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Abstract
Edwards curves are an alternate model for elliptic curves, which

have attracted notice in cryptography. We give exact formulas for the
number of Fq-isomorphism classes of Edwards curves and twisted Ed-
wards curves. This answers a question recently asked by R. Farashahi
and I. Shparlinski.
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1 Introduction

Elliptic curves have been an object of much study in mathematics. Recall
that an elliptic curve is a smooth projective genus 1 curve, with a given
rational point. The traditional model for an elliptic curve has been the
Weierstrass equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

where the ai are elements in some field F. While other models for elliptic
curves have long been known, in the past few years there has been renewed
interest in these alternate models. This attention has primarily come from
the cryptographic community.

In 2007, Edwards proposed a new model for elliptic curves [10]. Let F be
a field with characteristic p 6= 2. These original Edwards curves, defined over
F, are given by the equation

EE,c : X2 + Y 2 = c2(1 +X2Y 2), (1)

with c ∈ F and c5 6= c. Edwards curves and its variants over finite fields have
attracted great interest in elliptic curve cryptography (see [2, 3, 4, 5, 6]). In
particular, Bernstein and Lange [3] have considered the closely related family
of Edwards curves

EBL,d : X2 + Y 2 = 1 + dX2Y 2, (2)

where d ∈ F with d 6= 0, 1. They also considered the generalization of this
family, the so-called twisted Edwards family, [2], given by

ETE,a,d : aX2 + Y 2 = 1 + dX2Y 2, (3)

where a, d are distinct nonzero elements of F, with d 6= 1. In the same
paper, they show that a twisted Edwards curve is birationally equivalent
to a Montgomery curve. We recall, [18], that an elliptic curve given by a
Montgomery equation is of the form

EM,A,B : BY 2 = X3 + AX2 +X, (4)

where A,B ∈ F with A 6= ±2 and B 6= 0.
The field of definition for elliptic curves in a cryptographic setting is over a

finite field Fq. It is a natural question to count the number of distinct elliptic
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curves over Fq up to isomorphism. This has been done for Weierstrass curves
[17, 20], and various alternate models of elliptic curves [12, 13, 14, 15, 16].
The number of isomorphism classes of hyperelliptic curves over finite fields
has also been of interest [7, 8, 9, 11].

For the Edwards families (1) and (2), Farashahi and Shparlinski gave
explicit formulas for the number of distinct elliptic curves (up to isomorphism
over the algebraic closure of the ground field). The tool they used was the
j-invariant of an elliptic curve. They remark that it would be interesting
to find exact formulas for the number of distinct curves, up to isomorphism
over Fq.

The distinction is subtle. Two curves may be isomorphic over Fq without
being isomorphic over Fq. The issue is whether the isomorphism can be given
by rational functions defined over Fq or Fq \ Fq. For cryptography, the finite
field Fq is fixed, and calculations are done over Fq – not its algebraic closure
Fq. For cryptographic purposes, two elliptic curves which are Fq-isomorphic
are essentially the same curve, which is not true if they are only isomorphic
over Fq.

In this work, we answer the question of Farashahi and Shparlinski. That
is, we find precise formulas for the number of distinct elliptic curves in the
Edwards curve families (1) and (2), up to isomorphism over a finite field. We
are able to do so by elementary methods. We also answer the same question
for the families (3) and (4), i.e., the twisted Edwards and Montgomery curves.

This paper is organized as follows. In Section 2 we review some back-
ground material about elliptic curves. In Section 3 we find exact formulas for
the number of Fq-isomorphism classes of the Edwards curves (1) and (2). We
do the same for twisted Edwards (3) and Montgomery curves (4) in section
4. We conclude in Section 5 with some directions for future study.

Throughout the paper, the letter p always denotes a prime number and
the letter q always denotes a prime power. Let Fq be a finite field with
characteristic greater than 3. For a field F, denote its algebraic closure by F
and its multiplicative subgroup by F∗. Let χ denote the quadratic character
in Fq. That is, for u ∈ F∗q, χ(u) = 1 if and only if u = w2 for some w ∈ Fq.
Let Q be the set of quadratic residues of Fq \ {0, 1}, i.e.,

Q = {u ∈ Fq : u 6= 0, 1, χ(u) = 1} .

The cardinality of a finite set S is denoted by #S.
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2 Elliptic curves

2.1 Background on isomorphisms

We briefly review some material on isomorphisms between elliptic curves. For
more details on isomorphisms, or more generally on elliptic curves, see [21,
22]. Two elliptic curves are isomorphic over a field F, if there is an isomor-
phism between the two curves which is defined over F. Isomorphisms on
Edwards curves have not yet been as well studied as isomorphisms on Weier-
strass curves. In order to obtain our results, it will be informative to review
what is known about isomorphisms between Weierstrass curves.

It is well known (see e.g. [17]) that two elliptic curves given by Weierstrass
equations are isomorphic over F if and only if there is a change of variables
between them of the form:

(x, y)→ (α2x+ r, α3y + α2sx+ t),

where α 6= 0, and α, r, s, t ∈ F. In the case, where α, r, s, t ∈ F, the two
elliptic curves are called isomorphic over F or twists of each other. We will
refer to a change of variables of the above form as an admissible change of
variables over F. When the field F is clear from context, we will omit it.

The j-invariant is a numerical invariant that can be used to tell when two
curves are isomorphic over Fq. All of the elliptic curves we will consider in
this paper can be represented by the Legendre equation

EL,u : Y 2 = X(X − 1)(X − u), (5)

for some u ∈ F∗. The j-invariant of EL,u is given by

j(EL,u) =
28(u2 − u+ 1)3

(u2 − u)2
.

Two elliptic curves are Fq-isomorphic if and only if they have the same j-
invariant. Farashahi and Shparlinski used this fact to prove their results
about the number of Fq-isomorphism classes. Note, however, that two elliptic
curves with the same j-invariant need not be isomorphic over Fq.

In the following, we use JE(q), JBL(q), JTE(q), JM(q) and JL(q) to denote
the number of distinct j-invariants of the curves defined over Fq in the fam-
ilies (1), (2), (3), (4) and (5) respectively. Moreover, we use IE(q), IBL(q),
ITE(q), IM(q) and IL(q) to denote the number of Fq-isomorphism classes of
the families (1), (2), (3), (4) and (5) respectively.
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2.2 Legendre curves

A Legendre equation is a variant of the Weierstrass equation with just one
parameter. Any elliptic curve defined over an algebraically closed field F
of characteristic p 6= 2 can be expressed by the Legendre curve EL,u, given
by (5), for some u ∈ F∗.

We consider the curves EL,u given by the Legendre equation (5) over a
finite field Fq. We require u 6= 0, 1, so that the curve EL,u is nonsingular.
The number of distinct isomorphism classes of Legendre curves over Fq has
been studied in [12, 13, 16]. To be more precise, for the number JL(q) of
distinct values of the j-invariant of the family (5), we have

JL(q) = b(q + 5)/6c .

Furthermore, the number IL(q) of Fq-isomorphism classes of the family (5)
is

IL(q) =


b(7q + 29)/24c if q ≡ 1 (mod 12),

b(q + 2)/3c if q ≡ 3, 7 (mod 12),

b(7q + 13)/24c if q ≡ 5, 9 (mod 12),

(q − 2)/3 if q ≡ 11 (mod 12).

Now we consider the following subfamily of Legendre curves over Fq, and
give explicit formulas for its cardinality. We will use the results of this section
to count the number of Fq-isomorphism classes of Edwards curves. Recall
that Q is the set of quadratic residues of Fq \ {0, 1}. Let

LS = {EL,u : u ∈ Q} . (6)

We also consider two other subfamilies of Legendre curves over Fq. Let

LS1 = {EL,u : u ∈ Q, 1− u ∈ Q} , (7)

LT = {EL,1−u : u ∈ Q} . (8)

As before, we use ILS
(q), ILS1

(q) and ILT
(q) to denote the number of

Fq-isomorphism classes of the families (6), (7) and (8) respectively.

Lemma 2.1. For all elements u, v ∈ Q, we have EL,u
∼=Fq EL,v if and only

if u, v satisfy one of the following:

1. v ∈
{
u, 1

u

}
,
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2. v ∈
{

1− u, 1
1−u ,

u−1
u
, u
u−1

}
and χ(−1) = 1.

Proof. See [13, Lemma 2].

Now, we give an exact formula for the number of Fq-isomorphism classes
of elliptic curves over Fq of the family (6).

Lemma 2.2. For any prime p ≥ 3, for the number ILS
(q) of Fq-isomorphism

classes of the family (6), we have

ILS
(q) =


⌊
q + 5

6

⌋
, if q ≡ 1 (mod 4),

q − 3

4
, if q ≡ 3 (mod 4).

Proof. For a fixed value u ∈ Q, we let

ILS ,u =
{
v : v ∈ Q, EL,u

∼=Fq EL,v

}
.

We note that

ILS
(q) =

∑
u∈Q

1

#ILS ,u
.

We partition Q into the following sets:

A ∪ B,

where
A =

{
u ∈ Q : u 6= −1, 2, 1/2, u2 − u+ 1 6= 0

}
,

and B = B1 ∪ B2 with

B1 = {u ∈ Q : u = −1, 2, 1/2} , B2 =
{
u ∈ Q : u2 − u+ 1 = 0

}
.

We further partition A into the sets

A1 ∪ A−1

where

A1 = {u ∈ Q : u /∈ B, χ(1− u) = 1} ,
A−1 = {u ∈ Q : u /∈ B, χ(1− u) = −1} .
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Now, for all u ∈ Q, we explicitly express the set ILS ,u and compute its
cardinality. We note that the sets B1 and B2 are disjoint precisely when
p > 3. If p = 3, we have

B = B1 = B2 = {u ∈ Q : u = −1} .

We know that −1 ∈ Q if and only if q ≡ 1 (mod 4). So by Lemma 2.1 we
obtain

ILS ,−1 = B = {−1} , if q ≡ 9 (mod 12).

We now use the fact that χ(2) = 1 if and only if q ≡ ±1 (mod 8). So, for
p > 3, we have

B1 =


{−1, 2, 1/2} , if q ≡ 1 (mod 8),
{−1} , if q ≡ 5 (mod 8),
{2, 1/2} , if q ≡ 7 (mod 8).

Then, using Lemma 2.1 again, we see that

ILS ,u = B1, if u ∈ B1.

Next, we assume that u ∈ B2, i.e., u ∈ Fq with u2 − u + 1 = 0. This
happens if χ(−3) = 1 which is equivalent to the case where q ≡ 1 (mod 6).
Then, u = 1+ζ

2
, where ζ is a square root of −3 in Fq. Notice u can be written

as u = −(1−ζ
2

)2. So, u ∈ Q if and only if q ≡ 1 (mod 4). In other words,
B2 6= ∅ if and only q ≡ 1 (mod 12). From Lemma 2.1, we have

ILS ,u = B2 = {u, 1/u} , if u ∈ B2.

Now we consider u ∈ A. From Lemma 2.1, we have

ILS ,u = {u, 1/u} , if u ∈ A, q ≡ 3 (mod 4).

Similarly, we also have

ILS ,u = {u, 1/u} , if u ∈ A−1, q ≡ 1 (mod 4),

and

ILS ,u =

{
u,

1

u
, 1− u, 1

1− u
,
u− 1

u
,

u

u− 1

}
, if u ∈ A1, q ≡ 1 (mod 4).
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Putting this all together, for any u ∈ Q, we have

#ILS ,u =


#B1, if u ∈ B1,
#B2, if u ∈ B2,
2, if u ∈ A, and q ≡ 3 (mod 4),
2, if u ∈ A−1, and q ≡ 1 (mod 4),
6, if u ∈ A1, and q ≡ 1 (mod 4).

Now we observe that

ILS
(q) =

∑
u∈Q

1
#ILS,u

=
∑

u∈B
1

#ILS,u
+
∑

u∈A
1

#ILS,u
.

We distinguish the following cases for q.

• First, we assume that χ(−1) = −1, i.e., q ≡ 3 (mod 4). The set B2 is
the empty set. Furthermore, the set B1 is nonempty if and only if q ≡ 7
(mod 8). In the latter case, we have #B1 = 2 and #A = #Q−#B1 =
(q − 3)/2− 2. If the set B1 is empty, then #A = #Q = (q − 3)/2. We
see that either way we obtain

ILS
(q) = (q − 3)/4.

• Second, we assume that χ(−1) = 1, i.e., q ≡ 1 (mod 4). If p = 3, then∑
u∈B

1
#ILS,u

= 1. For p > 3, we write∑
u∈B

1
#ILS,u

=
∑

u∈B1
1

#ILS,u
+
∑

u∈B2
1

#ILS,u
=
∑

u∈B1
1

#B1 +
∑

u∈B2
1

#B2 .

In this case, the set B1 is nonempty and the set B2 is nonempty if and
only if q ≡ 1 (mod 12). Therefore, we have∑

u∈B

1

#ILS ,u
=

{
2, if q ≡ 1 (mod 12),
1, if q ≡ 5, 9. (mod 12).

(9)

Next, we write∑
u∈A

1
#ILS,u

=
∑

u∈A1

1
#ILS,u

+
∑

u∈A−1

1
#ILS,u

=
∑

u∈A1

1
6

+
∑

u∈A−1

1
2
.

So, we have ∑
u∈A

1

#ILS ,u
=

#A1

6
+

#A−1
2

. (10)
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For j ∈ {−1, 1} , let

Sj = {u : u ∈ Q, χ(1− u) = j} .

We note that, Aj = Sj \ B. From [13, Lemma 4], for q ≡ 1 (mod 4),
we have

#Sj =

{
(q − 5)/4, if j = 1,
(q − 1)/4, if j = −1.

Then, by excluding the elements of B from the sets S1, S−1, we ob-
tain the cardinalities of the sets A1, A−1, where q ≡ 1 (mod 24); see
Table 1, where we let q ≡ r (mod 24).

r #A1 #A−1
1 q−5

4
− 5 q−1

4

5 q−5
4

q−1
4
− 1

9 q−5
4
− 1 q−1

4

13 q−5
4
− 2 q−1

4
− 1

17 q−5
4
− 3 q−1

4

Table 1: Cardinalities of the sets A1,A−1, for q ≡ 1 (mod 4)

Finally, combining (9), (10) and Table (1), we compute:

ILS
(q) =


(q + 5)/6, if q ≡ 1 (mod 12),

(q + 1)/6, if q ≡ 5 (mod 12),

(q + 3)/6, if q ≡ 9 (mod 12),

(q − 3)/4, if q ≡ 3 (mod 4),

which completes the proof of this lemma.

Next we give an exact formula for the number of Fq-isomorphism classes
of elliptic curves over Fq of the family (7).
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Lemma 2.3. For any prime p ≥ 3, for the number ILS1
(q) of Fq-isomorphism

classes of the family (7), we have

ILS1
(q) =


b(q + 23)/24c if q ≡ 1, 9, 13, 17 (mod 24),

(q − 5)/24 if q ≡ 5 (mod 24),

(q − 3)/4 if q ≡ 3 (mod 4).

Proof. Let
Q1 = {u ∈ Q : χ(1− u) = 1} .

From [13, Lemma 4], we have #Q1 = (q − 3)/4. For a fixed value u ∈ Q1,
we let

ILS1
,u =

{
v : v ∈ Q1, EL,u

∼=Fq EL,v

}
.

We note that

ILS1
(q) =

∑
u∈Q1

1

#ILS1
,u

.

So, we need to compute the cardinality of the set ILS1
,u for all u ∈ Q1.

For q ≡ 3 (mod 4), we have χ(−1) = −1. For u ∈ Q1, we have

χ(1− 1/u) = χ((u− 1)/u) = χ(u− 1) = χ(−1)χ(1− u) = −χ(1− u).

So, 1/u 6∈ Q1. Then, from Lemma 2.1, we have

ILS1
,u = {u} , if u ∈ Q1.

Hence,

ILS1
(q) =

∑
u∈Q1

1 = #Q1 = (q − 3)/4.

From now on, we assume that q ≡ 1 (mod 4). We use the proof of
Lemma 2.2 and notice that, for v ∈ Q, we have v ∈ ILS1

,u if and only if
v ∈ ILS ,u and v ∈ Q1.

For u ∈ Q1, let v ∈ ILS1
,u. From Lemma 2.1, we have

v ∈ {u, 1/u, 1− u, 1/(1− u), u/(1− u), 1− 1/u} .

Since χ(u) = χ(1− u) = χ(−1) = 1, we see that χ(v) = χ(1− 1/v) = 1. So,
v ∈ Q1, i.e., for u ∈ Q1, we have ILS1

,u = ILS ,u Then, we write

ILS1
(q) =

∑
u∈Q1

1

#ILS1
,u

=
∑
u∈Q1

1

#ILS ,u
=

∑
u∈B∩Q1

1

#ILS ,u
+

∑
u∈A∩Q1

1

#ILS ,u
.
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We have ∑
u∈B∩Q1

1

#ILS ,u
=

∑
u∈B1∩Q1

1

#ILS ,u
+

∑
u∈B2∩Q1

1

#ILS ,u
.

From the proof of Lemma 2.2, we see that, for p > 3, B1 ∩ Q1 is nonempty
if and only if q ≡ 1 (mod 8) and B2 ∩ Q1 is nonempty if and only if q ≡ 1
(mod 12). Furthermore,

∑
u∈B

1

#ILS ,u
=


2, if q ≡ 1 (mod 24),
0, if q ≡ 5. (mod 24).
1, if q ≡ 9, 13, 17. (mod 24).

(11)

It is easy to see that A ∩Q1 = A1. Then, from the proof of Lemma 2.2, we
have ∑

u∈A1

1

#ILS ,u
=

#A1

6
.

Then, using equation (11) and Table (1), we obtain

ILS1
(q) =


(q + 23)/24, if q ≡ 1 (mod 24),
(q − 5)/24, if q ≡ 5 (mod 24),
(q + 15)/24, if q ≡ 9 (mod 24),
(q + 11)/24, if q ≡ 13 (mod 24),
(q + 7)/24, if q ≡ 17 (mod 24),

which completes the proof.

The following lemma shows the equality of the values ILT
(q) and ILS

(q)
for all p ≥ 3.

Lemma 2.4. For any prime p ≥ 3, the number ILT
(q) of Fq-isomorphism

classes of the family (6) is given by

ILT
(q) =

{ b(q + 5)/6c , if q ≡ 1 (mod 4),

(q − 3)/4, if q ≡ 3 (mod 4).

Proof. We note that the Legendre curves EL,u and EL,1−u are Fq isomorphic
if χ(−1) = 1. This can be seen via the admissible change of variables X −→
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α2X + 1 and Y −→ α3Y , where α2 = −1. So, for q ≡ 1 (mod 4), we
obviously have ILT

(q) = ILS
(q).

If instead χ(−1) = −1 then the curve EL,1−u is not Fq-isomorphic to EL,u,
but rather to the nontrivial quadratic twist of EL,u. So, we have

LT =
{
Et : E ∈ LS

}
,

where Et is the nontrivial quadratic twist of the elliptic curve E. Hence, for
q ≡ 1 (mod 4), we see that ILT

(q) = ILS
(q).

The result now follow by Lemma 2.2.

3 Edwards curves

The numbers of distinct j-invariants of the families of Edwards curve (1)
and (2) have been studied in [14, Theorems 3 and 5]. More precisely, for any
prime p ≥ 3, the number JE(q) of distinct values of the j-invariant of the
family (1) is

JE(q) =


b(q + 23)/24c if q ≡ 1, 9, 13, 17 (mod 24),

(q − 5)/24 if q ≡ 5 (mod 24),

b(q + 1)/8c if q ≡ 3 (mod 4).

Also, the number JBL(q) of distinct values of the j-invariant of the family (2)
is given by

JBL(q) =

{
b(5q + 7)/12c if q ≡ 1 (mod 4),

b(3q − 1)/8c if q ≡ 3 (mod 4).

In the remainder of this section, we find explicit formulas for the numbers of
Fq-isomorphism classes of the Edwards families (1) and (2).

We consider the following family of elliptic curves over Fq given by

E4,c : Y 2 = X3 + (1− 2c)X2 + c2X, (12)

for c ∈ Fq with c 6= 0, 1/4. The next lemma shows the equivalence between
the above family (12) and the family of Edwards curves (2).

Lemma 3.1. Every Edwards curve EBL,d given by (2) over Fq with d 6= 0, 1
is birationally equivalent to the elliptic curve E4,c given by (12) with c =
(1− d)/4.
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Proof. We recall from [2] that every elliptic curve E(Fq) with a point of order
4 is birationally equivalent to an Edwards curve EBL,d . It is easy to verify
that P = (c, c) is a point of order 4 on the curve E4,c, and so the curve is
birationally equivalent to a BL-Edwards curve.

Conversely, via the map ψ : EBL,d → E4,(1−d)/4

ψ(x, y) =
(c(1 + y)

1− y
,
c(1 + y)

x(1− y)

)
,

we have that the Edwards curve EBL,d is birationally equivalent to the elliptic
curve E4,c, with c = (1− d)/4. The inverse is the map

ψ−1(x, y) =
(x
y
,
x− c
x+ c

)
.

This proves the lemma.

We now partition the Edwards curves (2) into two subfamilies. Recall
that Q is the set of quadratic residues of Fq \ {0, 1}. Let

BLS = {EBL,d : d ∈ Q} , (13)

and
BLT = {EBL,d : d 6∈ Q} . (14)

As before, we use IBLS
(q) and IBLT

(q) to denote the numbers of Fq-isomorphism
classes of this families (13) and (14).

Note that a point P = (x, y) on the curve E4,c has order 2 if and only
if y = 0. There is always at least one rational point (0, 0) of order 2, and
possibly three points. The next remark shows how the number of Fq-rational
points of order 2 relates to IBLT

(q) and IBLS
(q).

Remark 3.2. From Lemma 3.1, we know that every Edwards curve EBL,d is
birationally equivalent to the elliptic curve E4,c with d = 1− 4c. Let δc be the
discriminant of the polynomial X2 + (1− 2c)X + c2. We have

δc = (1− 2c)2 − 4c2 = 1− 4c = d.

We see that E4,c(Fq) has a single rational point of order 2 if and only if
χ(δc) = χ(d) = −1. Similarly, E4,c(Fq) has three rational points of order 2 if
and only if χ(δc) = χ(d) = 1.

Therefore, for the Edwards curve EBL,d, the group EBL,d(Fq) has a single
point of order 2 if and only if EBL,d ∈ BLT . Also, the group EBL,d(Fq) has
three points of order 2 if and only if EBL,d ∈ BLS.
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Lemma 3.3. For any prime p ≥ 3, the number IBLT
(q) of Fq-isomorphism

classes of the family (14) is

IBLT
(q) = (q − 1)/2.

Proof. By Lemma 3.1 and Remark 3.2, we can represent Edwards curves
EBL,d with d 6∈ Q using elliptic curves of the form E4,c with c = (1 − d)/4.
There are (q − 1)/2 non-squares d in Fq.

Suppose two Edwards curve, say EBL,d1 and EBL,d2 , are isomorphic over Fq.
Then the associated curves E4,c1 and E4,c2 , with c1 = (1 − d1)/4 and c2 =
(1− d2)/4, must be isomorphic over Fq as well. The only admissible change
of variables from E4,c1 to E4,c2 has α = 1, and r = s = t = 0 (see §2.1).
Therefore, c1 = c2 and d1 = d2. This shows each distinct non-square d leads
to a different isomorphism class. Hence, we have IBLT

(q) = (q − 1)/2.

We now turn our attention to the second case, i.e., the curves in BLS.

Lemma 3.4. For any prime p ≥ 3, for the number IBLS
(q) of Fq-isomorphism

classes of the family (13), we have

IBLS
(q) =

{
b(q + 5)/6c , if q ≡ 1 (mod 4),

(q − 3)/4, if q ≡ 3 (mod 4).

Proof. Again, from Lemma 3.1 and Remark 3.2, we can represent an Edwards
curve EBL,d with d ∈ Q using the curve E4,c with c = (1− d)/4. We write

X3 + (1− 2c)X2 + c2X = X(X + s2)(X + t2),

where s = 1+δ
2

, t = 1−δ
2

and δ2 = d.
First, we assume that q ≡ 1 (mod 4). We then have −1 ∈ Q. Let i ∈ Fq

such that i2 = −1. The elliptic curve E4,c is isomorphic over Fq to the
Legendre curve EL,u : Y 2 = X(X − 1)(X − u) with u = (t/s)2, via the map

(x, y)→ (x/(is)2, y/(is)3).

Conversely, the Legendre curve EL,u with u = γ2 for some γ ∈ Fq, is iso-
morphic to the elliptic curve E4,(1−d)/4 with d = (1−γ

1+γ
)2. Hence, for q ≡ 1

(mod 4), the curve family BLS is isomorphic to the curve family LS given
by (6). Then, from Lemma 2.2, we have

IBLS
(q) =


(q + 5)/6, if q ≡ 1 (mod 12),
(q + 1)/6, if q ≡ 5 (mod 12),
(q + 3)/6, if q ≡ 9 (mod 12).
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Second, we assume that q ≡ 3 (mod 4). The elliptic curve E4,c is iso-
morphic over Fq to the Legendre curve EL,u with u = 1 − (t/s)2, via the
map

(x, y)→ (x/s2 + 1, y/s3).

Conversely, the Legendre curve EL,u with χ(1− u) = 1, where 1− u = γ2 for
some γ ∈ Fq, is isomorphic to the elliptic curve E4,(1−d)/4 with d = (1−γ

1+γ
)2.

Therefore, for q ≡ 3 (mod 4), the curve family BLS is isomorphic to the
curve family LT given by (8). Then, from Lemma 2.4, we have

IBLS
(q) = (q − 3)/4, if q ≡ 3 (mod 4).

This concludes the proof of this lemma.

Combining everything, we obtain the total number of Fq isomorphism
classes of Edwards curves.

Theorem 3.5. For any prime p ≥ 3, the number IBL(q) of Fq-isomorphism
classes of the family (2), is given by

IBL(q) =


⌊

2q + 1

3

⌋
if q ≡ 1 (mod 4),

3q − 5

4
if q ≡ 3 (mod 4).

Proof. We clearly have that

IBL(q) = IBLS
(q) + IBLT

(q).

From Lemmas 3.4 and 3.3, we obtain

IBL(q) =


(2q + 1)/3, if q ≡ 1 (mod 12),
(2q − 1)/3, if q ≡ 5 (mod 12),
2q/3, if q ≡ 9 (mod 12),

(3q − 5)/4, if q ≡ 3 (mod 4),

which completes the proof.

We note that any Edwards curve EE,c, given by (1), is isomorphic to an
Edwards curve EBL,c4 of the form

X2 + Y 2 = 1 + c4X2Y 2

via the map (x, y)→ (cx, cy). Here, we give explicit formulas for the number
of Fq-isomorphism classes of the family (1).
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Theorem 3.6. For any prime p ≥ 3, for the number IE(q) of Fq-isomorphism
classes of the family (1), we have

IE(q) =


b(q + 23)/24c if q ≡ 1, 9, 13, 17 (mod 24),

(q − 5)/24 if q ≡ 5 (mod 24),

(q − 3)/4 if q ≡ 3 (mod 4).

Proof. We recall that any Edwards curve EE,c, given by (1), is isomorphic to
an Edwards curve EBL,c4 . From the proof of Lemma 3.4, we can represent
the Edwards curve EBL,c4 using the Legendre curve EL,u, where

u =


(

1−c2
1+c2

)2
if q ≡ 1 (mod 4),

1−
(

1−c2
1+c2

)2
if q ≡ 3 (mod 4).

We see that χ(u) = χ(1−u) = 1. So, u, 1−u ∈ Q and EL,u an elliptic curve
in the family LS1 given by (7).

Conversely, the Legendre curve EL,u in LS1 with u = γ2 and 1 − u = λ2

for some γ, λ ∈ Fq, is isomorphic to the elliptic curve EBL,c4 with

c =

{
λ

1+γ
if q ≡ 1 (mod 4),

γ
1+λ

if q ≡ 3 (mod 4).

Therefore, the curve family (1) is isomorphic to the curve family LS1 given
by (7). Then, we see that IE(q) = ILS1

(q) and from Lemma 2.3, we have

ILS1
(q) =



(q + 23)/24, if q ≡ 1 (mod 24),
(q − 5)/24, if q ≡ 5 (mod 24),
(q + 15)/24, if q ≡ 9 (mod 24),
(q + 11)/24, if q ≡ 13 (mod 24),
(q + 7)/24, if q ≡ 17 (mod 24),
(q − 3)/4, if q ≡ 3 (mod 4).

4 Twisted Edwards curves

We consider the twisted Edwards curves ETE,a,d given by the family (3) over
a finite field Fq of characteristic p 6= 2. We note that a, d are in Fq with
ad(1− d) 6= 0.
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It has been shown in [2] that twisted Edwards curves are birationally
equivalent to Montgomery curves EM,A,B given by the family (4), where
B(A2−4) 6= 0. This can be seen via the map ψ : ETE,a,d → EM,2(a+d)/(a−d),4/(a−d)

ψ(x, y) =
(1 + y

1− y
,

1 + y

x(1− y)

)
. (15)

Furthermore, the Montgomery curve EM,A,B is birationally equivalent to the
twisted Edwards curve ETE,a,d where a = (A+ 2)/B and d = (A− 2)/B.

We note that, the family (3) is the generalization of the families (1)
and (2). Clearly, every Edwards curve EBL,d is a twisted Edwards. Moreover,
a twisted Edwards curve ETE,a,d is a twist of the Edwards curve EBL, d

a
. We

note that a quadratic twist of EBL,d, which is not isomorphic to EBL,d over
Fq, may not be in the family (2). Therefore, the family (3) includes the
curves of (2) and the twists of the curves of (2). Moreover, the j-invariant of
a curve and the j-invariant of its twist are equal. So, both families have the
same number of distinct j-invariants. This establishes the following theorem.

Theorem 4.1. For any prime p ≥ 3, for the numbers JTE(q) and JM(q) of
distinct Fq-isomorphism classes of the families (3) and (4) respectively, we
have

JTE(q) = JM(q) =

{
b(5q + 7)/12c if q ≡ 1 (mod 4),

b(3q − 1)/8c if q ≡ 3 (mod 4).

In the remainder of this section, we find explicit formulas for the number
of Fq-isomorphism classes of Montgomery curves, which is the same as the
number of Fq-isomorphism classes of twisted Edwards curves.

We partition Montgomery curves (4) into the following subfamilies. As
usual, let Q be the set of quadratic residues of Fq \ {0, 1} . Let

MS =
{
EM,A,B : A2 − 4 ∈ Q

}
, (16)

and
MT =

{
EM,A,B : A2 − 4 6∈ Q

}
. (17)

As before, we use IMS
(q) and IMT

(q) to denote the numbers of Fq-isomorphism
classes of this families (16) and (17). We now compute the values of IMS

(q)
and IMT

(q).
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Lemma 4.2. For any prime p ≥ 3, for the number IMS
(q) of Fq-isomorphism

classes of the family (16), we have

IMS
(q) =

{
2 b(q + 5)/6c , if q ≡ 1 (mod 4),

(q − 3)/4, if q ≡ 3 (mod 4).

Proof. We note that the familyMS is the set of Montgomery curves over Fq
with three 2-torsion points. From Remark 3.2, we know the family BLS is
the set of Edwards curve EBL,d with three 2-torsion points.

Suppose first q ≡ 1 (mod 4). We recall from [2, Theorem 3.5] that for
every Montgomery curve EM,A,B with A4 − 4 ∈ Q, exactly one of EM,A,B

and its nontrivial quadratic twist EM,A,cB (with χ(c) = −1) is birationally
equivalent to an Edwards curve EBL,d. On the other hand, an Edwards curve
EBL,d via the map (15) is birationally equivalent to the Montgomery curve
EM,2(1+d)/(1−d),4/(1−d). This means, there is a 2 : 1 correspondence between
the Montgomery curves of the family MS and the Edwards curves of BLS.
Therefore, we have IMS

(q) = 2IBLS
(q). Thus, from Lemma 3.4, for q ≡ 1

(mod 4), we have

IMS
(q) =


(q + 5)/3, if q ≡ 1 (mod 12),
(q + 1)/3, if q ≡ 5 (mod 12),
(q + 3)/3, if q ≡ 9 (mod 12).

When q ≡ 3 (mod 4), every Montgomery curve over Fq is birationally
equivalent to an Edwards curve [2]. So, the families (16) and (13) are equiv-
alent. So in this case, by Lemma 3.4, we have

IMS
(q) = IBLS

(q) = (q − 3)/4.

Lemma 4.3. For any prime p ≥ 3, then the number IMT
(q) of Fq-isomorphism

classes of the family (16) is

IMT
(q) =

q − 1

2
.

Proof. We observe that the familyMT is the set of Montgomery curves over
Fq with a single rational 2-torsion point. Again, from Remark 3.2 we recall

18



that the family BLT is the set of Edwards curve EBL,d with single 2-torsion
point.

For the Montgomery curve EM,A,B in MT , we have A2 − 4 6∈ Q. Let
a = (A+ 2)/B and d = (A− 2)/B. It follows that exactly one of a and d is
a square element of Fq. If a ∈ Q, then EM,A,B has the point (1,

√
a) of order

4. Similarly, if d ∈ Q, then the point (−1,
√
d) is of order 4. In either case

we have that EM,A,B has a point of order 4, and so is birationally equivalent
to an Edwards curve in BLT . So, we have

IMT
(q) = IBLT

(q) = (q − 1)/2,

which completes the proof of this lemma.

Theorem 4.4. For any prime p ≥ 3, for the numbers ITE(q) and IM(q) of
Fq-isomorphism classes of the families (3) and (4) respectively, we have

ITE(q) = IM(q) =



⌊
5q + 7

6

⌋
if q ≡ 1, 9 (mod 12),

5q − 1

6
if q ≡ 5 (mod 12),

3q − 5

4
if q ≡ 3 (mod 4).

Proof. As we have previously stated, every twisted Edwards curve ETE,a,d

over Fq is birationally equivalent over Fq to the Montgomery curve E
M, 4

a−d
,
2(a+d)
a−d

(see Equation (15)). Conversely, every Montgomery curve EM,A,B is bira-
tionally equivalent over Fq to the twisted Edwards curve ETE,A+2

B
,A−2

B
(see [2,

Theorem 3.2]). It follows that the families (3) and (4) have the same number
of isomorphism classes over Fq. Therefore,

ITE(q) = IM(q).

For the number IM(q) of Fq-isomorphism classes of the family (4), we
clearly have

IM(q) = IMS
(q) + IMT

(q).

By Lemmas 4.2, and 4.3, we have

IM(q) =


(5q + 7)/6 if q ≡ 1 (mod 12),
(5q − 1)/6 if q ≡ 5 (mod 12),
(5q + 3)/6 if q ≡ 9 (mod 12),
(3q − 5)/4 if q ≡ 3 (mod 4),

which completes the proof of this theorem.
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5 Conclusion

In this work we answered a question posed in [14]. That is, we found an
exact formula for the number of Fq-isomorphism classes of Edwards curves,
original Edwards curves, and twisted Edwards curves.

A natural and related question is to find a formula for the number of
distinct isogeny classes for a given family of elliptic curves. Ahmadi and
Granger recently were able to do this for Edwards curves [1], and Moody
and Wu did the same for Hessian curves [19]. It is an open problem to find
similar formulas for most other families of curves. This would include twisted
Edwards curves, Jacobi quartics, Jacobi intersections, and Huff curves.
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