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a b s t r a c t

This paper deals with the problem of integrating preventive maintenance and tactical production planning,

for a production system composed of a set of parallel components, in the presence of economic dependence

and common cause failures. Economic dependence means that performing maintenance on several

components jointly costs less money and time than on each component separately. Common cause

failures correspond to events that lead to simultaneous failure of multiple components due to a common

cause. We use the b-factor model to represent common cause failures. This means that we assume two

possible causes for system failure: the independent failure of single components, and the simultaneous

common cause failure of all components. The suggested preventive maintenance is a T-age group

maintenance policy in which components are cyclically renewed all together. Furthermore, between the

periodic group replacements, minimal repairs are performed on failed components. We are given a set of

products that must be produced by this parallel system in lots during a specified finite planning horizon.

The objective is to determine an integrated lot-sizing and preventive maintenance strategy of the system

that will minimize the sum of preventive and corrective maintenance costs, setup costs, holding costs,

backorder costs and production costs, while satisfying the demand for all products over the entire horizon.

Numerical examples are used to illustrate the proposed approach.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

It is well-known that production planning and preventive main-
tenance (PM) planning are mutually in conflict [1–5]. Because these
activities are typically performed sequentially in practice, produc-
tion and maintenance plans are often not optimal with respect to
the objective minimizing the total maintenance and production cost.
The integration of PM and production may reduce the total expected
cost. Nourelfath et al. [6] have developed an integrated production
and PM planning model for multi-state systems (MSS), which are
composed of a set of binary-state components. They assumed that
these components are stochastically and economically independent.
Stochastic independence means that the condition of components
does not influence the lifetime distribution of other components.
Economic independence implies that the cost and the time of joint
maintenance of a group of components are equal to the total cost
and the time of individual maintenance of these components. The
ll rights reserved.

355); fax: þ1 418 6567415.

al.ca (M. Nourelfath),
objective of the present paper is to extend the model in [6], by
taking into account the presence of economic dependence and
common cause failures (CCF). We consider that the system and its
components are subject to both independent and CCF.

Economic dependence is common in most production systems.
It can be either positive or negative. Positive economic depen-
dence implies that costs can be saved when several components
are jointly maintained instead of separately. Negative economic
dependence between components occurs when maintaining
components simultaneously is more expensive than maintaining
components individually. We assume a positive dependence in
this paper. That is, as the components of the parallel system are
identical, it is possible to obtain savings of time and cost by
grouping preventive maintenance. The term economies of scale is
used to indicate that combining such preventive maintenance
activities is cheaper than performing them on components
separately. This means that the maintenance cost and time per
component decrease with the number of maintained components.
Economies of scale can result for example from preparatory
activities that can be shared when several components are
maintained simultaneously. Costs can be saved when preventive
maintenance activities on different components are executed
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simultaneously. In fact, PM is planned in advance such that
preparatory costs can be saved by simultaneous execution, and
execution of a group of activities requires only one preparatory
activity. A survey on economic dependence models can be found
in [7]. This survey is emphasized on classifications and character-
istics of maintenance policies. Wang [8] compared various exist-
ing maintenance policies for multi-component systems, and
reviewed many papers dealing with group maintenance and
opportunistic maintenance policies. There are three main cate-
gories of group replacement policy. A T-age policy (see, e.g., [9])
calls for replacement every T units of time. An m-failure policy
(see, e.g., [10, 11]) calls for replacing the system at the time of the
mth failure. A policy that combines characteristics of both of the
above classes is the (m, T) policy, which calls for replacement at
the time of the mth failure or at time T whichever occurs first (see
[12, 13]).

Stochastic dependence occurs if the state of a component
influences the lifetime distribution of other components, or if
there are causes outside the system which bring about simulta-
neous failures and hence correlate the lifetimes, so-called
common cause failures (CCF). A large amount of papers have
been also devoted to characterize common cause failures and
more generally failure dependencies. Vaurio [14, 15] applied the
joint probability to measure CCF by evaluating the probabilistic
correlation of the failures. Implicit methods that follow mini-
mum-cut theory and probability equations, and explicit expres-
sions derived from fault trees, are discussed. Watanabe et al. [16]
used dynamic fault trees to simulate the failure process of a
nuclear power plant, where the probabilistic correlation of the
CCF is calculated by using simulation. Levitin [17] adapted the
universal generating function technique of multi-state system
reliability analysis to take into account CCF in system reliability
estimation. Other studies have concerned the redundant depen-
dency. Kotz et al. [18] have introduced the concept of ‘quadrant
dependent’ to measure the effect of adding a component. The
correlation effects between components are investigated upon
some bivariate failure distributions. Barros et al. [19] considered a
two-component parallel system, in which the failure rate of the
operating component will increase, due to the additional loading
induced by the other component’s failure.

Other papers dealing with joint optimization include [22–27].
In [22], the authors formulated the joint redundancy and replace-
ment schedule optimization problem generalized to multistate
system. In [23], the authors considered a preventive maintenance
optimization problem for multi-state systems, for which the
reliability is defined as the ability to satisfy given production
demand. The authors of [24] presented a value-driven mainte-
nance planning approach and applied it to approach to a produc-
tion plant. In [25], the authors have shown the importance of
linking maintenance and safety risks, and presented an approach
to maintenance optimization where safety issues are important.
The authors of [26] presented a dynamic modeling of the trade-off
between productivity and safety in critical engineering systems.
In [27], the authors presented an overall model for maintenance
optimization. They developed an approach for identifying the
optimal maintenance schedule for the components of a produc-
tion system. Safety, health and environment objectives, main-
tenance costs and costs of lost production are all taken into
account, and maintenance is thus optimized with respect to
several objectives.

The existing approaches integrating PM and production plan-
ning have either considered the production system as one binary-
state component [1–5], or overlooked the inclusion of economic
dependence and CCF in the modeling of the system capacity [6].
However, because of economic dependence, there is often a great
potential for cost savings by implementing a group maintenance
policy. This happens every time costs (or times) can be saved
when several components are jointly maintained instead of
separately (in that case economies of scales can be obtained).
On the other hand, recognition of CCF for optimal integrated
planning is a crucial issue due to the significant impact these
failures can have on the overall system capacity used to meet the
required demand. Thus, for many planning problems, a modeling
approach incorporating CCF in the system capacity evaluation is
expected to be more realistic. For some industrial systems, an
approach that considers CCF when evaluation the system capacity
should, not only be the preferred approach but also the correct
one. If we ignore CCF in our model, the estimated capacity will be
overestimated. Since the available capacity is less than the
expected one, the production plan could be unmet. This could
increase the cost of backorders and may cause bad service levels.
In addition, if we want to repair failed components after CCF, the
maintenance time and cost may increase, for example because of
the unavailability of enough maintenance crew to repair more
than one component. The occurrence of a CCF results in a peak in
manpower needs. Manpower restrictions may even be violated
and additional labor needs to be hired, which is costly. Taking into
account CCF means here that the capacity evaluation model
includes CCF, and enough resources are available to deal with
failures of multiple components.

Our model suggests a joint preventive maintenance and
production planning model. At the production planning level,
the production planning problem consists in a multi-product
capacitated lot-sizing problem. At the preventive maintenance
planning level, the maintenance policy suggests possible preven-
tive replacements at the beginning of each production planning
period, and minimal repair at machine failure. It is assumed that
spare parts and maintenance crew are available at replacement
times. This assumption can be justified by the fact that preventive
maintenance is plannable. That is, new components can be
ordered in time and also enough maintenance crew is available
at the planned maintenance replacement times.

The remainder of the paper is structured as follows. Section 2
is devoted to how production and maintenance activities affect
each other, in terms of time and cost. Section 3 presents an
integrated production and PM planning model, which takes into
account economic dependence and CCF. Then, a method is
proposed in Section 4 to evaluate the times and the costs of
preventive maintenance and minimal repair, and the average
production system capacity in each period. Our solution method
is applied to an illustrative example in Section 5, and conclusions
are given in Section 6.
2. Integrating maintenance and production decisions

Preventive maintenance and production are mutually in con-
flict for two main reasons. First, since the time taken by PM
activities could be used for production, production managers
usually fail to realize the importance of PM. Second, delaying
PM for production may increase the probability of failures, while
maintenance managers try to reach high equipment availability.
In practice, production and maintenance planning activities are
usually performed independently. Therefore, it cannot be guar-
anteed that the obtained plans are optimal with respect to the
objective minimizing the total maintenance and production cost.
Better solutions could be obtained when maintenance planning is
integrated with manufacturing activities. The integration of PM
and production decisions may reduce not only the interruption
time, but the total expected cost also. Depending on the produc-
tion environments, this integration could be done either at the
scheduling operational level (short-term) or at the tactical level
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(mid-term). The time horizons may vary for each planning level
depending on the industry. Typical values are one week or less for
operational planning, and one month or more for tactical
planning.

For equipment that is not highly reliable, PM schedules may be
weekly or even daily. In these environments, it is necessary to use
a job-to-job PM planning tool. This issue has been dealt with in
Ref. [2], where the authors have developed a model integrating
job sequencing and PM decisions. Considering that preventive
maintenance, and repair affect both available production time,
and the probability of machine failure, the model in Ref. [2]
coordinates PM planning decisions with single-machine schedul-
ing decisions so that the total expected weighted completion time
of jobs is minimized.

For highly reliable equipment, PM schedules may be per-
formed at a lower frequency (monthly, quarterly or even semi-
annually). As a result, PM activities should be integrated with
tactical production planning. The objective of this paper is to
develop an integrated production and PM planning model dealing
with tactical aggregate production planning decisions. At the
tactical level, it is often dealt with items from a product family
viewpoint. A product family is defined as a grouping of end items
that share a common manufacturing set-up. Set-up is the process
of actually converting the equipment. This may be achieved by
adjusting the equipment to correspond to the next product family
or by changing non-adjustable ‘‘change parts’’ to accommodate
the product family. As already suggested by the Total Productive
Maintenance approach [21], the successful implementation of a
maintenance program requires that its tasks be considered as
parts of the production plan rather than as interruptions to that
plan. Within this in mind, we consider that preventive main-
tenance activities are performed by machine operators respon-
sible of set-up activities. The set-up activities are achieved at the
planning periods. Thus, knowing that the production and main-
tenance requirements share common labor and time resources,
PM tasks can be advantageously integrated to these set-up
activities at the beginning of planning periods. In this case,
because PM tasks are executed by machine operators responsible
of set-up activities, the time and the cost of PM actions will be
clearly lower than interrupting production to PM tasks during a
production cycle. The next section presents the proposed inte-
grated model for tactical production and PM.
3. The mathematical model

3.1. The system description

We consider a production system containing n parallel com-
ponents, also called machines. The system fails if all its compo-
nents fail. We assume that the states of the components are
binary (i.e., either good or failed). Each component i (i¼1, 2, y, n)
is characterized by its own nominal performance. Failures of
some components lead to the degradation of the entire system
performance gi. Therefore, the system can be seen as multi-state:
it can perform its task with various distinguished levels of
performance rates, ranging from perfect functioning up to com-
plete failure. The performance measure used for this system is the
capacity, which is represented by the production rate (i.e.,
number of produced items per time unit). Common cause failures
must be taken into account in the system capacity computation.

The system produces a set of items or products P during a
given planning horizon H including T periods. All periods have the
same fixed length L. For each product pAP, a demand dpt is to be
satisfied at the end of period t (t¼1, 2, y, T).
3.2. The maintenance policy

As economic and stochastic dependences are considered, the
best maintenance policy is not one of considering each compo-
nent separately and maintenance decisions will not be indepen-
dent. We use the b-factor model to represent common cause
failures. This means that we assume two possible causes for
system failure: the independent failure of single components, and
the simultaneous common cause failure of all components.
Planned preventive maintenance and unplanned corrective main-
tenance can be performed on components. The suggested PM is a
T-age group maintenance policy in which components are cycli-
cally renewed all together. This means that PM is assumed to
restore periodically all components to ‘‘as good as new’’ condi-
tions, so that the age of components becomes zero. The replace-
ment interval is a L with a¼1, 2, y, T�1. That is, the components
can be replaced at times a L, 2a L, etc. The cyclic PM actions
coincide with the planning periods, and a PM replacement can be
cyclically performed at the beginning of any planning period,
except for the first period (where the components are considered
as new), and at the end of the last period. The PM decision
variable is defined by a. Furthermore, between the periodic group
replacements, minimal repairs are performed at failures. If any
single component fails, it is minimally repaired; and if all
components fail (due to a CCF), they are minimally repaired all
together. Minimal repair means that a component is restored to
an operating condition, without altering its age.

The expected maintenance cost is the sum of preventive and
corrective maintenance costs. The average production capacity of
the system during a period t depends on a, and it is denoted by
Gt(a). All required corrective and preventive maintenance times
and costs are assumed to be known. The expected maintenance
cost during the planning horizon is the sum of preventive and
corrective maintenance costs: it depends on a and it is denoted by
CM(a). Similarly, the expected maintenance time is denoted by
TM(a).
3.3. The integrated model

For such a system, the objective is to develop an integrated
production and preventive maintenance planning model. The
production planning part corresponds to a multi-product capaci-
tated lot-sizing problem. At this level, the decisions involve
determination of quantities of items (lot sizes) to be produced
in each period. Lot-sizing is one of the most important problems
in production planning. Almost all manufacturing situations
involving a product-line contain capacitated lot-sizing problems,
especially in the context of batch production systems. The setting
of lot sizes is usually considered as a decision related to tactical
planning, which is a medium-term activity. In aggregate planning,
the lot sizing models are extended by including labor resource
decisions [1, 20]. Tactical planning bridges the transition from the
strategic planning level (long-term) to the operational planning
level (short-term).

The objective function in the integrated problem is a non
linear equation minimizing the sum of maintenance and produc-
tion costs, while satisfying the demand for all products over the
entire horizon. The constraints are related to the dynamics of the
inventory and the backorder, the capacity, the setup, and the
available total maintenance time.

Before introducing the model, we present the following
notations:

hpt inventory holding cost per unit of product p by the end
of period t
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bpt backorder cost per unit of product p by the end of period
t

spt fixed set-up cost of producing product p in period t

ppt variable cost of producing one unit of product p in
period t

xpt quantity of product p to be produced in period t

Ipt inventory level of product p at the end of period t

Bpt backorder level of product p at the end of period t

Setpt binary variable, which is equal to 1 if the setup of
product p occurs at the end of period t, and 0 otherwise

dpt demand to be satisfied at the end of period t

Gt average production capacity of the system during a
period t.

The integrated model is mathematically formulated as follows:

minimize
X
pAP

XT

t ¼ 1

ðhptIptþbptBptþpptxptþsptSetptÞþCMðaÞ, ð1Þ

subject to Ipt�Bpt ¼ Ipt�1�Bpt�1þxpt�dpt ,pAP,t¼ 1,2,. . .,T, ð2Þ

xpt r
X
qZ t

dpq

 !
ypt , pAP, t¼ 1,2,. . .,T, ð3Þ

P
pAPxpt

L
rGtðaÞ, t¼ 1,2,. . .,T ð4Þ

TMðaÞrTM0, ð5Þ

xpt ,Ipt ,BpAN; Setpt Af0,1g, a¼ 1,2,. . .,T�1: ð6Þ

The objective function (1) consists of a total maintenance costs

CM(a), a total holding cost of the inventory
P

pAP

PT
t ¼ 1 hptIpt , a

backorder cost (backlogs are allowed)
P

pAP

PT
t ¼ 1 bptBpt , a total

production cost
P

pAP

PT
t ¼ 1 pptxpt , and a total setup costP

pAP

PT
t ¼ 1 sptSetpt . The first constraint (2) relates inventory or

backorder at the start and end of period t to the production and
demand in that period. There is no optimal solution where Ipt40 and
Bpt40 simultaneously, since the objective function can be improved
by decreasing both Ipt and Bpt until one becomes zero. Eq. (2) ensures
simply that the sum of inventory (or backorder) of product p at the
end of period t is equal to its inventory (or backorder) in the previous
period plus the total production of that product in that period, minus
the product demand for that period. The second constraint (3) forces
xpt¼0 if Setpt¼0 and frees xptZ0 if Setpt¼1. In Eq. (3), the quantity
(
P

qZtdpq) is an upper bound of xpt. Eq. (4) corresponds to the
available production capacity constraint. Eq. (5) specifies the available
total maintenance time constraint when available.

To solve the integrated model (1)–(6), a method is presented in
the next section to evaluate the values of CM(a), TM(a), and Gt(a).
Fig. 1. Illustrativ
4. Evaluation method

4.1. Evaluation of times and costs

In order to evaluate the expected maintenance costs and times,
we need to estimate the number of failures for each component i,
and the number of cyclic preventive replacements for the group
denoted by n.

If we denote by xb c the greatest integer lower bound of x, we
write the variable n as:

n¼ T�1

a
: ð7Þ

We define also the variable c that characterizes the remaining
time from the last PM action until the end of the planning horizon H:

c¼ T2an: ð8Þ

Fig. 1 illustrates the definitions of the variables n, and c for a
simple example that consists of one component, and a planning
horizon H¼11 months. There are 11 periods (T¼11) of 1 month
each (i.e., L¼1 month). As shown in the figure, when this
component is preventively replaced each 3 months, we have
a¼3, three preventive replacements (n¼3), and c¼2.

The failure rate of all components simultaneously is denoted
by rcc(y), and the failure rate of a component i is denoted by ri(y).
A total failure rate is defined as the sum of the component
independent failure rate, ri(y), and the failure rate due to the
common cause effect, rcc(y):

rtotðyÞ ¼ riðyÞþrccðyÞ: ð9Þ

The ‘‘b-factor’’ is then defined as the ratio of the common
cause failure rate to the total failure rate of the component:

b¼
rccðyÞ

rtotðyÞ
¼

rccðyÞ

rccðyÞþriðyÞ
: ð10Þ

Rearranging Eqs. (9) and (10), we get:

rccðyÞ ¼
b

b�1
: ð11Þ

Because we assume repair is minimal (bad as old), we can
model the occurrence of failures during [0,a L[ using a non-
homogeneous Poisson process. Then, the total expected number
of failures during [0,a L[ is given by:

Mtot
i ½0,aL½ ¼Mcc

i ½0,aL½þMi½0,aL½, ð12Þ

where

Mcc
i ½0,aL½ ¼

Z aL

0
rccðyÞdy, ð13Þ

and

Mi½0,aL½ ¼

Z aL

0
riðyÞdy: ð14Þ
e example.
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Eq. (13) gives the expected number of CCF (i.e., simultaneous
common cause failure of all components), while Eq. (14) repre-
sents the expected number of independent failures for component
i. The failure rates ri(y) and rcc(y) are obtained from the prob-
ability density functions fi(y) and fcc(y) as follows:

riðyÞ ¼
f iðyÞR1

y f iðxÞdx
, ð15Þ

rccðyÞ ¼
f ccðyÞR1

y f ccðxÞdx
: ð16Þ

Knowing that components are renewed at times a L, 2a L, y, n
a L, the total expected number of failures of component i during
the planning horizon H is estimated as:

Ntot
i ¼ nMtot

i ½0,aL½þMtot
i ½0,cL½: ð17Þ

Using Eqs. (12)–(14), we can distinguish between the expected
number of common cause failures, Ncc

i , and expected number of
independent failures, Ni, as follows:

Ncc
i ¼ nMcc

i ½0,aL½þMcc
i ½0,cL½, ð18Þ

Ni ¼ nMi½0,aL½þMi½0,cL½: ð19Þ

Let introduce now the following given times and costs:
–
 CMRi is the expected minimal repair cost of component i

(independent failure).

–
 CMR is the expected cost when all components are minimally

repaired (CCF).

–
 CPM is the expected preventive maintenance cost (compo-

nents are renewed all together).

–
 TMRi is the expected minimal repair time of component i

(independent failure).

–
 TMR is the expected time required for minimal repair of all

components (CCF).

–

Table 1
Example of a system with two parallel components.

States Production rates Probabilities

{10,15} 25 p1 ¼ A1
1A1

2 ¼ 0:765

{10,0} 10 p2 ¼ A1
1ð1�A1

2Þ ¼ 0:135

{0,15} 15 p3 ¼ ð1�A1
1ÞA

1
2 ¼ 0:085

{0,0} 0 p4 ¼ ð1�A1
1Þð1�A1

2Þ ¼ 0:015
TPM is the expected preventive maintenance time.

The expected maintenance cost during the planning horizon is
then given by:

CMðaÞ ¼Ncc
i CMRþ

Xn

i ¼ 1

NiCMRiþnCPM: ð20Þ

Using Eqs. (18) and (19) in Eq. (20), we obtain:

CMðaÞ ¼ ðnMcc
i ½0,aL½þMcc

i ½0,cL½ÞCMR

þ
Xn

i ¼ 1

ðnMi½0,aL½þMi½0,cL½ÞCMRiþnCPM: ð21Þ

Similarly, the expected maintenance time during the planning
horizon is:

TMðaÞ ¼ ðnMcc
i ½0,aL½þMcc

i ½0,cL½ÞTMR

þ
Xn

i ¼ 1

ðnMi½0,aL½þMi½0,cL½ÞTMRiþnTPM: ð22Þ

4.2. Evaluation of Gt(a)

In order to evaluate the average production rate of the system,
it is necessary to estimate the average availability of each
component i per period. We assume that the length L is large
enough, so that we can consider that a stationary regime is
reached during each period. This assumption is realistic since a
typical value for a tactical planning period in industry is one
month or more. We denote by At

i the steady-state availability
during a period t. This availability depends on the expected
number of failures during [(t�1)L, tL[ and on the occurrence or
no of a preventive maintenance at the beginning of period t. In
fact, within the time period [(t�1)L, tL[, the component is
expected to fail a number of times and be minimally repaired.
Furthermore, every time a preventive replacement is performed,
the component is unavailable. We define the binary variable Dt as
follows: Dt is equal to 1 if a PM is performed at the beginning of
period t, and it is equal to 0 otherwise. Let define also the total
expected number of component i failures during the interval
[(t�1)L, tL[ as follows:

Mtot
i ½ðt�1ÞL,tL½ ¼Mcc

i ½ðt�1ÞL,tL½þMi½ðt�1ÞL,tL½, ð23Þ

where

Mcc
i ½ðt�1ÞL,tL½ ¼

Z tL

ðt�1ÞL
rccðyÞdy, ð24Þ

and

Mi½ðt�1ÞL,tL½ ¼

Z tL

ðt�1ÞL
riðyÞdy: ð25Þ

Eq. (24) gives the expected number of CCF (i.e., simultaneous
common cause failure of all components), while Eq. (25) represents
the expected number of independent failures for component i.

The availability At
i is then:

At
i ¼

L�TPMDt�TMRiMi½ðt�1ÞL,tL½�TMRMcc
i ½ðt�1ÞL,tL½

L
: ð26Þ

Eq. (26) gives an expected value of the component availability
over the time horizon L beginning from time (t�1)L until time tL.
Once the average availability is calculated for each period and for
each component, the average production rate Gt(a) of the parallel
system can be obtained easily. To illustrate this, let consider a
parallel system consisting of two independent binary-state com-
ponents. Assume t¼1 and the nominal production rates (in items
per time unit) are g1¼10 and g2¼15. By using the method
described above, the availability of each component is assumed
to be evaluated as A1

1 ¼ 0:9 and A1
2 ¼ 0:85. The number of the

possible combinations of the states of components is 4. In Table 1,
we give the production rate and the probability for each state. We
obtain for this example an average production rate of 25 p1þ10
p2þ15 p3¼21.75 items per time unit.
5. Solution method and numerical examples

The proposed solution method consists in enumerating all PM
alternatives as follows. In the mixed-integer non linear problem
formulated by (1)–(6), for each product p and for each period t,
the decision variable are xpt, Ipt, Bpt, Setpt and a. For a given
solution a, the values of CM(a), TM(a) and Gt(a) can be evaluated
by using the results of the previous section. Knowing these values,
the problem (1)–(6) becomes a mixed integer linear production
planning problem corresponding to the capacitated lot-sizing
problem, which can be solved using any selected existing algo-
rithm. This pure production planning problem can be solved also



Table 6
Evaluation of costs for each PM alternative.

PM

solutions a
Total production

cost ($)

Total maintenance

cost ($)

Total

cost ($)

1 38,950 11,375 50,325

2 39,110 9,867 48,977
3 40,460 10,522 50,982

4 43,780 13,621 57,401

5 45,180 17,965 63,145
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by using the mixed integer solver of a commercial optimization
package.

5.1. Example 1

To illustrate this solution method, let consider a parallel system
containing 2 binary-state components. Table 2 gives individual
characteristics of these components, while Table 3 provides data
related to grouped minimal repair and PM. We remark that the
parameters in Table 3 are lower than the sum of the PM individual
costs and times given in Table 2.

The planning horizon H is 5 months composed of 5 periods
(L¼1 month). The system has to produce two kinds of products in
lots so that the demands are satisfied. For each product, the
periodic demands are presented in Table 4. Table 5 gives the
holding, backorder, set-up and production costs for each product.
These costs are the same for all periods.

For the independent failure of single components, we assume that
the lifetime of component 1 is distributed according to a second
order Gamma distribution, and the lifetime of component 2 is dis-
tributed according to Weibull distribution with parameters (2, 2).
Furthermore, suppose the time to common cause failure is governed
by a Weibull probability distribution with parameters (3, 3).

Because components are replaced all together, with two
components and five periods, there are 5 possible PM solutions
a, aA{1, 2, 3, 4, 5}. Since the planning horizon is 5 months, a¼5
means that no PM action is performed. Table 6 presents for each a
Table 2
Individual characteristics of the components.

Component

i

gi (items/

month)

CPMi

($)

CMRi

($)

TPMi

(month)

TMRi

(month)

1 50 1500 1000 0.020 0.1

2 55 1700 1250 0.025 0.15

Table 3
Characteristics of the components in case of grouped maintenance.

CPM ($) CMR ($) TPM (month) TMR (month)

2000 1500 0.030 0.18

Table 4
Demands of products.

Period t Demand of product

1 d1t (items)

Demand of product

2 d2t (items)

1 50 50

2 48 49

3 48 50

4 47 47

5 48 48

Table 5
Cost data of products.

Product

p

Holding cost

hpt ($)

Backorder cost

bpt ($)

Set-up cost

spt ($)

Production cost

ppt ($)

1 40 120 500 70

2 40 120 500 70
the values of the total maintenance cost, the total production cost
and the total cost (i.e., the sum of total maintenance and
production costs). The total cost of an optimal integrated produc-
tion and maintenance plan is reduced to 48,977 $ and is obtained
for a¼2. Table 7 shows the optimal production plan for the two
products when integrating production and PM planning.

The plan obtained by the proposed approach is indeed more
realistic that that obtained by the approach developed in [6],
since it takes into account CCF and economic dependence. When
solving the same example by the approach in [6], we obtained a
total cost of 48,772.5 $ (see [6] for more details). Even if this cost
is lower than 48,977 $, it is important to note that the effective
cost should be higher since the CCF are not taken into account by
the model in [6]. In fact, by ignoring CCF, the estimated capacity is
overestimated, which increases the cost of backorders. Further-
more, as we have not taken into account CCF in our PM planning,
the available resources could be insufficient to repair multiple
components, which may increase the maintenance time and cost.
Recall that taking into account CCF not only means that the
capacity evaluation model includes CCF, but this means also that
enough maintenance crew to repair more than one component. As
the occurrence of a CCF may result in a peak in unplanned
manpower needs, additional labor needs to be hired, which could
be costly. The next example considers more than two components
to demonstrate the advantages of the proposed method.

5.2. Example 2

Let consider now a parallel system containing 4 binary-state
components. Table 8 gives individual characteristics of these
components, while Table 9 provides data related to grouped
minimal repair and PM. We remark that the parameters in
Table 9 are lower than the sum of the PM individual costs and
times given in Table 8.

As in Example 1, the planning horizon H is 5 months composed
of 5 periods (L¼1 month); the system has to produce two kinds of
products in lots so that the demands are satisfied; for each
product, the periodic demands are presented in Table 4; and
Table 5 gives the holding, backorder, set-up and production costs
for each product (these costs are the same for all periods).

For the independent failure of single components, we assume
that the lifetime of components 1 and 2 are distributed according
to a second order Gamma distribution, and the lifetime of
components 3 and 4 are distributed according to Weibull dis-
tribution with parameters (2, 2). Furthermore, suppose the time
to common cause failure is governed by a Weibull probability
distribution with parameters (3, 3).

From Table 10, we remark that separate production optimiza-
tion and group maintenance optimization leads to a total cost of
66,783.5 $ for a¼2. In this separate optimization, we first
optimize maintenance plan, then we optimize the production
plan (taking into account this optimal maintenance plan). On the
other hand, the total cost of an optimal integrated production and
maintenance plan is reduced to 65,467.5 $ and is obtained for
a¼1. The difference between the two plans illustrates that the



Table 7
Optimal production plan when integrating production and PM.

Period Product A Product B

Production Inventory Backorder Set-up Production Inventory Backorder Set-up

1 51 1 0 1 50 0 0 1

2 47 0 0 1 48 0 1 1

3 48 0 0 1 51 0 0 1

4 47 0 0 1 47 0 0 1

5 48 0 0 1 48 0 0 1

Table 8
Individual characteristics of the components (Example 2).

Component i gi (items/month) CPMi ($) CMRi ($) TPMi (month) TMRi (month)

1 25 1200 1000 0.02 0.1

2 22 1300 1250 0.02 0.15

3 25 1200 1000 0.02 0.1

4 23 1400 1250 0.02 0.15

Table 9
Characteristics of the components in case of grouped maintenance (Example 2).

CPM ($) CMR ($) TPM (month) TMR (month)

2250 1500 0.050 0.3

Table 10
Separate and integrated optimization solutions.

PM solutions a Total production cost ($) Total maintenance cost ($) Total cost ($)

1 49,890 15,577.5 65,467.5

2 51,530 15,253.5 66,783.5

Table 11
Optimal production plan when integrating production and PM (Example 2).

Period Product A Product B

Production Inventory Backorder Set-up Production Inventory Backorder Set-up

1 41 0 9 1 50 0 0 1

2 41 0 16 1 49 0 0 1

3 40 0 24 1 50 0 0 1

4 71 0 0 1 19 0 28 1

5 48 0 0 1 42 0 34 1
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proposed integrated optimization method is better than separate
production optimization and group maintenance optimization.
Table 11 shows the optimal production plan for the two products
when integrating production and PM planning.

Finally, this example has been solved using the method developed
in [6], which suggests performing preventive maintenance on com-
ponents separately using age-based replacement (i.e., preventively
replacing a component when it reaches a pre-specified replacement
age). In this case, the optimal integrated production and maintenance
plan is obtained for a total optimal cost of 69,615 $, and it suggests
that no preventive maintenance is performed for components 1 and
2, and it is performed each 2 months for components 3 and 4, while
each component is minimally repaired at failure. The difference
between the two plans illustrates that the proposed maintenance
method is better than performing preventive maintenance on com-
ponents separately using age-based replacement.
6. Conclusion

Because production and preventive maintenance are mutually in
conflict, their planning integration may reduce the total expected
cost. Assuming that components are stochastically and economically
independent, Nourelfath et al. [6] have developed an integrated
production and preventive maintenance planning model for multi-
component systems. In this paper, we extended the model in [6] by
taking into account the presence of economic dependence and
common cause failures in parallel systems. We used the b-factor
model to represent common cause failures. The suggested PM is a
T-age group maintenance policy in which components are cyclically
renewed all together. Furthermore, between the periodic group
replacements, minimal repairs are performed on failed components.
A method was proposed to evaluate the times and the costs of PM
and minimal repair, and the average production system capacity per
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period. For each chosen PM solution, the problem was solved as a
multi-product capacitated lot-sizing problem. An issue currently
under investigation consists in extending the proposed model to
deal with non-cyclical preventive maintenance, while taking into
account dependences.
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