显微组织对X80钢氢致裂纹敏感性和 氢捕获效率的影响*

曲炎淼 黄峰 刘静 袁玮

(武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室 武汉 430081)

摘 要 对以针状铁素体为主的 X80 管线钢进行不同工艺的热处理,分别得到具有多边形铁素体组织或板条马氏体组织的试样。 研究了显微组织对不同试样在饱和 H₂S 环境中的氢致裂纹 (HIC) 敏感性和氢渗透行为的影响。结果表明:具有不同显微组织的 X80 钢其 HIC 敏感性从大到小的排序为: 1 水淬处理的板条马氏体组织试样, 2 空冷处理的多边形铁素体组织试样, 3 原始针 状铁素体组织试样; 氢在材料中的捕获效率是影响材料 HIC 敏感性的主要因素之一,渗氢通量 J_{∞} 、氢扩散系数 D_{eff} 越低,氢 捕获效率越高,管线钢的氢致裂纹敏感性越高。

关键词 材料失效与保护,管线钢,氢致裂纹 (HIC) 敏感性,氢渗透曲线,氢捕获效率

分类号 TG174

文章编号 1005-3093(2010)05-0508-05

Influence of Microstructure on Hydrogen Induced Cracks Susceptibility and Hydrogen Trapping Efficiency for X80 Pipeline Steel

QU Yanmiao HUANG Feng** LIU Jing YUAN Wei

(School of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081)

*Supported by National Natural Science Foundation of China No.50871077.

Manuscript received June 9, 2010; in revised form August 10, 2010.

** To whom correspondence should be addressed, Tel:(027)68862632, E-mail: hgxlu@163.com

ABSTRACT The X80 pipeline steel based on acicular ferrite was tested by different heat treatment. The behavior of different microstructures such as poly ferrite and lath martensite of X80 steel was investigated by the hydrogen-induced cracking (HIC) susceptibility test and hydrogen permeation in H₂S environment. The result shows that the HIC susceptibility of different microstructure X80 steel is in the order of water-quenching> air-cooling> original. Hydrogen trapping efficiency of the steel is one of the main factors of HIC sensitive. The more the values of hydrogen flux J_{∞} and hydrogen diffusion coefficient D_{eff} , the fewer the pipelines steel is prone to HIC.

KEY WORDS materials failure and protection, pipeline steel, hydrogen induced cracking (HIC) susceptibility, hydrogen permeability curves, hydrogen trapping efficiency

X80 钢具有较高的强度和良好的韧性, 是输气管 线的首选钢种。在含有 H₂S 油气的输送过程中, 氢致 裂纹 (HIC) 是管线钢在酸性环境服役过程中发生失 效的主要原因之一。同时, 钢焊接后焊缝附近的组织 发生变化, 也引起其 HIC 敏感性变化 ^[1-3]。

目前关于管线钢 HIC 的萌生和扩展以及显微组

织对其敏感性的影响,已经有大量的研究工作。许多研究者认为,在高强度管线钢中针状铁素体具有较高的抗 HIC 和 SCC 能力^[4-6]。Dong 等^[7,8]研究了X70、X100级别管线钢的电化学氢渗透,认为影响管线钢 HIC 的主要因素是 Al、Mg 等的氧化物夹杂。Kim 等^[9]改进 Davanathan-Stachursky 电化学 氢渗透装置,研究了不同 H₂S 分压和溶液 pH 对 X70 管线钢氢渗透和 HIC 的影响。目前的研究多集中在 组织、夹杂物和外界条件等因素对 HIC 敏感性的影响,本文对以针状铁素体组织为主的 X80 管线钢分

^{*} 国家自然科学基金资助项目 50871077。

²⁰¹⁰ 年 6 月 9 日收到初稿; 2010 年 8 月 10 日收到修改稿。 本文联系人: 黄 峰

509

Table 1 Chemical composition of X80 pipeline (mass fraction, %)													
Element	С	Mn	\mathbf{S}	Р	В	Si	Cu	Al	Ti	Cr	Ni	Nb	Fe
	0.041	1.67	0.005	0.010	0.003	0.196	0.258	0.042	0.011	0.031	0.246	0.095	Bal

表1 X80 管线钢主要化学成分

别进行空冷和水淬热处理,研究微观组织对其在饱和 H₂S 环境中 HIC 敏感性的影响。

1 实验方法

实验用 X80 钢的主要化学成分列于表 1。将 X80 钢试样在热处理炉中加热至 1300 ℃, 保温 15 min 后 分别进行水淬和空冷处理, 得到具有不同显微组织的 试样。用 Nova nana 400 场发射扫描电子显微镜观察 X80 钢热处理前后的组织。

截取具有不同组织的 X80 钢试样, 按照 NACE TM0284–2003 标准 ^[10] 测试其 HIC 敏感性。采用 A 溶液, 实验前 pH 值为 2.72, 实验后 pH 值为 3.85。实 验进行 96 h 后取出试样, 切割、打磨抛光后用 Axioplan 型多功能金相显微镜观察并测量裂纹的数量、 长度和宽度, 其裂纹敏感率、裂纹长度率和裂纹厚度 率分别为裂纹敏感率: $CSR = \sum_{W \times T}^{(a \times b)} \times 100\%$ 、裂纹 长度率: $CLR = \sum_{W}^{a} \times 100\%$ 和裂纹厚度率: $CTR = \sum_{T}^{b} \times 100\%$ 。其中 a 为裂纹长度 (mm); b 为裂纹厚度 (mm); W 为试样宽度 (mm); T 为试样厚度 (mm).

沿平行于 X80 钢的轧制方向取样,将其加工成 截面积为 20 mm×20 mm 厚度为 1.15 mm 的渗氢 试样,并用金像砂纸将试样的双面打磨和抛光。采用 改进的 Davanathan-Stachursky 渗氢装置 (图 1)进 行渗氢实验。将试样固定于两充氢容器之间,暴露 在两容器之间的面积为 1 cm²,渗氢装置的阴极侧 为 NACE 标准 TM0284-2003 A 溶液 (成分为 5% NaCl+0.5% CH₃COOH 水溶液),阳极侧为 0.1 mol/L NaOH 溶液。实验时先将 NaOH 倒入阳极侧并通入 适量的 N₂ 以除去溶液中的溶解氧。控制阳极电位 为 250 mVSCE。当背底电流稳定后向阴极侧加入

图 1 氢渗透装置 Fig.1 Hydrogen permeation equipment

NACE A 溶液并通入 H₂S 气体至饱和。用 CHI660a 电化学工作站记录阳极侧氢的氧化电流 ^[9,11]。每个 试样均进行两次重复实验。

2 结果与讨论

2.1 热处理前后 X80 钢的显微组织

从图 2 可以看出, X80 钢的原始组织 (图 2a) 主要为细小形状不规则的针状铁素体晶粒, 没有完整连续的晶界, 粒度参差不一, 在晶内和晶界还弥散分布着多呈粒状的 M/A 岛状组织。热处理空冷后的 X80 钢由铁素体和粒状贝氏体组成 (图 2b), 铁素体晶粒长大, 晶粒大小不一, 呈不规则多边形形态, 在晶界上分布着粒状贝氏体。热处理后水淬的 X80 钢主要为板条马氏体, 板条束较细, 且分布均匀 (图 2c)。水淬组织可模拟焊接热影响区中融合线附近的硬化组织, 空冷组织可模拟焊接热影响区中融合线附近的软化组织 ^[12,13]。

2.2 氢致裂纹敏感性

X80 管线钢暴露在含有 H₂S 的酸性环境中,由 表面腐蚀产生的 H 原子扩散进入钢中,聚集在钢中 的夹杂物、位错、小角晶界等缺陷处并结合成氢分 子。氢分子在这些缺陷处产生很高的氢压,当氢压超 过临界值时就形成氢致裂纹^[6]。测量具有不同组织 X80 钢的裂纹,按照 NACE 标准 TM0284–2003 计算 其 HIC 敏感性 (表 2)。

热处理前的 X80 钢氢致裂纹敏感性最低,在 试验所选取的三个断面上均未发现裂纹。而热处 理后的试样氢致裂纹敏感性均明显增大,在断面 上均可观察到呈阶梯状分布的裂纹,且板条马氏 体组织裂纹敏感性增加更加明显。根据国家标准, CLR≤15%、CTR≤3%、CSR≤1.5%的材料对 HIC 不 敏感。这表明,热处理后的两种组织具有较好的抗 HIC 敏感性。

图 3 表明, 空冷试样中裂纹起始处的夹杂物主要 为 Al、Ca、Mg、Ti 的氧化物夹杂, 未发现 MnS 夹杂。 热处理前后夹杂物不发生变化, 说明氢致裂纹敏感性 与微观组织有关。

2.3 不同组织 X80 钢的氢渗透行为及其与 HIC 的关系

氢渗透实验反映出氢在钢中的扩散和捕获行为, 从氢渗透曲线可得到氢在钢中的扩散系数 D_{eff}、扩散

图 2 热处理前后 X80 钢的显微组织

Fig.2 Microstructures of X80 steel after heat treatment, (a) original, (b) aircooling, (c) waterquench

表 2	具有不同组织 X80 钢的 HIC 敏感性
Table 2	HIC performation of different microstruc-
	ture of X80 steel

Sample	$\mathrm{CLR}/\%$	CTR/%	$\mathrm{CSR}/\%$	
Acicular ferrite	0	0	0	
Polygon ferrite	3.28	0.49	0.05	
Lath martensite	6.96	0.98	0.096	

通量 J_{∞} 和阴极侧氢浓度 C_0 等参数,反映出氢在钢中的晶格和可逆氢陷阱中的扩散行为 $^{[6,14]}$ 。图 4 给出了不同组织 X80 钢在饱和 H_2S 环境中的氢渗透曲线。

图 3 空冷组织裂纹处夹杂物的 EDS

图 4 氢渗透曲线 Fig.4 Hydrogen permeation curves

试样的饱和阳极电流与氢扩散通量之间的关系 为 $J_{\infty} = \frac{I_{\infty}}{FA}$,式中 I_{∞} 为饱和阳极电流, A 为 试样面积; F 为法拉第常数。氢的有效扩散系数为 $D_{\text{eff}} = \frac{d^2}{6t_{\text{L}}}$,式中 d 为试样厚度; t_{L} 为滞后时间,即 $I/I_{\infty}=0.63$ 所对应的时间。于是可估算阴极侧的氢 浓度 $C_0 = \frac{J_{\infty} \times d}{D_{\text{eff}}}$ 。

对于面积 A=1 cm²、厚度 d 为 1.15 mm 的 试样,由测得的渗氢曲线可求出稳态扩散电流 I_{∞} 和滞后时间 t_{L} ,由此可计算出 J_{∞} 、 D_{eff} 及 C_0 (表 3)。从表 3 可以看出:具有不同组织 X80 钢氢的 渗透通量 J_{∞} 、氢扩散系数 D_{eff} 大小的排序为针状

	Original	Aircooling	Waterquench
$T_{\rm L}/{ m s}$	4084	6939	7658
I_{∞}/A	2.00×10^{-5}	1.22×10^{-5}	8.76×10^{-6}
$J_{\infty}/\mathrm{mol}\cdot\mathrm{cm}^{-2}\cdot\mathrm{s}^{-1}$	2.07×10^{-10}	1.26×10^{-10}	9.08×10^{-11}
$D_{\rm eff}/{\rm cm}^2{\cdot}{\rm s}^{-1}$	5.40×10^{-7}	3.01×10^{-7}	2.89×10^{-7}
$C_0/\mathrm{mol}\cdot\mathrm{cm}^{-3}$	4.41×10^{-5}	4.69×10^{-5}	3.62×10^{-5}

表 3 氢渗透数据 Table 3 Hydrogen permeation data

铁素体 > 多边形铁素体 > 板条马氏体。X80 钢热处 理前后钢中的夹杂物数量和形状不会发生变化,故可 推断氢渗透行为的差异主要是钢中的析出物、位错 和组织变化引起的。

氢在材料中的捕获效率是影响材料 HIC 敏感性的因素之一, 氢渗透通量 J_{∞} 、氢扩散系数 D_{eff} 和阴极侧溶解氢的浓度 C_0 等参数在一定程度上能反映钢的 HIC 敏感性。

氢在钢中的扩散主要受其在试样表面的聚集程 度和钢中的氢陷阱的影响。氢陷阱包括钢中的夹杂 物、析出物、位错、溶质原子以及空洞等缺陷^[8]。如 果氢陷阱的结合能 *E*_b 较小,即使是在室温,氢也能 从氢陷阱中进入间隙位置,这种氢陷阱成为可逆氢陷 阱,例如钢中的溶质原子、位错、小角度晶界和空洞 等。处在可逆氢陷阱中的氢在室温就能导致氢的扩 散和一切氢致开裂。如果氢陷阱结合能 *E*_b 较大,氢 在室温难于从氢陷阱中跑出。这类氢陷阱是不可逆 氢陷阱,如 Ti 的碳氮化物、大角晶界等。由于氢致裂 纹在室温最明显,故可逆氢陷阱对氢致裂纹有更大的 作用。

钢中的夹杂物和位错都是可逆的氢陷阱。这些 缺陷吸附大量的氢原子,这些氢原子结合形成氢分子 沉淀出来,变成孔洞核心。随着氢量的增加,产生较 大的应力,位错中心和夹杂物处的氢压升高,当显微 缺陷处的氢压超过材料的断裂强度时,即使不存在残 余应力也可形成氢致裂纹。

由上面的讨论可知, 夹杂物和位错都影响的 HIC 敏感性, 又因在三种组织钢中夹杂物的水平相同, 故 可认为 HIC 敏感性变化也主要是析出物和组织的变 化所致。在热处理过程中, 因冷速的影响, 空冷试样 中的析出物比水淬试样中的多。但因析出物细小且 弥散分布, 虽然会使氢的扩散系数降低, 还不致引起 HIC 裂纹萌生。另外, 热处理也使具有不同组织的试 样位错密度发生变化, 即: 水淬 > 空冷 > 原始, 位错 形成的大量氢陷阱阻碍氢在钢中的扩散, 使氢的扩散 系数降低。同时, 大量研究表明, 氢在不同显微组织 中的扩散能力显著不同^[6,14]。本文的结果表明, 与空 冷试样的多边形铁素体组织和水淬试样的板条马氏体组织相比,热处理前试样的针状铁素体组织具有更高的氢扩散能力。综合以上几个因素,析出物虽然是强烈的氢陷阱,但是对氢的扩散不起主导作用,而位错和微观组织对材料的氢扩散有更重要的作用。

从表 3 可见: 具有不同组织的 X80 钢氢渗透通 量 J_{∞} 、氢扩散系数 D_{eff} 大小的次序均为针状铁素 体 > 多边形铁素体 > 板条马氏体。结合表 2 中不 同组织试样 HIC 敏感性数据可见, 氢在钢中的捕获 效率越高, 氢就越容易在钢中聚集, 钢中的氢压越高, 材料的氢致裂纹敏感性也随之增大。因此, 不同组织 的氢捕获效率是影响材料 HIC 敏感性的主要因素之 一。渗氢通量 J_{∞} 、氢扩散系数 D_{eff} 越低, 阴极侧溶 解氢浓度 C_0 越高, 氢捕获效率越高, 管线钢的氢致 裂纹敏感性越大。氢捕获效率越高, 管线钢的氢致裂 纹敏感性越大。

3 结 论

1. 热处理前 X80 钢的原始组织主要为细小的针状铁素体, 空冷组织为多边形铁素体和粒状贝氏体组成, 水淬组织为板条马氏体。不同组织抗 HIC 敏感性的能力依次表现为针状铁素体 > 多边形铁素体 > 板条马氏体, 但三种组织的 HIC 敏感性结果都在可接受的范围内。

2. 具有不同组织 X80 钢的氢渗透通量 J_{∞} 、氢 扩散系数 D_{eff} 均表现为针状铁素体 > 多边形铁素体 > 板条马氏体。

3. 具有不同组织的 X80 钢其氢渗透通量 J_{∞} 、 氢扩散系数 D_{eff} 越低, 氢捕获效率越高, 氢致裂纹的 敏感性越大。

参考文献

 LIU Wei, PU Xiaolin, BAI Xiaodong, Development of hydrogen sulfide corrosion and prevention, Petroleum Drilling Techniques, 36(01), 83(2008)

(刘 伟, 蒲晓琳, 白小东, 油田硫化氢腐蚀机理及防护的研究现 状及进展, 石油钻探技术, **36**(01), 83(2008))

2 LI Chensheng, ZHAO bin, CHU Yuemin, Impact of sulfide corrosion to steels in gas field and the preventive measure, Fault–Block Oll & Gas Field, 15(4), 125(2008) (李臣生,赵 斌,褚跃民,硫化氢对气田钢材的腐蚀影响及防治, 15(4), 125(2008))

3 WANG Maotang, HE Ying, WANG li, Development and application of X80 alloy steel pipe for second west to east gas pipeline project, Electric Welding Machine, **39**(5), 6(2009)

(王茂堂,何 莹,王 丽,西气东输二线 X80 级管线钢的开发和 应用, 电焊机, **39**(5), 6(2009))

- 4 D.Hardie, E.A.Charles, A.H.Lopez, Hydrogen embrittlement of high strength pipeline steels, Corrosion Science, (48), 4378(2006)
- 5 Mingchun Zhao, Yiying Shan, Furen Xiao, Investigation on the H₂S-resistant behaviors of acicular ferrite and ultrafine ferrite, Materials Letters, (47), 141(2002)
- 6 Gyu Tae Park, Sung Ung Koh, Hwan Gyo Jung, Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel, Corrosion Science, (50), 1865(2008)
- 7 C.F.Dong, X.G.Li, Z.Y, Hydrogen-induced cracking and healing behaviour of X70 steel, Journal of Alloys and Compounds, (484), 966(2009)
- 8 C.F.Dong, Z.Y.Liu , X.G.Li, Y.F.Cheng, Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking, International Journal of Hydrogen Energy, (34), 9879(2009)
- 9 Wan Keun Kima, Seong Ung Koh, Boo Young Yang, Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels, Corrosion Science, (50), 3336(2008)

- Standard Test Method Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking, NACETM0284-2003
 (管道、压力容器钢抗氢致开裂性能评价的实验方法, NACE 标准 TM0284-2003)
- 11 ZHANG Yingrui, DONG Chaofang, LI Xiaogang, RUI Xiaolong, ZHOU Herong, Hydrogen induced cracking behaviors of X70 pipeline steel and its welds under electrochemical charging, Acta Metallurgica Sinica, **42**(5), 521(2006) (张颖瑞, 董超芳, 李晓刚, 芮晓龙, 周和容, 电化学充氢条件 下 X70 管线钢及其焊缝的氢致开裂行为, 金属学报, **42**(5), 521(2006))
- 12 H.L.Yi, P.Xue, R.X.Cui, Research on continuous cooling transformation of X80 pipeline steel, Steel Rolling, 25(2), 10(2008)
- HUANG Feng, QU Yanmiao, DENG Zhaojun, LIU Jing, ZHENG Chaochao, LI Xiaogang, The pitting electrochemical behaviors of different mircostructure X80 steels in high pH soil simulative solution, Journal of Chinese Society for Corrosion and Protection, **30**(1), 29(2010)
 (黄峰, 曲炎森, 邓照军, 刘静, 郑超超, 李晓刚, 不同组织 X80

(頁 吨, 曲灭森, 小照车, 刈 时, 丸通超, 学院州, 小问组织 A80) 钢在高 pH 土壤模拟溶液中点蚀电化学行为, 中国腐蚀与防护 学报, **30**(1), 29(2010))

 14 CHU Wuyang, Hydrogen Induced Cracking and Delayed Fracture (Beijing, Metallurgical Industry Press, 1988) p.39, p.70

(褚武扬, 氦损伤和滞后断裂 (北京, 冶金工业出版社, 1988) p.39, p.70)