炸药爆轰瞬时温度的实时测量

郑锦坤^{1,3},白永林^{2*},王 博²,刘百玉²,杨文正², 白晓红²,秦君军²,赵军平¹,缑永胜¹,刘 辉^{1,3}

1. 中国科学院超快诊断技术重点实验室,中国科学院西安光学精密机械研究所,陕西西安 710119

2. 瞬态光学与光子技术国家重点实验室,中国科学院西安光学精密机械研究所,陕西西安 710119

3. 中国科学院研究生院,北京 100049

摘 要 针对爆轰时刻光谱的特点,结合多光谱测温的理论基础,采用高速率线阵 CCD,设计了瞬时多光 谱爆轰测温系统。通过 FPGA 对各个模块进行控制,完成数据的采集、存储和传输;结合多项式回归算法, 拟合出爆轰瞬间光谱信息的动态波形图。在标定过程中,采用两束激光特征谱线 630 和 532 nm 进行 CCD 的 标定,确定出对应的像元序号分别是 175 和 270。对卤钨灯的表面温度进行实时监测表明:基于高速线阵 CCD 的多光谱测温系统可以完成多个时刻的瞬时光谱采集;在 40 MHz 的高速时钟驱动下,CCD 的帧频可 以稳定工作在 73 kHz。

关键词 爆炸力学;爆温;FPGA;高速线阵 CCD;多光谱测温 中图分类号:O381 文献标识码:A DOI: 10.3964/j.issn.1000-0593(2011)11-3060-04

引 言

炸药爆温是指炸药爆炸时释放的能量将爆炸产物加热到 的最高温度。它存在时间短、温度高且伴有破坏作用,是爆 轰多个参量中最难测量的一个参数。目前,爆温测量系统一 般只能测量某时刻的温度,无法在一次爆炸过程中完成多时 刻测量,也不能满足数据实时处理,测量结果直观的要求。 此外,爆温测量方法主要集中在辐射测温,其理论基础是将 爆轰过程中产生的辐射简化为黑体辐射;然而实际的辐射体 与黑体偏离较大,因此无法对爆温进行精确测量。炸药爆炸 状态场的测量,对爆炸理论及其毁伤效应评估、预测及其战 斗部设计具有理论意义和工程实际意义^[1,2]。

多光谱瞬时测温系统是测定爆轰过程中不同时刻的瞬时 光谱信息组成,并进行分析和研究的装置。在光谱采集过程 中,用高速线阵 CCD 作为图像传感器,实现多波长的并行扫 描,取代了复杂的机械扫描装置,减少了误差来源,提高了 检测精度;而且 CCD 具有灵敏度好、信噪比高、动态范围大 等优点,已被广泛应用于检测领域^[3,4]。

本文基于线阵 CCD,结合多光谱测温技术和现场可编程 逻辑阵列硬件平台,采集爆炸过程中多个时刻的光谱,并将 数据存储在 DDR SDRAM 中,采集结束后将数据通过 USB 数据总线传送给上位机进行拟合计算,从而实现爆炸过程中 温度的快速动态测量。该系统具有高速、多幅、直读和高灵 敏度等特点,对加快新型炸药的研究具有重要意义。

1 多光谱辐射测温原理

多光谱辐射测温法利用被测目标在多个光谱点下的辐射 信息,经过数据处理,从而得到目标的真实温度和光谱发射 率^[5]。根据维恩近似公式,绝对黑体的光谱辐照度可近似表 示为

$$E_b(\lambda, T) = C_1 \lambda^{-5} e^{\frac{C_2}{\lambda T}}$$
(1)

由于待测目标不是黑体,其光谱辐照度受其表面发射率 的影响,为波长和温度的函数,故有

 $E(\lambda, T) = \epsilon(\lambda, T)C_1\lambda^{-5}\exp(-C_2/\lambda T)$ (2) 其中 $E(\lambda, T)$ 为被测温场光谱辐照度, $\epsilon(\lambda, T)$ 为被测温场 的光谱发射率, C_1 和 C_2 分别为第一、第二辐射常数, λ 和 T 分别为有效波长和目标温度。将(1)式带人(2)式,并对两端 取对数得

$$\ln E(\lambda, T) + 5\ln\lambda + \frac{C_2}{\lambda T} - \ln C_1 = \ln \varepsilon(\lambda, T)$$
(3)

收稿日期: 2010-11-15,修订日期: 2011-03-25

基金项目: 国家自然科学基金项目(10905090/A050606)资助

作者简介:郑锦坤,1984年生,中国科学院超快诊断技术重点实验室,中国科学院研究生院硕士研究生 e-mail: zhjink@126.com * 通讯联系人 e-mail: baiyonglin@opt.ac.cn

其中 $\ln E(\lambda, T)$ 是测量值, C_1 是常数, 预定谱段 λ 值也已知, 故设

$$K = \ln E(\lambda, T) + 5\ln\lambda - \ln C_1 \tag{4}$$

因此式(3)变为

$$K + \frac{C_2}{\lambda T} = \ln(\lambda, T) \tag{5}$$

根据经验,可假设光谱发射率的对数与波长呈线性关系 $ln\epsilon(\lambda,T) = a_0 + a_1\lambda + a_2\lambda^2 + \dots + a_m\lambda^m$ (6) 将式(6)代人式(5)可得

$$K\lambda = -\frac{C_2}{T} + a_1\lambda + a_1\lambda^2 + a_2\lambda^3 + \dots + a_m\lambda^{m+1}$$
(7)

式(7)将 Kλ 表示成以($-C_2/T$, a_i)为系数的 λ 的(从 0 到 m+1)m+2 阶的函数。在测量中取 n 个波长处的光谱强 度进行测量,就可得到符合式(7)的 n 个方程(方程组有解的 必要条件: $n \ge m+2$),再用回归算法求得这 m+2 个系数,便可拟合出发射率函数和动态的温度,这就是多光谱测温法 的基本原理^[6,7]。

2 高速光谱采集系统

多光谱测温系统的作用是测定爆轰过程中不同时刻的光 谱组成,包括波长、强度等。如图1所示,系统的基本组成 为:(a)爆轰辐射系统,(b)准直系统,(c)色散系统,(d)成像 系统,(e)高速光谱采集系统。高速光谱采集是该系统的核心 部分,主要由 CCD 时序控制,模数转换控制,储存和输出组 成。

Fig. 1 Detonation temperature measuring system

2.1 线阵 CCD 驱动时序控制

CCD 是光谱检测系统中常用的图像传感器。在高速多光 谱爆温测量系统中,为了使线阵 CCD 能稳定可靠地工作,必 须设计出符合 CCD 正常工作所要求的驱动时序,时序信号 的质量直接影响 CCD 高性能的发挥及工作的稳定性,因此 时序控制设计是高速光谱信息采集的关键。系统选择 IL_P3 型线阵 CCD,帧频为 73 kHz,最大数据输出率达 40 MHz, 灵敏度达到 43 V • (μJ • cm²)⁻¹。结合硬件编程语 VHDL, 利用 Quartus II 中集成的仿真器得到 CCD 驱动时序仿真图如 2 所示。

2.2 模数转换器的控制

为了存储和处理采集的信号,需要将 CCD 输出的模拟 信号进行预处理,转换成数字信号。在兼顾 A/D转换精度的 同时,高速的采样率在高速光谱信息的获取中显得更为重 要。为了获得高质量的光谱信息,运用相关双采样技术对信号中的噪声分量进行处理,可以很好的消除复位噪声。系统选用 AD9840A 作为 CCD 前端信号处理芯片,该芯片包括输入钳位,相关双采样,数字控制可变增益放大,暗电平钳位和十位 A/D 转换器,时钟频率 40 MHz。AD9840A 在SLOAD, SCK 和 SDATA 三线控制下完成内部寄存器的配置,使芯片工作在 CCD 所需模式下。配置完成后,随着 CCD 的启动, AD9840A 开始采样信号的模数转换。

Fig. 2 The timing simulation diagram of CCD

2.3 高速光谱信息存储和输出

为了对信息进行分析处理,要求将采集到的数据进行快速存储。设计选用 MT46V32M16 存储器,是 32 M×16 位的 DDR SDRAM,其结构分为4个块,每块为8 K行,每行1 K 列。使用 DDR SDRAM 可以达到 400MB/S 的存储速率,完 全满足设计要求。A/D 转换获得的数据送入 FPGA, FPGA 对高速的数据流进行缓冲后送入 DDR 存储体,如图 3 所示, 等待进行信息的分析处理。

Fig. 3 Control structure diagram of DDR

数据传输使用 USB 协议芯片,不仅减少了元器件的个数,而且占用较少的 FPGA 资源,使设计更灵活。在 FPGA 外部直接连接一个 FT245BM 芯片,当 DDR 数据准备好后,通过 FPGA 启动发送操作。首先将 DDR 内待发送的数据按字节读到 FPGA 的缓冲区,并由 FT245BM 发送缓冲区的写时序,将数据写到 FT245BM 发送缓冲区,再通过 USB 串行总线将数据传输至上位机进行后续处理。

3 系统的标定

CCD采集数据是以通道作为接收单位,即CCD采集的 数据和通道序号——对应。实验中,需要获得相对能量与波 长的对应关系,因此根据CCD像元序号确定对应的波长是 一项必不可少的工作。当光谱仪输出光谱的色散很均匀时, 可以认为波长与CCD像元位置间存在着近似的线性关系, 用方程表示为(其中 x 是像元位置)

$$\lambda(x) = a + bx \tag{8}$$

从式(8)可以看出,标定至少需要两个已知的单波长。 实验中选用波长为 630 和 532 nm 的激光器作为标定光源, 测得的两束激光器光谱强度,如图 4 所示;与像元对应关系 如图 5 所示: 630 nm 谱线对应像元序号为 175,532 nm 谱线 位置对应像元序号为 270。将数据带入式(8)得

$$\lambda(x) = 810.526 - 1.032x \tag{9}$$

Fig. 4 The spectral image of calibration

Fig. 5 Calibration spectral intensity and pixel correlation

4 实验结果

在测试中,通过调节卤钨灯的温度,来模拟连续变化的 爆温过程。以合适的速度调节流过卤钨灯的电流,使其表面 温度产生变化,CCD采集的每帧光谱强度也会发生变化。在 测试的过程中,保持两者的相对位置不变,CCD不断地对目 标进行快速扫描,直到测试结束。扫描图像在横轴按波长分 布,纵轴按采集帧数(时间)分布,就可以得到一幅二维的相 对强度图,图 6 为随温度变化的卤钨灯辐射光谱图像。根据 多项式回归算法,利用 Matlab 对数据进行拟合,得到图 7 温

References

- [1] LI Xiu-li, HUI Jun-ming(李秀丽, 惠君明). Explosion and Shock Wave(爆炸与冲击), 2008, 28(5): 471.
- [2] BAI Yong-lin, REN Ke-hui, OUYANG Xian, et. al(白永林, 任克惠, 欧阳娴, 等). Acta Photonica Sinaca(光子学报), 2003, 32(7): 868.
- [3] SUN Xiao-Gang, TANG Hong, YUAN Gui-bin. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109: 89.
- [4] DAI Jing-min, SUN Xiao-gang(戴景民, 孙晓刚). Theory and Application of Multi-Spectral Radiation Pyrometry(多光谱辐射测温理论与应用). Beijing: Higher Education Press(北京:高等教育出版社), 2002.
- [5] SUN Xiao-gang, DAI Jing-min, CONG Da-cheng, et al(孙晓刚, 戴景民, 丛大成, 等). Journal of Infrared and Millimeter Waves(红外与 毫米波学报), 1998, 17(3): 221.
- [6] CONG Da-cheng(丛大成). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2001, 20(2): 97.
- [7] CHENG Xiao-fang, FU Tai-ran, FAN Xue-liang(程晓舫, 符泰然, 范学良). Science in China Ser. G Physics, Mechanics & Astronimy(中 国科学 G 辑, 物理学, 力学与天文学), 2004, 34(6); 639.

度分布曲线,横轴按采集帧数分布,纵轴表示在此帧采集时 刻目标物的真实温度,可以很直观的反映出卤钨灯表面的实 时温度。

Fig. 6 The spectral image of halide tungsten lamp light

Fig. 7 Halide tungsten light temperature curve

5 结 论

本文利用高速线阵 CCD 作为图像传感器,设计出瞬时 多光谱测温系统,并用该系统对卤钨灯的温度进行实时测 量,得到了不同时刻的温度分布曲线。通过对卤钨灯的测试 表明,基于高速线阵 CCD 的多光谱测温系统可以完成爆轰 过程中多个时刻的瞬时光谱信号采集,采集帧频可以稳定工 作在 73 kHz。为研究炸药爆轰测温提供了全新的方法与手 段。

Real-Time Measurement of Detonation Transient Temperature

ZHENG Jin-kun^{1,3}, BAI Yong-lin²*, WANG Bo², LIU Bai-yu², YANG Wen-zheng², BAI Xiao-hong², QIN Jun-jun², ZHAO Jun-ping¹, GOU Yong-sheng¹, LIU Hui^{1,3}

- 1. Key Laboratory of Ultrafast Photoelectric Diagnostic Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
- 3. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Abstract Based on the spectral characteristic of the detonation temperature, the present paper presents a measurement system of transient multi-wavelength pyrometry with the theory of multi-wavelength thermometry. The FPGA was applied as the hardware developing platform and the high-speed linear CCD was utilized. Each module was controlled by FPGA to achieve the process of real-time data acquisition, storage and transmission. Using the multiple regression analysis method, the dynamic spectral waveforms were calculated. The two laser spectral lines, 630 and 532 nm, were used to calibrate the corresponding pixel sequence numbers and the No. 175 and No. 270 were confirmed. In this paper, the halide tungsten light was measured. The results show that the system can sample continuous spectrum signal at several different times; the CCD can stably work with 40 MHz clock and the frame scanning frequency can achieve 73 kHz.

Keywords Mechanics of explosion; Detonation temperature; FPGA; High-speed linear CCD; Multi-wavelength temperature measurement

(Received Nov. 15, 2010; accepted Mar. 25, 2011)

* Corresponding author