A 文章编号: 1000-3002(2012)01-0094-05

DOI: 10.3867/j. issn. 1000-3002. 2012. 01. 019

三七总皂苷(Panax notoginseng saponins, PNS) 是中药三七的主要成分,具有扩张血管、降低心肌耗氧量和抑制血小板凝集等药理作用,目前主要应用于心脑血管系统疾病 $^{[1]}$ 。其中,三七皂苷 R_1 、人参皂苷 R_1 和 R_{g_1} 是 PNS 的主要活性成分。PNS 在临床上的给药途径主要为注射和口服,据资料记载 $^{[2-3]}$,口服制剂的生物利用度不高。本实验通过研究自制的 PNS 肠溶胶囊在比格犬体内的药代动力学,与市售的血栓通胶囊对照,旨在研制生物利用度较高的 PNS 口服制剂。

1 材料与方法

1.1 药物和试剂

三七皂苷 R_1 对照品(批号110745-200415)、人 参皂苷 R_{g_1} 对照品(批号110704-200318)、人参皂

基金项目: 广西企业科技特派员专项(桂科攻 09321049); 广西自然科学基金(2010GXNSFB013068)

作者简介: 秦艳娥(1986-),女,硕士研究生,主要从事中药新制剂的开发和研究;刘华钢(1956-),女,教授,博士生导师,主要从事中药药理学、中药新制剂的开发研究。

通讯作者: 刘华钢, E-mail: hgliu@ 263. net, Tel: (0771)5358272

苷 Rb₁ 对照品(批号 110703-200424)、淫羊藿苷 (icariin)对照品(批号 110737-200413)由中国药品 生物 制品 检定 所提供。血栓通胶囊(批号 20101014)哈尔滨珍宝制药有限公司。甲醇(色谱纯)购自美国 Fisher Scientific 公司,乙腈(色谱纯)购自美国Tedia公司,PNS 由梧州制药集团股份有限公司惠赠。

1.2 动物

比格犬,雄性,体质量 8~10 kg;由广州医药工业研究院提供,动物生产许可证: SCXK(粤) 2008-0007。

1.3 仪器

高效液相色谱仪(LC-10AT泵,SPD-10A紫外检测器)(日本岛津公司);Sartorius 电子天平;BS224S电子天平;DT-230A柱温箱;SK-1旋涡混合器(苏州威尔实验用品有限公司);TGL-16G-A高速冷冻离心机(上海安亭科学仪器厂);101AS-2数显电热恒温干燥箱(上海浦东荣丰科学仪器有限公司)。

1.4 比格犬给药方案和血样采集

采用双周期自身对照交叉实验设计方法进行实验,将6只成年健康的比格犬随机分为2组,每组3只。每组犬禁食12h(自由饮水)后,分别喂饲PNS肠溶胶囊(受试制剂)13颗(折合犬给R₁,Rg₁,Rb₁

的量分别为 8.2, 46.8, 31.5 mg·kg⁻¹)或者血栓通胶囊(参比制剂) 20 颗(折合犬给 R_1 , Rg_1 , Rb_1 的量分别为 10.5, 57.9, 43.4 mg·kg⁻¹)。分别于药后 0.5,1,1.5,2,2.5,3,3.5,4,6 和 8 h 前肢静脉采血 4 ml, 血样置于肝素化 Eppendorf (ep)管中,800×g离心 10 min,分离血浆置于 -20°C 冰箱保存备用。间隔 7 d 后交叉服药。

1.5 血浆中 PNS 的测定

1.5.1 PNS 储备液和内标储备溶液的配置

分别精密称取 R_1 2. 4 mg, Rb_1 13. 6 mg, Rg_1 9. 2 mg, 加甲醇溶解, 定容至 10 ml, 浓度分别为 237. 3, 1363. 1, 917. 5 mg·L⁻¹作为 PNS 对照品贮备液。精密称取内标淫羊藿苷 1. 8 mg, 加甲醇溶解, 定容至 100 ml 作为内标溶液。

1.5.2 血浆样品预处理

精密量取比格犬血浆样品 2 ml,精确加入 20 μ l 内标(internal standard, IS)淫羊藿苷溶液 18 mg·L⁻¹和甲醇: 乙腈 = 1:1 的混合液 6 ml,漩涡混合 2 min,以 800 × g 离心 10 min。吸取上层混合液于 ep 管中,40℃水浴吹干混合液后,残渣用 0.20 ml 甲醇溶解,漩涡混合 1 min,800 × g 离心 10 min。

1.5.3 色谱条件

色谱柱为 Welchrom-C18 柱(4.6 mm×250 mm, 5 μm); 流动相为乙腈-水, 线性梯度洗脱: 0 min (V/V,21:79) ~15 min(V/V,40:60) ~18 min(V/V,40:55) ~20 min(V/V,21:79) ~25 min(V/V,21:79);流速:1.0 ml·min⁻¹;进样量:20 μl;紫外检测波长:203 nm;柱温:30°C。

1.5.4 标准曲线的绘制

在离心管中分别加入不同体积的 PNS 对照品溶液, 40° C 水浴吹干甲醇后,分别加入空白血浆 0.2 ml,配制成含不同浓度 PNS 的生物样品。按前述1.5.2项方法进行操作,在上述色谱条件下测定 PNS 中 R_1 , Rg_1 , Rb_1 与内标的峰面积之比为纵坐标,以浓度为横坐标,进行线性回归。

1.6 基于曲线下面积(area under curve, AUC) 自定义权重系数(ω_i)的 PNS 整合药动学模型的建立^[4]

根据 PNS 给药后测得的血药浓度-时间数据,应用 3P97 实用药动学计算机程序,获得 R_1 , Rb_1 和 Rg_1 的 $AUC_{0\to\infty}$ 数据,根据各成分在 3 种成分总 $AUC_{0\to\infty}$ 中所占比值自定义各成分在综合浓度中的 (ω_j) ,将每一时间点下 3 种单体成分的血药浓度赋以各自的权重系数,求算 PNS 的综合浓度,进一步进行整合药动学参数的研究。PNS 各成分自定义权重系数及综合浓度的计算公式如下:

$$\omega_{j} = AUC_{j0\to\infty} / \sum_{R_{1}}^{Rb_{1}} AUC_{0\to\infty}$$
 (1)

其中,
$$\sum\limits_{R_1}^{Rb_1} AUC_{0\rightarrow\infty} = AUC_{R_1(0\rightarrow\infty)} + AUC_{Rg_1(0\rightarrow\infty)} + AUC_{Rb_1(0\rightarrow\infty)}$$

$$C_T = \omega_{R_1} \times C_{R_1} + \omega_{Rg_1} \times C_{Rg_1} + \omega_{Rb_1} \times C_{Rb_1}$$
 (2)

式中, j 分别代表 R_1 , Rb_1 和 Rg_1 ; ω_j 表示上述成分 AUC 在 3 种成分总 AUC 中的比值; C_T 为自定义权重系数校正后 PNS 在犬体内的综合浓度。

2 结果

2.1 血浆中 PNS 质量浓度的方法学确认

2.1.1 方法专属性

按前述色谱条件和血浆处理方法处理和检测空 白血浆、加药血浆和血浆样品见图 1。R₁, Rg₁, Rb₁ 与内标淫羊藿苷的保留时间分别为 12.5, 13.7, 21.0 及 17.5 min,峰形良好,分离完全,无杂质干扰。

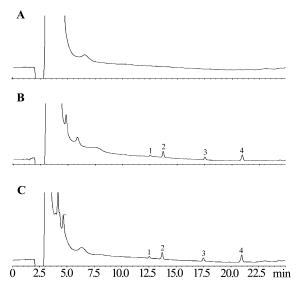


Fig. 1 Chromatograms of Panax notoginseng saponins (PNS) by HPLC. A: blank plasma; B: plasma spiked with R_1 , Rg_1 , icariin and Rb_1 (1.1, 4.4, 3.6 and 3.2 mg·L⁻¹) standard; C: plasma sample of PNS enteric-coated capsules in dogs after po 86.2 mg·kg⁻¹ for 1.5 h. 1: notoginsenoside R_1 ; 2: ginsenoside Rg_1 ; 3: icariin; 4: ginsenoside Rb_1 .

2.1.2 标准曲线

 R_1 , R_{g_1} 和 Rb_1 的校正标准曲线方程分别为: Y = 22.266X - 2.4731 (r = 0.9981); Y = 24.95X - 30.463 (r = 0.9965)以及 Y = 31.886X - 14.511 (r = 0.9983)。 R_1 , R_{g_1} 和 Rb_1 线性范围分别为 $1.0 \sim 79.1$ mg·L⁻¹, $0.9 \sim 90.9$ mg·L⁻¹和 $0.9 \sim 91.8$ mg·L⁻¹; 检测限分别为 0.1, 0.2和 0.2 mg·L⁻¹; 定量限分别为 0.3, 0.4和 0.4 mg·L⁻¹。

2.1.3 回收率

由表 1 可见,在实验浓度范围内, R_1 , Rg_1 , Rb_1 在血浆中的提取回收率均大于 50%,完全符合生物样品分析的要求 [5] 。

Tab. 1 Method recovery and extraction recovery of HPLC assay

Drug/ mg·L ⁻¹	Method recovery/	Extraction recovery/
R ₁ 5.93	89.0 ± 2.5	71.3 ± 2.2
23.73	90.9 ± 3.6	86.7 ± 1.6
118.60	103.4 ± 5.1	77.3 ± 2.1
Rg ₁ 6.82	87.9 ± 4.3	72.2 ± 3.7
68.18	92.2 ± 1.3	88.5 ± 3.7
136.32	88.8 ± 3.2	79.1 ± 2.6
Rb ₁ 4.59	95.8 ± 3.3	67.6 ± 4.8
91.76	89.6 ± 2.3	88.6 ± 5.1
183.52	104.1 ± 4.2	90.6 ± 6.4

 $\bar{x} \pm s$, n = 5.

2.1.4 精密度和稳定性

测得 R_1 , Rg_1 和 Rb_1 的日内相对标准偏差 (RSD)均小于 2.0%, 日间 RSD 均小于 3.0%。 24 h 内样品在常温及 4% 冰箱中的质量浓度没有明显的变化(RSD < 1.9%)。

2.2 犬体内药代动力学

受试制剂、参比制剂和整合后的平均血药浓度-时间曲线见图 2。应用 3P97 实用药物动力学计算机程序,根据残差平方和(SUM)、Akaike(AIC)法、拟合度法(r^2)等房室模型判断标准进行选择,以一室模型,权重为 $1/C^2$ 时,效果最好,主要药动学参数计算结果见表 2。

经剂量换算后, R_1 , Rb_1 , Rg_1 和各成分的 AUC 整合后 PNS 的相对生物利用度分别为 248. 41%,107. 19%,152. 94% 和 155. 31%。所得到的 PNS 在 犬体内整合血药浓度-时间曲线符合经典的药动学特征,可用经典的房室模型进行整合药动学参数的求算。基于 $AUC_{0-\infty}$ 自定义 ω_j 的 PNS 整合药动学参数见表 3。

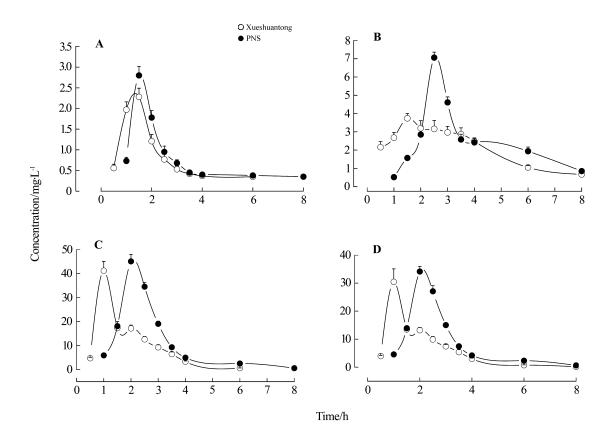


Fig. 2 Plasma concentration-time profiles of PNS after PNS enteric-coated capsules and Xueshuantong capsule given to Beagle dogs. A: notoginsenoside R_1 ; B: ginsenoside R_2 ; C: ginsenoside R_3 ; D: plasma concentration-time profiles of PNS after integration. $\bar{x} \pm s$, n = 6.

Parameter	R_1		Rb_1		Rg_{l}	
	PNS	Xueshuantong	PNS	Xueshuantong	PNS	Xueshuantong
Ka/h ⁻¹	24.04 ± 2.34	27. 20 ± 2. 45	2.42 ± 0.18	1.99 ±0.15	0.90 ± 0.18	0.58 ± 0.06
Lag time/h	0.50 ± 0.11	0.96 ± 0.16	0.92 ± 0.12	0.44 ± 0.07	0.02 ± 0.01	0.87 ± 0.05
$t_{1/2}(\mathrm{ka})/\mathrm{h}$	0.03 ± 0.01	0.02 ± 0.01	0.29 ± 0.19	0.35 ± 0.09	0.77 ± 0.28	1.20 ± 0.69
$t_{1/2}(\mathrm{ke})/\mathrm{h}$	1.35 ± 0.34	3.15 ± 0.21	1.11 ± 0.18	0.80 ± 0.14	2.03 ± 0.65	1.67 ± 0.76
$t_{ m max}/{ m h}$	0.16 ± 0.06	0.18 ± 0.09	0.76 ± 0.39	0.74 ± 0.17	1.74 ± 0.27	2.03 ± 0.76
$c_{ m max}/{ m mg} \cdot { m L}^{-1}$	2.12 ± 0.37	1.01 ± 0.27	22.60 ± 0.89	23.96 ± 2.73	3.35 ± 0.76	2.75 ± 0.45
$\mathrm{AUC}_{0 \to t} / \mathrm{mg} \boldsymbol{\cdot} \mathrm{L}^{-1} \boldsymbol{\cdot} \mathrm{h}$	2.48 ± 0.89	4.77 ± 1.09	58.11 ± 4.76	52.38 ± 5.78	17.76 ± 2.13	15.38 ± 1.89
$Cl/L \cdot kg^{-1} \cdot h^{-1}$	2.34 ± 0.001	1.70 ± 0.23	0.54 ± 0.09	0.83 ± 0.12	3.26 ± 0.45	3.04 ± 0.69
<i>V</i> /L•kg ⁻¹	4.56 ± 0.67	7.70 ± 0.73	0.87 ± 0.14	0.95 ± 0.16	9.53 ± 1.08	7.32 ± 1.09

Tab. 2 Main pharmacokinetic parameters of PNS enteric-coated capsules and Xueshuantong capsule in dogs

mum plasma concentration; $AUC_{0\rightarrow t}$: the area under the concentration-time curve; Cl: clearance; V: apparent volume of distribution. $\bar{x}\pm s$, n=6.

Tab. 3 Main pharmacokinetic parameters of PNS entericcoated capsule and Xueshuantong capsule in dogs after the integration of blood concentration based on AUC_{0...}

Parameter	PNS	Xueshuantong	
Ka/h ⁻¹	2.50 ± 0.43	2.20 ± 0.65	
Lag time/h	0.92 ± 0.13	0.45 ± 0.18	
$t_{1/2}(\mathrm{ka})/\mathrm{h}$	0.28 ± 0.04	0.32 ± 0.07	
$t_{1/2}(\mathrm{ke})/\mathrm{h}$	1.22 ± 0.24	0.93 ± 0.25	
$t_{ m max}/{ m h}$	0.77 ± 0.13	0.74 ± 0.17	
$c_{ m max}/{ m mg} \cdot { m L}^{-1}$	17.27 ± 1.87	16.74 ± 2.76	
$AUC_{0 \rightarrow t}/mg \cdot L^{-1} \cdot h$	46.91 ± 3.86	39.17 ± 3.89	
$Cl/L \cdot kg^{-1} \cdot h^{-1}$	1.84 ± 0.97	2.84 ± 0.28	
<i>V</i> /L•kg ⁻¹	3.23 ± 0.39	3.84 ± 0.24	

See Tab. 2 for the lengend. $\bar{x} \pm s$, n = 6.

3 讨论

本课题组建立了比格犬血浆中 PNS 浓度的 RP-HPLC 测定方法,以淫羊藿苷为内标采用梯度洗脱, 在此条件下基线平稳,各主要测定峰能达到良好分 离;血样处理方法较为简单,适用于 PNS 体内浓度 分析。

由于梧州制药提供的 PNS 中 3 种皂苷的含量 和血栓通胶囊的不同,因此在犬给药时,无法做到各 种皂苷的给药量一致,计算相对生物利用度时,都会 进行计量折算。

本实验研究发现 PNS 中 3 种主要成分 R₁, Rb₁ 和 Rg, 在犬体内的药动学参数差异较大, 很显然, 任 何单一成分的药动学行为均不能用于表征 PNS 的 整体药动学行为。基于 AUC_{0→∞} 分析的 PNS 整合药 动学能够更科学地反映 PNS 在犬体内的药动学行 为[4]。

PNS 在胃液内不稳定,各种有效成分主要在小 肠吸收^[6]。肠溶胶囊壳能有效的保护 PNS 到达小 肠,从而提高生物利用度。对自制的 PNS 肠溶胶囊 进行了体内药动学研究,结果显示,与参比制剂相 比,药物在犬体内吸收的达峰时间和延迟时间均延 长。基于 AUC₀→∞ 分析的 PNS 整合药动学也有相同 的结论。由于 PNS 中三种成分的相对分子质量和 极性较大,比较难透过肠壁类脂膜,因此其绝对生物 利用度较低。一些体外研究表明吸收促进剂能促进 PNS 透膜吸收[7],那么在体内吸收促进剂的效果如 何,需要进一步的研究。本实验对于这种分子质量 和极性较大、在胃液中不稳定的物质的口服制剂的 开发和研究,提供了参考借鉴。

参考文献:

- [1] Zhang JF, Zhang DF. Study advancement in pharmalcological actions of total saponins of Panax notoginseseng [J]. Med Recapit (医学综述), 2007, 13(6):472-474.
- [2] Li XY, Hao HP, Wang GJ, Sun JG, Liang Y, Xie L, et al. Integrated pharmacokinetic study of multiple effective components contained in total Panax notoginsenoside [J]. Chin Nat Med(中国天然药物), 2008, 6(5): 377-381.
- [3] Wang Y, Liu TH, Wang W, Wang BX. Research on the transformation of ginsenoside Rg₁ by intestinal flora [J]. China J Chin Mater Med (中国中药杂志),

- 2001, **26**(3):188-190.
- [4] Hasegawa H, Sung JH, Matsumiya S, Uchiyama M. Main ginseng saponin metabolites formed by intestinal bacteria [J]. Planta Med, 1996, 62(5):453-457.
- [5] Yu ZG. Establish and validate biopharmarceutical analysis method[M]//Li HZ. Biopharmarceutical Analysis(体内药物分析). Beijing: China Medical Science Press, 2003: 130.
- [6] Han M. Studies on oral absorption of Panax notoginsenoside(PNS) and preparation of W/O microemulsion for oral administration [D]. Shanghai: Fudan University, 2006.
- [7] Feng L, Jiang XH, Zhou J, Yang JY. Studies on absorption kinetics of sanchinoside R₁ and ginsenoside Rg₁ in rat intestine [J]. *Chin Pharm J*(中国药学杂志), 2006, **41**(14):1097-1102.

Pharmacokinetics of *Panax notoginseng* saponins enteric-coated capsules in Beagle dogs

QIN Yan-e¹, LIU Hua-gang¹, LAI Ling¹, LU Shi-hua¹, WEN Li², CHEN Ming³, LIU Guan-ping³
(1. Pharmacy School, Guangxi Medical University, Nanning 530021, China; 2. Guangxi Traditional Chinese Medical University, Nanning 530001, China; 3. Guangxi Wuzhou Pharmaceutical Group Co., Ltd., Wuzhou 543000, China)

Abstract: OBJECTIVE To investigate pharmacokinetics of Panax notoginseng saponins (PNS) in Beagle dogs. **METHODS** PNS enteric-coated capsules 86. 2 mg·kg⁻¹ and Xueshuantong capsules 111.8 mg·kg⁻¹ were administered to dogs according to an open randomized crossover design. The plasma concentration of notoginsenoside R₁, ginsenoside Rg₁ and Rb₁ was determined by RP-HPLC. Pharmacokinetic parameters were calculated by 3P97 software so were those after the integration of blood concentration based on $AUC_{0\to\infty}$. **RESULTS** Compared with reference preparation, t_{max} of test preparation R_1 , Rg_1 , Rb_1 increased: 0.18 ±0.09 vs (0.16 ±0.06) h for R_1 , 2.03 ±0.76 vs (1.74 ± 0.27) h for Rg₁, 0.76 ± 0.39 vs (0.74 ± 0.17) h for Rb₁; Lag times were prolonged: $0.96 \pm 0.16 \ vs \ (0.50 \pm 0.11) \ h \ for \ R_1, \ 0.87 \pm 0.05 \ vs \ (0.02 \pm 0.01) \ h \ for \ R_{g_1}, \ 0.92 \pm 0.12 \ vs$ (0.44 ± 0.07) h for Rb₁. The relative bioavailability of R₁, Rg₁, Rb₁ and PNS was 248.41%, 107. 19%, 152. 94% and 155. 31%, respectively. After integration, the main pharmacokinetic parameters of Xueshuantong capsules and PNS enteric-coated capsules respectively were: AUC₀₋₁ 39.17 ± 3.89 vs (46.91 ± 3.86) mg·L⁻¹·h, Lag times 0.45 ± 0.18 vs (0.93 ± 0.13) h, t_{max} 0.74 ± 0.17 vs $(0.77 \pm 0.13) \,\mathrm{h}$, $Cl \, 3.84 \pm 0.24 \, vs \, (1.84 \pm 0.97) \,\mathrm{L} \cdot \mathrm{kg}^{-1} \cdot \mathrm{h}^{-1}$. **CONCLUSION** PNS enteric-coated capsule can improve the oral bioavailability of PNS.

Key words: pharmacokinetics; *Panax notoginseng* saponins; Beagle dogs; plasma drug concentration

Corresponding author: LIU Hua-gang, E-mail: hgliu@263.net, Tel: (0771)5358272

(收稿日期: 2011-05-28 接受日期: 2011-11-19)

(本文编辑:付良青)

Foundation item: The project supported by Corporation Technologically Commissioner Foundation of Guangxi Zhuang Autonomuous Region (09321049); and Natural Science Foundation of Guangxi Zhuang Autonomuous Region (2010GXNSFB013068)