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In this paper, an efficient method is proposed for the exact reliability evaluation of k-out-of-n systems
with identical components subject to phased-mission requirements and imperfect fault coverage. The
system involves multiple, consecutive, and non-overlapping phases of operation, where the k values
and failure time distributions of system components can change from phase to phase. The proposed
method considers statistical dependencies of component states across phases as well as dynamics in
system configuration and success criteria. It also considers the time-varying and phase-dependent
failure distributions and associated cumulative damage effects for the system components. The
proposed method is based on the total probability law, conditional probabilities and an efficient
recursive formula to compute the overall mission reliability with the consideration of imperfect fault
coverage. The main advantages of this method are that both its computational time and memory
requirements are linear in terms of the system size, and it has no limitation on the type of time-to-
failure distributions for the system components. Three examples are presented to illustrate the
application and advantages of the proposed method.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Operation of missions encountered in many real-world appli-
cations such as aerospace and nuclear power plants often involves
multiple different tasks or phases that must be accomplished in
sequence [1-4]. For example, an aircraft flight involves taxi, take-
off, ascent, level-flight, descent, and landing phases [2,5]. During
each phase, the system has to accomplish a specified task and
may be subject to different stresses and environmental conditions
as well as different reliability requirements. Thus, system config-
uration, success criteria, and component failure behavior may
change from phase to phase [6]. For the above aircraft flight
example, if there are two engines, one engine is usually required
during the taxi phase, but both engines are necessary during the
take-off phase. In addition, the engines are more likely to fail
during the take-off period because they are generally under
enormous stress in this phase as compared to other phases of
the flight profile. Systems used in these missions are referred to as
phased-mission systems (PMS).
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An accurate reliability analysis of a PMS must address the above
described dynamics in system configuration, success criteria, and
component behavior. In addition, the analysis must consider the
statistical dependencies of component states across phases, in
particular, the state of a component at the beginning of a new
phase being identical to the state at the end of the previous
phase [6]. Consideration of these dynamics and dependencies poses
unique challenges to existing reliability analysis methods. Consider-
able research efforts have been expended in the reliability analysis
of PMS over the past four decades [7-15]. A state-of-the-art review
of PMS reliability modeling and analysis techniques is provided in
Ref. [16]. However, even with advances in computing technology,
only small-scale PMS problems can be solved accurately due to high
computational complexity of the existing methods.

Among various system structures for achieving fault tolerance,
the k-out-of-n system structure has become a popular type of
redundancy since it was introduced in 1961 by Birnbaum, Esary,
and Saunders [17]. There are two types of k-out-of-n systems: k-out-
of-n: G and k-out-of-n: F. The k-out-of-n: G system consists of n
components and it functions if and only if (iff) at least k of the n
components are functioning [18]. In other words, the system
functions (fails) iff at most n—k (at least n—k+1) components fail.
Similarly for a k-out-of-n: F system, it fails iff at least k of the n
components have failed. In this work, we focus on k-out-of-n: G
systems, which are simply referred to as k-out-of-n systems hereafter.
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Both series systems and parallel systems are special cases of the k-
out-of-n systems. The k-out-of-n redundancy has found a wide range
of applications in both industrial and military systems. Examples
include cables in a bridge, a data processing system with multiple
video displays, communication systems with multiple transmitters,
and airplanes with multi-engine systems [19,20]. Although the k-out-
of-n systems have been extensively studied in the literature, the focus
of these studies is on the binary-state systems subject to single-phase
mission requirements. However, many of the practical applications of
k-out-of-n systems, such as space systems [21], airborne weapon
systems [22], and distributed computing systems [6,23], are subject
to phased-mission requirements where the number of working
components required (k values) can change from phase to phase. In
addition, imperfect fault coverage could happen during the mission.
In particular, the automatic recovery mechanism that is designed into
the k-out-of-n system to tolerate faults can fail, such that the system
cannot adequately detect, locate, and recover from a fault occurring
in an online component [2]. The uncovered fault can lead to an
overall system failure despite the presence of sufficient redundancies
because the imperfect recovery causes the number of on-line
components to be less than k. A practical example would be a
multi-engine aircraft, in particular, a two-engine aircraft requiring at
least one of the two engines to be operational during the taxi, level-
flight, descending, and landing phases (k=1), but both engines to be
operational during the take-off and ascending phases (k=2). During
the level-flight phase, in the case of the first engine failure, a recovery
process is immediately initiated to switch in the other engine so that
the aircraft can continue to operate correctly. But if the recovery
mechanism fails, the whole mission fails despite the existence of the
other operational engine. Other examples of phased mission system
with imperfect coverage and phased dependent k values are Aero-
space Computing Systems discussed in Ref. [21] and Automatically
Reconfigurable Modular Multiprocessor System (ARMMS) from Mar-
shall Space Flight Center of NASA [23]. The imperfect fault coverage
introduces two failure modes for a component that must be
considered for the accurate system reliability analysis: covered failure
that affects only a single component, and uncovered failure that can
propagate through the system and lead to the failure of the entire
system.

In this paper, an efficient method is proposed for the exact
reliability evaluation of k-out-of-n phased-mission systems with
the consideration of the imperfect fault coverage effect. The
proposed method is based on the total probability law, condi-
tional probabilities and an efficient recursive formula to compute
the reliability of the entire mission. The method is applicable to
any arbitrary failure distributions for the system components.

The remainder of the paper is organized as follows. Section 2
presents an overview of the problem to be solved including a system
description, assumptions, and problem inputs. Section 3 presents
the method for computing the conditional reliability/unreliability of
a component at a particular phase given that the component is
functioning at the beginning of the phase. Section 4 describes the
proposed phased-mission reliability evaluation method. Section 5
illustrates the application and advantages of the proposed method
using three examples. Lastly, Section 6 concludes the paper.

2. Problem statement

This paper considers the problem of evaluating the reliability
of k-out-of-n phased-mission systems subject to the imperfect
fault coverage behavior. The k values and failure time distribu-
tions for the system components can vary with the phases. The
cumulative damage effects of the system components are also
considered. The assumptions and inputs for the problem are listed
in the following subsections.

2.1. System description and assumptions

1) The system mission consists of M consecutive and non-over-
lapping phases. Phase durations are deterministic.

2) The system uses a k-out-of-n active redundancy structure
where the k values can change with the phases. In other words,
the number of good components required can vary with the
phases.

3) The system has n identical components. The component
failures are s-independent within each phase. Dependencies
exist among different phases, and failure modes for the same
component.

4) The components can have phase-dependent and time-varying
failure distributions.

5) An uncovered component fault causes the overall system
failure, even in the presence of adequate remaining redundan-
cies. The probability that a fault is covered given that the fault
occurs, denoted by c, is given as a fixed probability. c is also
known as a fault coverage factor [2]. Thus the probability that
an uncovered fault occurs is (1—c).

6) The system is not repairable during the mission; once a
component transfers from the operation mode to a failure
mode (covered or uncovered), it will remain in that failure
mode for the rest of the mission time.

7) The overall mission is considered to be failed if the system fails
during any one of the phases. In other words, for the entire
mission to be successful, the system must operate successfully
during all the phases. Refer to Ref. [5] for the generalized
combinatorial phase requirements where the failure of the
mission is expressed as a logical combination of phase failures.

8) The system is coherent, meaning that each component
contributes to the system state, and the system state worsens
(at least does not improve) as the number of failed compo-
nents increases.

2.2. Problem inputs

The following lists all the required input parameters for
solving the problem.

1) Mission time t.

2) Number of phases M.

3) Duration of each phase i: ;.

4) Number of system components n.

5) Failure criteria for each phase, described in terms of the
number of good components required in each phase i: k;.

6) Fault coverage factor c¢; for a component during phase i.

7) Acceleration factor during phase i: a;.

8) The baseline failure time distribution of each component in
each phase and related parameter values, from which the
cumulative failure probability of the component at the end of
phase j, Qi(t) can be derived.

Note that in this paper, we consider the above listed para-
meters as given input parameters of the problem, and we focus on
the system-level reliability evaluation.

3. Evaluation of conditional component reliabilities

In this section, we describe the method for evaluating the
conditional reliability/unreliability of a component at a phase given
that it is functioning at the beginning of the phase. Those conditional
probabilities are used in the proposed approach for the reliability
analysis of k-out-of-n PMS with imperfect fault coverage.
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We use the concept of equivalent age associated with the
cumulative exposure model (CEM) to account for effects of phase-
dependent stress on the failure properties of the components
[24]. Let Fj(t) be the stress dependent failure distribution of a
component in phase j. Let F be the baseline distribution and «; be
the acceleration factor during the phase j. Note that our method
has no limitation on the type of distribution for F. If the life-stress
relationship follows the accelerated failure time model (AFTM),
then Fj(t) can be represented as [24-26]

Fj(t) = F(at) (M

Let 7; be the duration of phase j, and Q; and P; be the
cumulative failure probability and reliability of the component
at the end of phase j, respectively. According to the CEM [26],
we have

Qj=Fluti+---+o41)
Pj=1-Q, )

where, by definition: Qu=0 and Py=1. Let f; be the probability
that a component first fails in phase j. It can be calculated as

fi=Q;—Qj1 3

To consider the imperfect fault coverage, let fj. represent the
probability that the component first fails in phase j and the failure
is covered. Let ¢; be the coverage factor during phase j. Then fj. can
be calculated as

fie=fic “)

For the perfect coverage case, ¢;=1 and fic=f. Thus, the
probability that the component first fails in phase j and the
failure is uncovered, denoted by fj,, can be calculated as

fjuzl_fjc (5)

The probability that a component fails uncovered during the
mission is

M
Su=> fiu (6)

=1

Since there are n identical components, the probability that no
component experiences an uncovered failure during the mission,
denoted by P,, can be calculated as

Py=(1-5,)" )

Let Q. be the cumulative failure probability of the component
at the end of phase j given that no uncovered failure happens. It
can be calculated as

Z], =1 fic
Qjc = ﬁ (€))

For the perfect coverage case, Q;c=Q,. The reliability of the
component at the end of phase j given that no uncovered failure
happens can be calculated as Pjc=1—Qje.

Let g; be the conditional unreliability of the component in
phase j given that it is working at beginning of the phase and no
uncovered failure happens. It can be calculated as

= e
T 1-Q1ye
Similarly, the conditional reliability of the component in phase

j given that it is working at beginning of the phase and no
uncovered failure happens, denoted by pj, can be calculated as

fjc _ I_Qjc _ PJ
]_Q(j—l)c 1_Q(j—1)c P(/'—])c

C))

(10

pj=1_

4. The proposed method for reliability analysis
of k-out-of-n PMS

The system under consideration consists of n identical com-
ponents. It requires at least k; working components in phase j for
the successful operation in that phase. In other words, the system
is considered to be failed if there are at least m;=(n—k;+1) failed
components during phase j. The system is considered to be failed
if it fails in any one of the phases.

Let x; be the number of components that have failed before the
end of phase j, where j=1, 2, ..., M. Hence, the system is
considered to be successful if x; < m; for all values of j. The system
reliability can be calculated as the sum of the probabilities of all
combinations of x; values: (xi, X2, ..., Xy) where x; <m; for all
values of j. These individual probabilities can be calculated using
the multinomial distribution. However, this method is computa-
tionally inefficient because the number of combinations increases
exponentially. A similar computation is involved in the reliability
analysis of a generalized multi-state k-out-of-n system (GMSS)
model, and this model has been studied extensively by several
researchers for more than a decade [27]. Recently, a fast and
robust algorithm was proposed to analyze the GMSS model by
utilizing the properties of an embedded Markov chain associated
with the sequence of x; values: (x4, X5, ..., xu) [27]. The speed and
efficiency of the algorithm in Ref. [27] is compared with the
existing methods for the GMSS model using several published
benchmark problems. For small-scale problems, this algorithm is
150 times faster than the existing methods. For large-scale
problems, it is 841,000 times faster. This enormous efficiency
improvement motivates us to adapt the embedded Markov chain-
based computation method for GMSS models to solve the PMS
problems in this work.

Let Z;; be the probability of the system state such that x;=i and
x;<my for all [ <j. That is,

Zj',‘ZPI'{Xj:l.; Xj,] <mj,1;~ -5 Xq <m1} (11)

Using the Markov property of the x; sequence [27], Eq. (11) can
be calculated as

m;_—1
Zii= > Zj-naPrix=ilxi_1=a} (12)
a=0
where,
. n i \n—i
Zy;=Prix; =i} = (i )(q]) (p1) (13)
0 ifi<a
Pr{x;=ilx;_ ;1 =a} = n-a i i e 14
X =ilxj_1 =a} (ifa >(qj)l Uppt" ifiza 14

where ¢g; and p; are defined in Eq. (9) and (10). Eq. (12) forms the
basic recursion for system reliability calculations. To improve the
efficiency of the calculations and reduce the storage require-
ments, we use the following recursive relationships:

. n—i+1 g .
Pr{x;=ilx;_1 =0} = : % ‘Pr{xj=i-1|x;_; =0} (15)
. i—a+1 1 .
Pri{xj=ilxj s =a} = nsari T ‘Pr{x;=i|x;_y =a-1} (16)
Pr{x; = 0[x;_; = 0} = (p)" 17)

Once we calculate Zy;; values using the recursive formulas, we
can calculate the system reliability R. for the perfect coverage
case (i.e., the case conditioned on no component experiences an
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uncovered failure during the mission) as

my—1

Re= > Zu, (18)
izo

Considering the imperfect fault coverage, the system reliability
R can be calculated using the total probability theorem as

R=Pr(system functions|at least one uncovered failure)
xPr(at least one uncovered failure)
+Pr(system functions|no uncovered failure)
xPr(no uncovered failure)
=0 x [1-Py]+Rc x Py
=Rc x Py (19)

where R. and P, can be calculated using Eq. (18) and (7), respectively.

The computational complexity of the recursive method for the
reliability analysis of k-out-of-n phased mission systems pro-
posed in this section is O(nmM), where m is the mean value of the
vector m=[my, my,..., my].

5. Numerical examples

The proposed method for the reliability analysis of k-out-of-n
PMS has been implemented using Matlab. The application and
advantages of the method is illustrated through the analysis of
three examples, as detailed in the following subsections.

5.1. Example 1 (n=5; M=4)

Consider a multi-processor computer system consisting of
5 processors. It is used for a scientific computation task involving
4 phases. Depending on the workload of each phase, the system
functions correctly when at least 2, 4, 3 and 2 processors are
functioning in phase 1, 2, 3, and 4, respectively. Such a system can
be modeled as a k-out-of-n phased-mission system with n=5
components and M=4 phases. The duration of phases and the
phase-dependent system parameters (k; o; and ¢; values) are
shown in Table 1.

We analyze this example system using the proposed method
for three different cases, where Weibull, log normal, and expo-
nential distributions are respectively assumed for the baseline
failure time distribution of each component. Note that there are
many different failure time distributions that can be used to
model component reliabilities [28]. In this work, we use the most
commonly used and most widely applicable distributions for
illustrating the flexibility of the proposed method on handing
different types of distributions.

Case 1. The baseline failure time distribution of each component
is Weibull with #=1000 and f=2. The cumulative distribution
function for the Weibull distribution is shown in Eq. (20).

B
F(t:n.) = 1—exp{—<%> } 20)

Table 1
Phase-dependent requirements and parameters.

Case 2. The baseline failure time distribution of each component
is Log normal with u=7 and o=1. The cumulative distribution
function for the Log normal distribution is shown in Eq. (21).

1 1 Int—
F(t;,u,o)=§+§erf<\/%> Q1)

where erf(e) is error function.

Case 3. The baseline failure time distribution of each component
is exponential with A=0.0005. The cumulative distribution func-
tion for the exponential distribution is shown in Eq. (22).

E(t; 2) = 1—exp(—At) (22)

The system reliability results and CPU time in seconds, with-
out and with the consideration of imperfect fault coverage, are
shown in Table 2.

5.2. Example 2 (n=100; M=200)

In this section, we consider a large-scale PMS problem to
demonstrate the efficiency of the proposed method. The system
has 100 components and 200 phases. Hence, n=100, M=200.
Such a large-scale problem can exist in applications such as
computer networks, computer clusters, and cloud computing
systems. In particular, the system can correspond to a large
computer cluster with 100 connected computers that work
together to accomplish a specific task. Assume there are 200
different tasks that must be finished in non-overlapping conse-
cutive phases. Depending on the nature of the task involved in
each phase, the minimum number of computers required to be
functioning is different from phase to phase. Similarly, such a
large-scale problem can occur in automotive and power systems
industry due to repeated phases caused by repeated flights and
varying demands between inspection and maintenance intervals.
For example, aircraft flight involves multiple phases where the
total aircraft flight duration is much smaller than the periodic
check intervals of the aircraft subsystems. Therefore, the aircraft
can contain latent failures at the beginning of a flight. For an
accurate analysis of this system, we should analyze aircraft
system with multiple flights with repeated phases between the
inspection checks. Hence, the reliability analysis of this system
may involve more than 100 phases. In the power systems, the
demand of the system can vary with peak and off-peak hours as
well as the summer and winter seasons. Therefore, within a
maintenance renewal period of a power plant, there exists several
operational demand phases. To address these challenges, the PMS
model should able to handle a large number of phases.

For illustration purpose, we used modulo operator (mod), i.e.,
remainder, to generate non-monotonic values for the input
parameters. Specifically, the duration of phase j is: 7j=1+mod
(4, 10). Hence, the total mission duration is: t =1100. The k value
for phase j is: kj=10+mod(j, 75). Further, mj=n—k;+1. The
acceleration factors during phase j are: o«;=1+0.1 x mod(j, 10).
The coverage factors during phase j are: ¢;=1-0.002 x mod(j, 10).
This way to define input parameter values allows the inputs to

Table 2
Results for example 1.

Perfect coverage Imperfect coverage

Phase Phase 1 Phase 2 Phase 3 Phase 4
Duration 20 60 80 40

k; 2 4 3 2

o 1 1.5 2 0.5

G 0.99 0.98 0.98 0.99

) CPU time 5.41e—5 6.76e—5
Weibull Reliability 0.99570 0.98843
CPU time 7.84e—5 9.86e—5

Log normal Reliability 0.99447 0.98620
. CPU time 474e—-5 6.71e—5
Exponential Reliability 0.96435 0.95350
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Table 3
Results for example 2.

Perfect coverage Imperfect coverage

i CPU time 0.0319 0.0323
Weibull Reliability 0.99964 0.86049
CPU time 0.0319 0.0321
Log normal Reliability 0.99993 0.87837
) CPU time 0.0321 0.0321
Exponential Reliability 0.99981 0.89800
Table 4

Results for example 3.

Perfect coverage Imperfect coverage

Weibull CPU time 0317 0317
Reliability 0.99925 0.89843

Log normal CPU time 0.315 0.318
Reliability 0.99994 0.91225

Exponential CPU time 0.316 0.317
Reliability 0.99979 0.91309

reproduced exactly for verification and future research compar-
isons. We also study three cases for this example.

Case 1: The baseline failure time distribution of each compo-
nent is Weibull with 7=5000 and f=2.

Case 2: The baseline failure time distribution of each compo-
nent is Log normal with ©=8.75 and o=1.

Case 3: The baseline failure time distribution of each compo-
nent is exponential with A=0.00005.

Using the proposed method, the system reliability results and
CPU time in seconds, without and with the consideration of
imperfect fault coverage, are obtained and shown in Table 3.

5.3. Example 3 (n=200; M=500)

To further illustrate the efficiency of the proposed method, we
analyze another large example. The system has 200 components
and 500 phases. Hence, n=100 and M=500. Similar to Example 2,
this system can be used to model a larger computer cluster with
200 connected computers working on 500 different tasks. The
coverage factors during phase j are ¢j=1-0.0002 x mod(j, 10).
Other parameters are the same as in Example 2. Again, three cases
are studied.

Case 1: The baseline failure time distribution of each compo-
nent is Weibull with #=6000 and f=2.

Case 2: The baseline failure time distribution of each compo-
nent is Log normal with ©=8.75 and o=1.

Case 3: The baseline failure time distribution of each compo-
nent is exponential with 4=0.0001.

The results are shown in Table 4.

6. Conclusions

We presented a recursive method for the reliability analysis of
k-out-of-n systems subject to the phased-mission requirements
and imperfect fault coverage behavior. The proposed method has
no limitation on the type of failure distributions for the system
components. The proposed method, which is based on conditional
probabilities and total probability law, is computationally
efficient. As illustrated by the numerical examples, the method

can be used to find the reliability of large-scale k-out-of-n
systems subject to time-dependent and phase-dependent failure
parameters in negligible CPU times. Hence, within a reasonable
computational time, the method can evaluate the phased-mission
system reliability for several alternative configurations with
different redundancy levels and/or different types of components.
Therefore, the method can be integrated with optimization
algorithms, such as simulated annealing and genetic algorithms
[29] that involve computing the system reliability for different
potential configurations to find the optimal configurations for
phased mission systems [29], which will be our future work.
Another direction of our future work is to consider multi-state k-
out-of-n phased-mission systems subject to imperfect fault cover-
age, where the system components can exhibit multiple perfor-
mance levels (corresponding to different states), ranging from
perfect operation to complete failure [30-33].
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