FTIR 分析共价偶联对抗体蛋白二级结构的影响

俞思明1,彭运平1,2,于淑娟1*,吕 欢1

4. 华南理工大学轻工与食品学院,广东广州 510640
 5. 万孚生物技术有限公司,广东广州 510640

摘 要 用共价偶联的方法制备了免疫胶乳,并利用傅里叶变换红外光谱技术,结合差谱、去卷积、二阶导和曲线拟合等计算机辅助分析方法,研究免疫胶乳中抗体蛋白的二级结构。结果表明,随着 pH 值的升高以及胶乳浓度的增大,抗体蛋白的有序结构含量增加。由此认为共价偶联会对抗体蛋白的二级结构产生较为显著的影响。

关键词 免疫胶乳;共价偶联;傅里叶变换红外光谱;抗体蛋白;二级结构 中图分类号:Q71 文献标识码:A DOI:10.3964/j.issn.1000-0593(2012)03-0630-05

引 言

免疫胶乳是指将特定的抗体或抗原固定于胶乳颗粒表面 形成具有免疫学性质的胶乳颗粒,近年来,免疫胶乳已广泛 应用于生物医学研究以及多种疾病的快速免疫诊断中[1,2]。 传统的将大分子蛋白固定于胶乳颗粒表面的方法为物理吸附 法,这种方法是利用静电引力或者是疏水相互作用将大分子 蛋白固定于颗粒表面^[3,4],由于这是一种弱作用力,蛋白质 很容易从颗粒表面解吸下来,从而使这种方法在生物诊断领 域受到很大的限制。为了改变物理吸附法的不足,目前已经 研制出一些新类型的表面带有功能基团的胶乳颗粒,这些颗 粒表面的功能基团能与大分子蛋白的功能基团以共价键的形 式结合,从而有效抑制蛋白从胶乳颗粒表面解吸。研究证 实[5,6],蛋白质在吸附于胶乳颗粒表面的过程中,其结构会 发生改变,而蛋白质结构的改变将导致其生物活性的变 化[7],以致吸附上的生物大分子的免疫活性降低。然而,蛋 白质分子与胶乳颗粒共价偶联过程是否也会对蛋白质分子结 构产生显著影响,目前还未见相关报道。

研究表明^[8, 9], FTIR 特别适用于定量研究固定于胶乳 颗粒表面蛋白质分子二级结构的变化情况。蛋白质的红外吸 收光谱主要是由一系列酰胺模型的吸收带组成,即酰胺 I 带、酰胺 II 带、酰胺 III 带、酰胺 A、酰胺 B等。其中酰胺 I 带 能够灵敏地反映出蛋白质二级结构的变化情况^[10, 11],所以 经常被用来研究蛋白质结构的变化。将 FTIR 与计算机辅助 分析软件相结合,通过对酰胺 I 带进行去卷积、二阶导和曲 线拟合等处理,可以得到蛋白质二级结构的定量信息。 Brandes^[12]等利用 FTIR 图谱定量研究了 BSA 吸附于不同胶 乳颗粒表面后二级结构的变化情况。贺进田等利用 FTIR 图 谱定量研究了 PLGA 微球内 DGR 二级结构的变化情况。这 些研究表明,FTIR 和计算机辅助解析软件是表征蛋白质构 象变化的强有力的工具。

基于上述这些研究,本研究将表面带羧基的聚苯乙烯胶 乳颗粒与 HCG-α抗体蛋白共价偶联,在不同 pH 和胶乳浓 度的偶联条件下制备了可以用来检测 HCG 抗原的免疫胶 乳,并将 FTIR 技术和计算机辅助解析技术相结合,对其 FTIR 图谱的酰胺 I 带行去卷积、二阶导和曲线拟合处理, 定量分析了共价偶联对抗体蛋白二级结构的影响,探索了不 同偶联条件对抗体蛋白质分子结构的影响及机理,为免疫胶 乳在快速免疫诊断中的应用提供理论依据。

1 实验部分

1.1 原料及仪器设备

红色胶乳颗粒,德国默克公司,HCG-α抗体,美国 Sigma公司,1-乙基碳酰二亚胺盐酸盐(EDC),N-羟基琥珀酰亚 胺(Sulfo-NHS)美国赛默飞世尔科技公司,其他所用物质均 为分析纯。

超声波细胞粉碎机(JY-92Ⅱ型,宁波新芝生物科技股份 公司),高速离心机(CR22GⅢ型,日立哈克),傅里叶变换

收稿日期: 2011-07-06, 修订日期: 2011-10-29

基金项目:国家自然科学基金项目(31071564)和中央高校基本科研业务费项目(D211016w)资助

作者简介:俞思明,1985年生,华南理工大学轻工与食品学院硕士研究生 e-mail: tayiya@126.com

红外光谱仪(FTIR-4100型,日本 JASCO),真空冷冻干燥机 (Vizared 2.0型,美国 VirTtis 公司)。

1.2 免疫胶乳的制备

1.2.1 胶乳微球的活化

取 0.1 mL 红色胶乳微球, 加入 0.9 mL, 浓度为 0.1 mol • L⁻¹, pH 6.0 的乙磺酸缓冲液(MES)均匀混合后加入 5 mg EDC 和 5 mg Sulfo-NHS 活化,室温下温和搅拌 15 min, 10 000 r • min⁻¹离心 15 min,用浓度为 0.1 mol • L⁻¹ 磷酸缓冲液(PBS)重复清洗沉淀三遍,去上清,沉淀经浓度 为 0.1 mol • L⁻¹PBS 重悬、振荡、超声处理后即得到活化的 胶乳微球。

1.2.2 抗体蛋白的共价偶联

取 40 μ L HCG 抗体(10 mg • mL⁻¹)加入到 1ml 经过活 化的胶乳微球溶液中,室温下温和搅拌 4 h, 10 000 r • min⁻¹离心 15 min,沉淀用含 0.05% Tween 20 的 PBS(0.1 mol • L⁻¹)重复清洗三遍,冷冻干燥,即得到免疫胶乳干品。

1.3 FTIR 光谱测定

将不同浓度的红色胶乳(1%~0.1%)与抗体蛋白在不同的 pH(6.0~8.0)下共价偶联,用高速离心机将制备的免疫 胶乳与溶液分离,沉淀用含 0.05% Tween 20 的 PBS(0.1 mol·L⁻¹)重复清洗三遍以除去未偶联上的抗体蛋白,用冷 冻干燥,制备免疫胶乳。

将 1 mg 免疫胶乳与 200 mg KBr 均匀混合, 压片, 采用 CaF₂ 窗片, 扫描次数: 32次, 分辨率: 4 cm⁻¹。对光谱进行 水汽和二氧化碳校正, 扫描范围 400~4 000 cm⁻¹。测量红色 胶乳以及 HCG 抗体蛋白的红外光谱作为空白对照。

1.4 图谱分析

用差谱法对免疫胶乳和空白胶乳 FTIR 图谱的酰胺 I 带 进行合适的差减处理, 差减的标准是在酰胺 I 带范围内只有 蛋白的吸收峰。然后根据 Byler^[13]的蛋白红外图谱分析方法, 用 Peak Fit v 4112 软件分析免疫胶乳酰胺 I 带特征峰的图 谱。先校正基线, 然后用 Gaussian 去卷积, 再用二阶导数拟 合, 进行多次拟合使残差最小。根据峰面积计算各二级结构 的比率。

2 结果分析

2.1 共价偶联前后胶乳颗粒 FTIR 图谱的分析

图1是胶乳颗粒共价偶联前后的FTIR图谱,从图中可 以发现,胶乳颗粒与抗体蛋白共价偶联前后FTIR图谱的变 化主要发生在3000~3500 cm⁻¹和1600~1700 cm⁻¹两个 波数范围内。3440 cm⁻¹附近的吸收峰主要是由于O-H和 N-H的伸缩振动以及结合水中O-H基团与氨基酸中 C=O所形成的分子内和分子间氢键所致。在与抗体蛋白 共价偶联后,3440 cm⁻¹附近的宽吸收峰强度显著增强,可 以推断这是由于抗体蛋白与胶乳颗粒共价偶联后,O-H和 N-H的伸缩振动以及抗体蛋白分子的OH基团与胶乳颗粒 表面C=O基团的氢键作用力增强引起的。从图1还可以 明显的发现,胶乳颗粒与抗体蛋白共价偶联后,在1650 cm⁻¹附近出现一个较强的吸收峰,这是蛋白在酰胺1带的- 个特征的吸收峰,可以将这个峰进行相应的计算机软件分析 处理而得到蛋白质 α螺旋、β-折叠、β-转角、无规则卷曲结构 等较为丰富的二级结构信息。

Fig. 1 FTIR spectra of latex and latex/antibody complex a: Latex b: Latex/antibody complex

2.2 不同 pH 偶联条件对抗体蛋白二级结构的影响

蛋白质在 FTIR 光谱中有许多特征吸收带,其中酰胺 I 带(1600~1700 cm⁻¹)包含了蛋白质丰富的二级结构信息, 如 α-螺旋、β-折叠、β-转角、无规则卷曲结构等,因此,酰胺 I 带常用来解析蛋白质的二级结构^[14]。为了准确地定量分 析抗体蛋白的二级结构,在1600~1700 cm⁻¹波数范围内采 用差谱法消除 1698 和 1601 cm⁻¹处吸收峰的影响。

图 2 为不同 pH 偶联条件下免疫胶乳与空白胶乳酰胺 I 带的差谱图。图 2 表明,在不同 pH 条件下,抗体蛋白与胶 乳颗粒共价偶联后,酰胺 I 带的吸收峰强度发生较为显著的 变化。随反应体系 pH 的增加,酰胺 I 带的吸收峰强度呈显 著增加趋势,即:蛋白的酰胺 I 带逐渐增强。此外,酰胺 I 带的半峰宽有减小的趋势,同时,波峰向高波数红移。由上 述分析可以定性推测出不同 pH 偶联条件下抗体蛋白的二级 结构发生了一定的变化。图 3 是原抗体蛋白以及共价偶联 (pH 6.0)后抗体蛋白酰胺 I 带经去卷积和二阶导数处理后 的图谱,根据文献[15]对不同 pH 反应条件下各二阶导数峰 对应的二级结构进行归属,结果列于表 1。

Fig. 2 Subtraction FTIR spectra in the amide I regions of native antibody and latex/antibody complex in different pH conditions from (6.0 to 8.0)

如表 1 所示,不同 pH 反应体系对抗体蛋白的二级结构 影响显著, α 螺旋及 β 转角的含量随着 pH 值的增加而增大, 无规卷曲含量则显著减少。当 pH 大于 7 时,无规卷曲减少 为 0,说明随着 pH 值的升高,无规卷曲逐渐转变为 α 螺旋 和 β 转角,抗体蛋白的有序性逐渐增加。 β 折叠变化较为复 杂,当 pH 为 7 时, β 折叠含量达到最大值 47.99%,pH 为 8 时,减少为 12.16%。上述结果表明,随着 pH 值的增加,抗 体蛋白质分子趋于有序结构,这可能是由于在高 pH 时,蛋 白质分子带负电荷,而经过 EDC/Sulfo-NHS 活化的胶乳颗 粒表面也带负电荷^[16],同种电荷相互排斥,斥力的存在,使 得蛋白质分子更为有序。由此推断:在抗体蛋白与胶乳颗粒 共价偶联过程中,高 pH 反应体系可促使抗体蛋白分子结构 趋于有序。

 Table 1
 Percentage of the secondary structure of native antibody and latex/antibody complex in different pH conditions

Secondary structure/%	α-helix	β-sheet	β-turn	Disordered	Side chain vibrations
Native	19.5	40.66		36.04	
pH 8.0	66.51	12.16	21.33		
pH 7.5	53.45	30.32	16.23		
pH 7	42.57	47.99	9.45		
pH 6.5	39.72	15.98	9.65	15.98	
pH 6	32.23	12.87	7.57	45.93	1.4

2.3 不同胶乳浓度偶联条件对抗体蛋白二级结构的影响

图 4 是不同胶乳浓度下酰胺 I 带的差谱图。如图 4 所 示,随胶乳浓度的增加,抗体蛋白的酰胺 I 带的峰位移有较 为显著红移趋势,峰强度呈下降趋势,可以推测抗体蛋白的 二级结构发生变化。图 5 是原抗体蛋白以及共价偶联(胶乳 浓度: 0.1%)后抗体蛋白酰胺 I 带经过去卷积和二阶导数处 理后的图谱。表 2 显示的是不同胶乳条件下各二阶导数峰曲 线拟合结果,给出的是抗体蛋白分子二级结构的定量信息。 从表 2 可以看出,随胶乳浓度的减少, α 螺旋含量显著减少, 胶乳浓度为 0.1%时,已经没有 α 螺旋结构,此时,无规卷曲 为抗体蛋白二级结构的主要结构。上述结果说明随着胶乳浓 度的增加,抗体蛋白的有序结构含量逐渐减少,无序结构逐 渐增加。

由此表明,抗体蛋白的有序结构更倾向于在较高的胶乳 浓度下存在,这与文献的研究结果一致。这可能是由于在胶 乳浓度较高的情况下,胶乳颗粒与蛋白分子之间存在一定的 空间位阻,而空间位阻往往使得蛋白质的空间构象朝着更有 序的趋势变化。反之,在较低浓度的胶乳体系中,由于空间 位阻小,蛋白质吸附于胶乳颗粒表面的趋势增大,而吸附效 应对蛋白质的构象趋于有序是不利的^[7],从而使得蛋白质构 象趋于伸展,无序结构增加。

Fig. 4 FTIR spectra of amide I of native antibody and latex/ antibody complex in different latex concentrations from 0.1% to 1%

4 结 论

研究表明,在不同 pH 和胶乳浓度条件下,共价偶联对 抗体蛋白二级结构的影响差异显著。随 pH 值的升高,抗体 蛋白分子与胶乳颗粒表面的斥力增加,使抗体蛋白的有序结 构含量增加;随着胶乳浓度的增加,抗体蛋白分子与胶乳颗 粒表面形成的氢键增多,空间位阻增大,从而使抗体蛋白的 有序结构含量增加。然而,抗体蛋白有序结构含量的增加对 抗体蛋白的免疫活性是否有利,还需深入研究。

Fig. 5 Deconvoluted FTIR spectra of amide I regions of native antibody and antibody of latex/antibody complex (a): Native antibody; (b): Latex concentration was 0.1%

Table 2 Percentage of the secondary structure of native antibody and latex/antibody complex at different latex concentrations

Secondary struc	ture/%	α-helix	β-sheet	β-turn	Disordered	Side chainvibrations
	Native	19.5	40.66		36.04	
Latex concentration	1	53.45	30.32	16.23		
	0.75	48.29	13.01	34.62		4.02
	0.5	46.85	44.64			8.49
	0.25	46.32	35.72	10.27		7.69
	0.1		10.52	23.28	66.19	

References

- [1] Peula G J M, Molina B J A, Velasco J, et al. J. Colloid Interface Sci., 2002, 245: 230.
- [2] Lucas L J, Han J H, Yoon J Y. Colloids and Surfaces B, 2006, 49: 106.
- [3] Tong X D, Xue B, Sun Y. Biotechnol. Progr., 2001, 17: 134.
- [4] Vermonden T, Giacomelli C E, Norde W. Langmuir, 2001, 17: 3734.
- [5] Haynes C A, Norde W. J. Colloid Interface Sci., 1995, 169: 313.
- [6] Kondo A, Oku S, Higashitani K. J. Colloid Interface Sci., 1991, 143: 214.
- [7] Peng Z G, Hidajat K, Uddin M S. Colloids and Surfaces B, 2004, 35: 169.
- [8] Hidajat K, Uddin M, Peng Z. Colloids Surfaces B, 2004, 33: 15.
- [9] Wu X, Narsimhan G. Langmuir, 2008, 24: 4989.
- [10] Chirgadze Y N, Nevskaya N A. Biopolymers, 1976, 15: 627.
- [11] Dong A, Huang P, Caughey W S. Biochemistry, 1990, 29: 3303.
- [12] Brandes Natascha, Petra P B. Welzel C, et al. J. Colloid and Interface Science, 2006, 299: 56.
- [13] Byler D M, Susi H. Biopolymers, 1986, 25: 469.
- [14] Kauffmann E, Darnton N C, Austin R H, et al. J. Proc. Natl. Acad. Sci. U. S. A., 2001, 98: 6646.
- [15] Zhichao Pei Z C, Anderson H, Myrskog A, et al. J. Analytical Biochemistry, 2010, 398: 161.
- [16] Cruz J C, Pfromm P H, Tomich J M, et al. J. Colloids and Surfaces B, 2010, 81: 1.

FTIR Analysis of the Impact of Covalent Coupling on the Secondary Structure of Antibody Protein

YU Si-ming¹, PENG Yun-ping^{1, 2}, YU Shu-juan^{1*}, LÜ Huan¹

1. College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China

2. Wondofo Biotech Co., Ltd., Guangzhou 510640, China

Abstract The immunolatex was prepared by covalent coupling. FTIR technology combined with substractive spectroscopy, deconvolution, derivation and curve-fitting methods were used to study the structure of the antibody protein on the immunolatex. The result demonstrates that the α -helix structure of antibody increases with the increase in the pH value and the concentration of latex. So it is concluded that covalent coupling has a great impact on the secondary structure of antibody protein.

Keywords Immunolatex; Covalent coupling; Fourier transform infrared(FTIR); Antibody protein; Secondary structure

(Received Jul. 6, 2011; accepted Oct. 29, 2011)

* Corresponding author

《光谱学与光谱分析》期刊社决定采用 ScholarOne Manuscripts 在线投稿审稿系统

《光谱学与光谱分析》期刊社与汤森路透集团签约,自 2010 年 12 月 1 日起《光谱学与光谱分析》决定采用 Thomson Reuters旗下的 ScholarOne Manuscripts 在线投稿审稿系统。

·ScholarOne Manuscripts,该系统不仅能轻松处理稿件,而且能提速科技交流。

•全球已有 360 多家学会和出版社的 3 800 多种期刊选用了 ScholarOne Manuscripts 系统作为在线投稿、审稿平台,全球 拥有超过 1 350 万的注册用户,代表着全球学术期刊在线投审稿的一流水平。

• ScholarOne Manuscripts 与 EndNote, Web of Science 无缝链接和整合;使科研探索、论文评阅和信息传播效率大为提高。

• ScholarOne Manuscripts 是汤森路透科技集团的一个业务部门,拥有丰富的学术期刊业务经验,为学术期刊提供综合管理工作流程系统,使期刊更有效管理投稿、同行评审、加工和发表过程,提高作者心中的专业形象,缩短论文发表时间,削减管理成本,帮助期刊提高科研绩效和实现学术创新。

《光谱学与光谱分析》采用"全球学术期刊首选的在线投稿审稿系统—ScholarOne Manuscripts",势必对 2010 年 11 月 30 日以前向本刊投稿的作者在查阅稿件信息时,会带来某些不便,在此深表歉意!为了推进本刊的网络化、数字化、国际化进程,以实现与国际先进出版系统对接;为了不断提高期刊质量,加快网络化、数字化建设,加快与国际接轨的进程,希望能得到广大作者、读者们的支持与理解,对您的理解和配合深表感激。这是一件新事物,肯定有不周全、不完善的地方,让我们共同努力,不断改进和完善起来。

《光谱学与光谱分析》期刊社 2010年12月1日