文章编号: 1000-6893(2001) 02-0168-03

平衡截断方法在气动伺服弹性系统 模型降阶中的应用

熊纲、杨超

(北京航空航天大学飞行器设计与应用力学系,北京 100083)

APPLICATION OF BALANCED TRUNCATION METHOD ON

AEROSERVOELASTIC MODEL REDUCTION

XIONG Gang, YANG Chao

(Dept. of Flight Vehicle Design and Applied Mechanics, Beijing Univ. of Aero. and Astro.,

Beijing 100083, China)

摘 要:研究了平衡截断方法在多输入/多输出气动伺服弹性系统模型降阶中的应用。简要分析了气动伺服 弹性系统模型建立的一般过程,详细讨论了平衡截断方法的基本原理并给出了其中的一种算法。以机翼气动 伺服弹性系统为对象,比较了降阶前后模型变化情况。

关键词: 气动弹性; 气动伺服弹性; 模型降阶; 平衡截断

中图分类号: V215.3 文献标识码: A

Abstract: Balanced truncation method is employed to investigate the problem of model reduction on multi-input/multi-output system. The process of low-order modeling on ASE system is given in brief. The principle and algorithm of balanced truncation method are discussed in detail. The ASE system for a wing model is applied to reveal the mechanism of the method by comparing the full model with the reduced order model. **Key words**: aeroelastic; aeroservoelastic; model reduction; balanced truncation

气动伺服弹性(ASE)技术是新一代飞机设计 中的重要问题,它是涉及柔性飞机结构、气动力和 飞行控制系统三者相互作用的多学科技术。

气动伺服弹性系统建模是进行气动伺服弹性 稳定性分析、控制律设计及多学科优化的关键。随 着现代控制理论与系统分析技术的进展,要求在 时域里建立 ASE 系统的状态空间模型,将结构、 非定常气动力、舵机执行机构、阵风干扰、传感器 以及控制系统转化为状态空间形式。对全机来说, ASE 系统模型的阶数很高,即使采用结构模态 法,也可达几百阶;对于稳定性分析(如颤振和伺 服颤振)可以采用高阶模型,但对于控制律(如颤 振主动抑制和阵风减缓控制律)设计以及多学科 优化,高阶模型往往带来无法逾越的障碍^[1]。因 此,建立低阶的 ASE 降阶模型一直是该领域十分 重要的问题。

本文采用平衡截断方法,以某歼击机缩比模型机 翼为对象,充分考虑被截断状态信息,进行多输入/多 输出ASE系统的低阶建模与模型降阶分析。

1 ASE 系统建模

将 ASE 系统各环节表示为状态空间形式,再 按照输入输出关系进行组装。

(1) 机翼气动弹性运动状态空间方程 取弹 性翼面的一组固有模态作为广义坐标,则可得到 有控翼面运动方程拉氏域表达式为

$$\left(\begin{bmatrix} \boldsymbol{M}^{\mathrm{s}} & \boldsymbol{M}^{\mathrm{c}} \end{bmatrix} s^{2} + \begin{bmatrix} \boldsymbol{K}^{\mathrm{s}} & \boldsymbol{K}^{\mathrm{c}} \end{bmatrix} s + q \begin{bmatrix} \widetilde{\boldsymbol{A}}^{\mathrm{s}} & \widetilde{\boldsymbol{A}}^{\mathrm{c}} \end{bmatrix} \right) \bullet$$

$$\left\{ \begin{cases} \boldsymbol{\xi}_{\mathrm{s}}(s) \\ \boldsymbol{\xi}_{\mathrm{c}}(s) \end{cases} \right\} = q \widetilde{\boldsymbol{A}} c \left\{ \begin{cases} \boldsymbol{\xi}_{\mathrm{G}}(s) \\ v \end{cases} \right\}$$

$$(1)$$

其中: M, K 分别表示广义质量和广义刚度矩阵; ξ 为广义坐标;下标 S, C, G 分别表示翼面、控制 面和阵风; q 为动压; v 为来流速度。将由最小状 态法^[2]得到的广义非定常气动力系数矩阵 $\tilde{A}s, \tilde{A}c$ 和 $\tilde{A}c$ 代入运动方程。采用加速度传感器,则有控 翼面状态空间方程为

$$\mathbf{x}_{s} = \mathbf{A}_{s}\mathbf{x}_{s} + [\mathbf{B}_{c} \quad \mathbf{B}_{c}]\mathbf{u}_{s}$$
 (2a)

$$\mathbf{y}_{\mathrm{S}} = \mathbf{L}_{\mathrm{S1}}\mathbf{x}_{\mathrm{S}} + \begin{bmatrix} \mathbf{L}_{\mathrm{S2}} & \mathbf{L}_{\mathrm{S3}} \end{bmatrix} \mathbf{u}_{\mathrm{S}}$$
(2b)

其中: x_{s} 为状态向量(含气动力状态); u_{s} 为输入 向量; v_{s} 为加速度传感器输出向量; $u_{s} = [u_{c}]$

$$\boldsymbol{u}^{\mathrm{C}}$$
]^T; $\boldsymbol{u}^{\mathrm{C}} = \begin{bmatrix} \boldsymbol{\xi}^{\mathrm{C}} & \boldsymbol{\xi}^{\mathrm{C}} & \boldsymbol{\xi}^{\mathrm{C}} \end{bmatrix}^{\mathrm{T}}$; $\boldsymbol{u}^{\mathrm{C}} = \begin{bmatrix} \boldsymbol{\xi}^{\mathrm{C}} & \boldsymbol{\xi}^{\mathrm{C}} & \boldsymbol{\xi}^{\mathrm{C}} \end{bmatrix}^{\mathrm{T}}$.

研资助项目(36.3.5) (2) 舵机系统状态空间方程 舵机传递函数 ^{文章网址942分100℃hhttp:Actact/hhttp:/2001/02/2168/tronic Publin被表示为兰阶环节,将客舵机的状态空间方程^{ki.1}}

收稿日期: 2000-05-22; 修订日期: 2000-11-13

基金项目: 航空基础科学基金(97A51038); 国防科工委 "九五 '预 研资助项目(36.3.5)

组合起来,得到

$$\boldsymbol{x}_{\mathrm{ac}} = \boldsymbol{A}_{\mathrm{ac}}\boldsymbol{x}_{\mathrm{ac}} + \boldsymbol{B}_{\mathrm{ac}}\boldsymbol{u}_{\mathrm{ac}} \qquad (3a)$$

$$\mathbf{y}_{\rm ac} = \mathbf{C}_{\rm ac} \mathbf{x}_{\rm ac} \tag{3b}$$

其中: xac为舵机状态向量; uac为舵机输入(电压信 号)向量。

(3) 阵风状态空间方程 本文采用 Dryden 紊流模型,阵风状态空间描述为

$$\mathbf{x}_{G} = \mathbf{A}_{G}^{*} \mathbf{x}_{G} + \mathbf{B}_{G}^{*} \mathbf{w}$$
(4a)

$$\boldsymbol{u}_{\mathrm{G}} = \boldsymbol{C}_{\mathrm{G}}^{*}\boldsymbol{x}_{\mathrm{G}} + \boldsymbol{D}_{\mathrm{G}}^{*}\boldsymbol{w} \qquad (4\mathrm{b})$$

其中: x_{G} 为阵风状态向量:w为白噪声输入。

(4) 广义受控对象状态空间方程组 按照输 入输出关系,将翼面、舵机和阵风环节组合,即可 得到广义受控对象状态空间方程

$$\ddot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + [\boldsymbol{B}_u \quad \boldsymbol{B}_w]\boldsymbol{u} \qquad (5a)$$

$$\mathbf{y} = \mathbf{C}\mathbf{x} + \begin{bmatrix} \mathbf{0} & \mathbf{D}_w \end{bmatrix} \mathbf{u}$$
(5b)

$$\mathbf{\xi} \mathbf{\Psi} : \mathbf{x} = \begin{bmatrix} \mathbf{x}_{\mathrm{S}} & \mathbf{x}_{\mathrm{ac}} & \mathbf{x}_{\mathrm{G}} \end{bmatrix}^{\mathrm{T}} : \mathbf{u} = \begin{bmatrix} \mathbf{u}_{\mathrm{ac}} & \mathbf{w} \end{bmatrix}^{\mathrm{T}},$$

2 平衡截断降阶方法

平衡截断降阶方法由 Moore 首先提出^[3]。考 虑线性时不变渐近稳定系统

$$\vec{x} = Ax + Bu \tag{6a}$$

$$y = Cx + Du$$
 (6b)

其中:A . \mathcal{R}^{n} ; B . \mathcal{R}^{p} ; C . \mathcal{R}^{n} ; D . \mathcal{R}^{p} 。定 义系统的可控与可观性 Gramian 矩阵为

$$W_{e} = \int_{0} e^{At} B B^{T} e^{A^{T}t} dt$$
$$W_{0} = \int_{0} e^{A^{T}t} C^{T} C e^{At} dt$$

一般总认为实际系统是可控可观的,则W。 和 🗛 都应当是非奇异、对称半正定矩阵。 系统的 内平衡实现是要寻找一个非奇异变换*T*. 使可控 可观性 Gramian 矩阵变换为相同的对角阵

$$W_{\rm o} = W_{\rm c} = \Sigma \tag{7}$$

$$\Sigma = \operatorname{diag}(\sigma_1^2 \quad \sigma_2^2 \quad \dots \quad \sigma_n^2) \qquad (8)$$

其中:の の2 ... の 0.称为汉克尔奇异值。 $\Sigma = \operatorname{diag}(\sigma_1^2 \quad \sigma_2^2 \quad \dots \quad \sigma_k^2)$

$$\Sigma_{2} = \operatorname{diag}(\sigma_{k+1}^{2} \sigma_{2}^{2} \dots \sigma_{n}^{2})$$

则系统可以分解为

$$\begin{cases} \mathbf{\tilde{x}}_{1} \\ \mathbf{\tilde{x}}_{2} \\ \mathbf{\tilde{x}}_{2} \end{cases} = \begin{bmatrix} \mathbf{\hat{A}}_{11} & \mathbf{\hat{A}}_{12} \\ \mathbf{\hat{A}}_{21} & \mathbf{\hat{A}}_{22} \end{bmatrix} \begin{cases} \mathbf{\tilde{x}}_{1} \\ \mathbf{\tilde{x}}_{2} \\ \mathbf$$

如果 $\sigma_{k}^{2} \gg \sigma_{k+1}^{2}$. 可令模型降阶为

$$y = C_{1}x_{1} + D_{r}u \qquad (10b)$$

$$= (A_{11} - A_{12}A_{22}A_{21}); B_{r} = (B_{1} - A_{12}A_{22}A_{22})$$

$$= (C_{1} - C_{2}A_{22}A_{21}); D_{r} = (D - C_{2}A_{22}B_{2})_{\circ}$$

可以验证,修正后模型稳态值与满阶模型稳 态值一致。对应于小奇异值的弱子系统是最不可 控最不可观子系统,被认为对系统传递函数矩阵 影响不大。本文在'截断'弱状态的同时也考虑了 在降阶模型中适当体现其贡献。可以证明,平衡截 断降阶方法一般总能给出渐近稳定、可观可控的 低阶模型。这样,问题就归结为构造变换矩阵 T, 本文采用文献[4]给出的一种算法。

3 算例及分析

某歼击机机翼缩比模型如图1所示。满阶 ASE 模型选取机翼前 5 阶振动模态,固有频率分 别为 21.06.49.71.60.53.77.64.89.34rad/s。

图1 机翼结构示意图

Fig. 1 Platform of the wing model

满阶模型为3输入2输出系统,共含19个状 态(5个弹性模态计10个状态,气动力滞后项计1 个状态,2个舵机计6个状态,阵风计2个状态)。 通过系统开环根轨迹图,得到颤振速度为 25.2m/ s, 颤振频率为 72. 37rad/s。 与 v-g 法计算结果一 致。依次截断弱状态、将满阶模型分别降至17、 16, 14, 12, 9, 7 阶, 图 2 给出了典型通路的幅频特 性曲线。为了解平衡截断降阶过程中系统状态如 何被'截断",分别计算出满阶系统和各降阶系统 状态矩阵特征根,并作比较,得到状态截断次序如 表1所示。

综合以上降阶结果,分析如下:

(1) 只要模型在9 阶以上, 对于颤振分析所 关心的低、中频段(1~100rad/s)的幅频特性,降 阶模型与满阶模型吻合较好。阵风和气动力滞后 状态是系统最弱的3个状态,截断以后对幅频特 性基本没有影响。舵机传函的二阶环节是引起高 频段误差的主要因素。被截断的弹性模态所对应 © 1994-2010 China Academic Journal Electronic Pu的状态是引起中频段误差的志要因素。p://www.cnki.

- 图 2 不同降阶程度下传感器 1 至控制面 1 的幅频响 应
- Fig. 2 Frequency response of the first accelerometer to the first control surface for various levels of model reduction

表1 状态截断次序

Table 1 Sequence of the states truncated

降阶模型阶次	被截断的状态
17	阵风
16	阵风、气动力
14	阵风、气动力、第 3 阶弹性模态
12	阵风、气动力、第 3 阶弹性模态、舵机部分
9	阵风、气动力、第2和第3阶弹性模态、舵机部分
7	阵风、气动力、前 3 阶弹性模态、舵机部分

(2) 从表 1 可知, 被截断的状态依次为: 阵风状态、气动力滞后项、舵机部分状态、第 3 阶弹性模态等。并且, 颤振分析所判断的主要模态分支 (第 4、5 阶模态), 对应着系统最强的状态。反过来 说, 平衡截断降阶方法甚至可以用来判别复杂 ASE 系统颤振主要模态分支, 而比传统的判别方 法简洁可靠。

(3) 基于颤振分析和幅频特性来看,降阶模型在 12 阶左右就能够比较全面地近似满阶模型; 第三阶弹性模态是颤振次要模态,并且在 5 个模 态中对应着相对最弱的状态,可以考虑不参与建 模。

4 结束语

由研究结果来看,平衡截断降阶方法用于本 文对象的气动伺服弹性系统模型降阶是可行的, 优点是物理含义明确。在评估降阶模型时,除颤振 特性的比较外,还保证了颤振等重要特性附近频 率范围内的频响特性一致。下一步的工作是探讨 降阶模型综合评价问题。

参考文献

- [1] 杨超,陈桂彬,邹丛青.主动气动弹性机翼技术分析[J]. 北京航空航天大学学报,1999,25(2):171~175.
- Karpel M. Reduced-order models for intergraded aeroservoelastic optimization [J]. J of Aircraft, 1999, 36(1):146 ~155.
- [3] Moore B C. Principal component analysis in linear system: controllability, observability, and model reduction [J]. IEEE T ans on Automatic Control, 1981, 26(1):17~31.
- [4] Laub A, Heath M T, Paige C C, et al. Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms [J]. IEEE Tans on Automatic Control, 1987, 32(2):115~121.

作者简介:

熊 纲 1977年5月生。1998年7月毕业 于北京航空航天大学。目前于北航飞机设计 研究所攻读硕士学位。主要研究兴趣:结构 动力学,飞行器气动弹性分析,多控制面颤 振主动控制等。E-mail:sbtbear@263.net。

杨 超 见 航空学报》2000年第21卷第6期499页。