高温高压下方解石相转变的拉曼光谱原位实验研究

刘川江,郑海飞*

北京大学造山带与地壳演化教育部重点实验室,北京 100871

摘 要用热液金刚石压腔装置结合拉曼光谱技术研究了高温高压下方解石的相变过程及拉曼光谱特征。 结果表明:常温条件下,体系压力增至1666和2127 MPa时,方解石的拉曼特征峰155 cm⁻¹消失,1087 cm⁻¹峰分裂为1083和1090 cm⁻¹两个谱峰、282 cm⁻¹峰突然降至231 cm⁻¹,证明其转变为方解石-II和方 解石-III。在起始压力为2761 MPa和低于171℃的升温过程中,方解石-III的拉曼散射的各个特征振动峰没 有变化。当温度达到171℃,方解石晶体完全变成不透明状,其对称伸缩振动峰1087 cm⁻¹、面内弯曲振动 峰713 cm⁻¹和晶格振动峰155和282 cm⁻¹均发生突变,说明方解石-III相变生成一种碳酸钙新相。体系降至 常温,该新相一直保持稳定不变,表明高温高压下方解石向碳酸钙新相的转变过程是不可逆的。方解石-III 与碳酸钙新相之间的相变线方程为 $P_{(MPa)} = 9.09 \cdot T_{(C)} + 1880。碳酸钙新相的对称伸缩振动峰(<math>\nu_{1087}$)随压 力、温度的变化率分别为 $d\nu/dP = 5.1$ (cm⁻¹ · GPa⁻¹), $d\nu/dT = -0.0553$ (cm⁻¹ · C⁻¹)。

关键词 高温高压; 方解石; 金刚石压腔; 拉曼光谱; 相变 中图分类号: P578.6; P575.4 文献标识码: A D

引 言

方解石是地球上广泛分布的一种碳酸盐矿物,也是石灰 岩和大理岩的重要组成部分,可以形成于多种地质环境中。 方解石在常温常压下以稳定态存在,在地球深部环境中会形 成不同的相态,其物理化学性质对于认识地幔碳循环作用和 深源地震机制等可能具有重要的指示意义,因此方解石在高 温高压下的性质一直被人们广泛关注^[1]。目前,国内外有关 方解石的研究成果较多,包括方解石的高压相变机制、高压 下方解石的弹性性质等^[2-8],但高温高压下方解石的相关系 仍然不清楚。例如,Bridgman^[2]和 Kaichi等^[3]对方解石的相 关系进行了研究,但未能对方解石不同相之间的相边界达成 统一认识。为此,作者通过金刚石压腔装置和激光拉曼光谱 原位研究了方解石在高温高压下的拉曼光谱特征及其相转变 的温度和压力条件。

1 实验部分

实验所用的高压装置类似于 Mao-Bell 型金刚石压腔^[9], 其内部结构如图 1 所示。顶砧为金刚石,压力标定物质为石 DOI: 10.3964/j.issn.1000-0593(2012)02-0378-05

英, 传压介质为蒸馏水。压砧顶面直径为 0.8 mm, 样品垫片 为 0.25 mm 厚的铼片, 样品室直径为 0.3 mm。样品为天然 矿物方解石。

装样品时,首先在显微镜下挑选晶形良好、大小适中的 石英和方解石颗粒置于压腔的样品室,以不超过样品腔体积 的 2/3 为宜。然后将蒸馏水注入样品室,快速用对顶砧压上 密封,以避免水的挥发。拉曼光谱分析在北京大学地球与空 间科学学院的英国产 Renishaw1000 型激光拉曼光谱仪上进

收稿日期: 2011-05-17,修订日期: 2011-08-12

基金项目:国家自然科学基金项目(40873047)资助

作者简介:刘川江,1986年生,北京大学地球与空间科学学院博士研究生 e-mail: *通讯联系人 e-mail: hfzheng@pku.edu.cn

行。用 514 cm⁻¹ 氩离子激光激发样品,功率为 50 mW, 人射 狭缝为 50 μ m, 20 倍的 Leica 物镜, 扫描波数范围是 50~4 000 cm⁻¹, 扫描时间为 10 s, 分辨率为 1 cm⁻¹。

实验压力是根据石英拉曼谱峰位移与压力的关系确定 的^[10,11],即: $p(MPa) = 0.36079 \cdot [(\Delta \nu_p)_{464}]^2 + 110.86 \cdot (\Delta \nu_p)_{464}$,式中p为压力(MPa); $(\Delta \nu_p)_{464}$ 为待测压力下,石 英的464 cm⁻¹拉曼谱峰相对于 0.1 MPa 时峰值的位移,单 位 cm⁻¹。加热条件下压力的确定,需要对拉曼位移值按下式 进行温度校正, $(\Delta \nu_p)_{464} = 2.50136 \times 10^{-11} T^4 + 1.46454 \times 10^{-8} T^3 - 1.801 \times 10^{-5} T^2 - 0.01216T + 0.29(-196 ℃ <math>\leqslant T \leqslant 560$ ℃),该公式的实验压力误差为±50 MPa。

常温条件下对体系手动加压,每加一次压力待体系平衡 后,扫描一次石英的拉曼谱峰直至实验预定压力。升温实验 用温控器以一定的间隔逐点升温,每升温一次待 3~5 min 至体系达到平衡后,再进行拉曼光谱测试,同时对实验体系 进行原位光学观察。

2 结果和讨论

根据 Liu 等^[12]的研究,常温常压下方解石以方解石-I 的形式稳定存在,为了讨论方便,以下简称为方解石。方解 石(CaCO₃)属于三方晶系,L³C 对称,具有菱面体晶胞,解 理发育,晶形良好^[13]。图2为方解石在常温常压下的拉曼光

Fig. 2 Raman spectra of calcite at ambient temperature and pressure

Fig. 4 Raman spectra of calcite at different pressures

谱,包括四个内部振动(1087 cm⁻¹的对称伸缩振动 ν_1 、 1749 cm⁻¹的面外弯曲振动 $2\nu_2$ 、1437 cm⁻¹的反对称伸缩振动 ν_3 ,713 cm⁻¹的面内弯曲振动 ν_4)以及两个晶格振动(155 cm⁻¹的平动和 282 cm⁻¹的摆动)。可以看出,表征方解石 [CO₃]基团内部 C—O 键的 1087 cm⁻¹峰强度最大,晶格振动 282 cm⁻¹峰的强度次之,其它拉曼特征峰 713,155,1437 和 1749 cm⁻¹的强度依次减弱。

图 3 为原位观察得到的水溶液中方解石随压力变化的过程。压力从 1 146 MPa 增大至 2 127 MPa,视域逐渐模糊变暗,说明体系中水有向固相转变的趋势。继续增压至 2 347 MPa,整个体系处于结冰状态,此时水完全转变为固相(冰)。 当压力增至 2 761 MPa 时,呈固相的冰融化,视域变得清晰明亮,这可能是由于实验过压导致体系局部温度升高,使固相的冰重新转变为液相。

Fig. 3 Pictures of calcite with increasing pressure at ambient temperature

图 4(a)和(b)为实验获得的不同压力下,方解石在 800 ~1 200 和 130~800 cm⁻¹范围内的拉曼光谱图。体系的初始 压力值为 1 000 MPa,相比于常压下的拉曼特征峰,方解石 的对称伸缩振动峰 1 087 cm⁻¹已经移至 1 090 cm⁻¹,晶格振 动峰 282 cm⁻¹移至 288 cm⁻¹,表明方解石的拉曼谱峰随压 力增大向高频方向移动。升高体系压力至 1 666 MPa,155 cm⁻¹拉曼峰基本消失,713 cm⁻¹峰强度减弱、峰形变宽。当 压力升至 2 127 MPa 时,方解石的内部对称伸缩振动峰发生 了显著变化,1 087 cm⁻¹分裂为 1 083 和 1 090 cm⁻¹两个谱 峰,并且表征方解石晶格振动的 282 cm⁻¹拉曼峰向低波数突

2 761 MPa

2 347 MPa

2 127 MPa

1 666 MPa

1 146 MPa

1 000 MPa

Raman shift/cm⁻¹

600

800

400

变,出现 231 cm⁻¹谱峰。继续增大压力至 2 761 MPa 的过程 中,方解石的 1 083 和 1 090 cm⁻¹拉曼峰分别移动至 1 085 和 1 101 cm⁻¹,两个谱峰的强度较为接近,713 cm⁻¹拉曼峰 逐渐消失,231 cm⁻¹的强度明显减弱。

方解石晶体拉曼峰的突变说明其内部结构发生了变化, 出现新的相态。从上述分析可以看出,方解石在压力低于或 高于1666和2127 MPa时的拉曼光谱具有明显差异,表明 方解石在此压力条件下发生了相转变。结合方解石拉曼谱峰 的变化特征及 Liu 等^[12]的研究成果可以确定:方解石在 1666和 2127 MPa 时分别转变为方解石-Ⅱ和方解石-Ⅲ。

为了了解温度的影响,将体系压力增加至 2 761 MPa, 并进行升温实验观察。图 5 为实验所得不同温度下方解石变 化的示意图。可以看到,温度达到 171 ℃,具有明显解理面 的方解石变成不透明状(黑色),晶体四周开始出现针状晶 簇。随后逐步升温至 278 和 321 ℃,视域内没有发生其它变 化。体系降至常温 25 ℃,也未观察到新的变化。

Fig. 5 Pictures of calcite at different temperatures

Fig. 6 Raman spectra of calcite at different temperatures

图 6(a),(b)和(c),(d)为不同温度下,方解石在 800~ 1 200 和 130~800 cm⁻¹范围内的原位拉曼光谱图。由图可以 看到,从常温升至 54 °C,没有观察到方解石拉曼谱峰的变 化。温度达到 86 °C时,713 和 213 cm⁻¹拉曼峰的强度明显增 大,且两谱峰分别移至 731 和 230 cm⁻¹,表明拉曼峰随温度 升高不断向高频方向移动。继续升温至 118 和 128 ℃,方解 石拉曼谱图中没有新的谱峰出现和消失。

升高体系温度至 171 ℃,之前分裂成表征方解石对称伸

缩振动的两个拉曼谱峰 1 083 和 1 090 cm⁻¹重新合并为一个 新的谱峰 1 095 cm⁻¹。731 和 230 cm⁻¹谱峰突然降至 712 和 221 cm⁻¹。晶格振动峰 155 cm⁻¹重新出现并移至 162 cm⁻¹, 其拉曼峰的强度大于 221 cm⁻¹谱峰。从 171 ℃升温至 321 ℃,所有拉曼峰都没有发生突变现象。降至室温,方解石的 面内弯曲振动峰 ν_i 移至 706 cm⁻¹,谱峰的强度明显增大。实 验发现,在 171~321 ℃升温阶段,体系的压力随着温度升高 而不断降低,两种效应共同的作用使得对称伸缩振动峰 1 095 cm⁻¹逐渐向低频方向移动,至室温下保持在 1 088 cm⁻¹。

由图 6 可以看到,从 203 ℃升至 321 ℃,方解石拉曼光 谱的基线升高很多,130~800 cm⁻¹范围的拉曼谱峰变得十 分微弱或无法检测。出现上述现象的原因可能与金刚石的荧 光效应有关^[14],即金刚石结构中碳原子上的电子可能被激 发到比较高的能级,当电子从高能级跃迁至低能级时就会释 放出能量产生荧光效应,并掩盖了样品的拉曼信号。

通过原位观察方解石拉曼谱峰随温度的变化可以看出, 当温度达到 171 ℃、压力为 3 420 MPa 时,方解石发生相转 变,生成透明度较低的新矿物。其拉曼特征峰与文石很相 似。但由于尚未见关于文石呈不透明状的报道,因此实验观 察到的新相是否属于文石还有待于进一步证实。此处暂且认 为是一种碳酸钙新相。降至常温 25 ℃和 773 MPa,此新相保 持稳定不变。实验同时观察到,从 171 ℃升温至 321 ℃,体 系的压力随着温度升高反而降低,这种现象应该是由方解石 相变,引起体系的体积减小所致。

方解石-Ш相変为碳酸钙新相时,体系的摩尔体积缩小, 可以确定方解石-Ш转变为新相的熵变 ΔS_m 也是缩小的。根 据 Clapeyron 方程 $dP/dT = \Delta S_m / \Delta V_m$ (式中 ΔS_m 代表相变时 的摩尔熵变, ΔV_m 代表相变时的摩尔体积变化),可知相变 线是斜率为正的直线。这与根据实验数据确定的方解石-Ш 与新相之间的相边界斜率是一致的。由此,可计算得到该相 变线方程为 $P(MPa) = 9.09 \cdot T(C) + 1880$ 。

通过 Peakfit 软件对碳酸钙新相的拉曼光谱进行拟合处 理,分别得到[CO₃]对称伸缩振动峰($\nu_{1.087}$)的拉曼位移与压 力、温度的关系(图 7)。由图 7 可以看出,随着实验压力的减 小或温度的升高,[CO₃]对称伸缩振动峰($\nu_{1.087}$)逐渐向低波 数方向移动,其斜率分别为 d ν /dP=5.1(cm⁻¹ · GPa⁻¹), d ν /dT=-0.055 3(cm⁻¹ · C⁻¹)。在实验体系加热过程中, 伴随着温度和压力两种效应。温度升高促使[CO₃]基团的 C-O 键键长增大,键能减小,而压力的作用则相反。方解 石-Ⅲ相变引起体系压力随着温度升高而递减,因此温度和 压力的共同作用,使得表征碳酸钙新相对称伸缩振动的拉曼 谱峰($\nu_{1.087}$)必然不断向低波数方向移动。

图 8 是本实验获得的相图。为了便于对比,将 Bridgman^[2],Kaichi等^[3]以及 Hess 等^[8]的结果也一并绘制在图 中。由图 8 可以看到,方解石-I和I的温度和压力范围与前 人的研究结果基本吻合,二者的相变线是斜率为负的直线。 方解石-III的范围与 Bridgman^[2]的存在一定偏差,这可能是 由于实验条件的差异造成的。另外,由于数据较少,方解石-II 与碳酸钙新相之间界线的位置尚不能确定。因此,上述问

Fig. 7 The relations between the Raman shifts of $v_{1\ 087}$ of calcium carbonate new phase and system pressure and temperature, respectively

Fig. 8 Phase diagram of calcites

Solid lines indicate the results from this work, dashed lines indicate the data in references: Br: Bridgman^[2]; Ka: Kaichi^[3]; H.G. & E: Hess^[8]

3 结 论

通过高温高压下方解石的拉曼光谱原位实验研究,可以 获得以下结论:

(1)常温条件下,方解石在1666和2127 MPa 压力下分 别转变为方解石-Ⅲ和方解石-Ⅲ。

(2)加温过程中,方解石-Ⅲ在171℃和3420 MPa条件 下发生相变,生成一种碳酸钙新相,此相变的体系体积是缩 小的。体系降至室温,该新相保持稳定不变,表明方解石向

峰($\nu_{1.087}$)随压力、温度的变化率分别是 d_ν/dP=5.1 (cm⁻¹・

 GPa^{-1}), $d\nu/dT = -0.055 \ 3(cm^{-1} \cdot C^{-1})$.

碳酸钙新相的转变过程是不可逆的。

(3)方解石-Ⅲ与碳酸钙新相之间的相变线方程为 *P* (MPa)=9.09*T*•(℃)+1880。碳酸钙新相的对称伸缩振动

References

- [1] Ono S, Kikegawa T, Ohishi Y, et al. American Mineralogist, 2005, 90: 667.
- [2] Bridgman P W. American Journal of Science, 1938, 237: 7.
- [3] Suito K, Namba J, Horikawa T, et al. American Mineralogist, 2001, 86: 997.
- [4] VoThanh D, Lacam A. Physics of the Earth and Planetary Interiors, 1984, 34: 195.
- [5] Gillet P, Biellmann C, Reynard B, et al. Phys. Chem. Minerals, 1993, 20: 1.
- [6] Ivanov B A, Deutsch A. Physics of the Earth and Planetary Interiors, 2002, 129: 131.
- [7] ZHAO Jin, ZHENG Hai-fei(赵 金, 郑海飞). Chinese Journal of High Pressure Physics(高压物理学报), 2003, 17(3): 226.
- [8] Hess NJ, Ghose S, Exarhos GJ. Recent Trends in High Pressure Research, 1991, 236.
- [9] Mao H K, Bell P M. Carnegie Institute Washington Yearbook, 1978, 77: 904.
- [10] ZHENG Hai-fei, SUN Qiang, ZHAO Jin, et al(郑海飞,孙 樯,赵 金,等). Chinese Journal of High Pressure Physics(高压物理学报), 2004, 18(1): 78.
- [11] Schmidt C, Ziemann M A. American Mineralogist, 2000, 85: 1725.
- [12] Liu L G, Mernagh T P. American Mineralogist, 1990, 75: 801.
- [13] ZHAO Shan-rong(赵珊茸). Crystallography and Mineralogy(结晶学与矿物学). Beijing: Higher Education Press(北京:高等教育出版 社), 2003. 410.
- [14] CHEN Jin-yang, ZHANG Hong, XIAO Wan-sheng, et al(陈晋阳,张 红,肖万生,等). Chinese Journal of Spectroscopy Laboratory (光谱实验室), 2004, 21(6): 1059.

In Situ Experimental Study of Phase Transition of Calcite by Raman Spectroscopy at High Temperature and High Pressure

LIU Chuan-jiang, ZHENG Hai-fei*

Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, Peking University, Beijing 100871, China

Abstract The phase transitions of calcite at high temperature and high pressure were investigated by using hydrothermal diamond anvil cell combined with Raman spectroscopy. The result showed that the Raman peak of 155 cm⁻¹ disappeared, the peak of 1 087 cm⁻¹ splited into 1083 and 1 090 cm⁻¹ peaks and the peak of 282 cm⁻¹ abruptly reduced to 231 cm⁻¹ at ambient temperature when the system pressure increased to 1 666 and 2 127 MPa respectively, which proved that calcite transformed to calcite-II and calcite-III. In the heating process at the initial pressure of 2 761 MPa and below 171 °C, there was no change in Raman characteristic peaks of calcite-III. As the temperature increased to 171 °C, the color of calcite crystal became opaque completely and the symmetric stretching vibration peak of 1 087 cm⁻¹, in-plane bending vibration peak of 713 cm⁻¹ and lattice vibration peaks of 155 and 282 cm⁻¹ began to mutate, showing that the calcite-III transformed to a new phase of calcium carbonate at the moment. When the temperature dropped to room temperature, this new phase remained stable all along. It also indicated that the process of phase transformation from calcite to the new phase of calcium carbonate was irreversible. The equation of phase transition between calcite-III and new phase of calcium carbonate can be determined by $P(MPa) = 9.09T \cdot (C) + 1880$. The slopes of the Raman peak ($\nu_{1.087}$) of symmetrical stretching vibration depending on pressure and temperature are $d\nu/dP = 5.1$ (cm⁻¹ \cdot GPa⁻¹) and $d\nu/dT = -0.055$ 3(cm⁻¹ \cdot °C⁻¹), respectively.

Keywords High temperature and high pressure; Calcite; Diamond anvil cell; Raman spectroscopy; Phase transition

(Received May 17, 2011; accepted Aug. 12, 2011)

^{*} Corresponding author