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On the homogeneous distance of negacyclic codes over
Z 2"a

ZHU Shixin, KAI Xiaoshan
(School of Mathematics, Hefei University of Technology)

Abstract: In this paper, we investigate the homogeneous distance of negacyclic codes over Z_2"a of
any length. We determine the torsion codes of a negacyclic code over Z_2"a for a given length. Using
the higher torsion codes, we give a bound for the homogeneous distance of negacyclic codes over
Z_2"a of any length. The exact homogeneous distance of some negacyclic codes over Z_2"a is also
obtained.
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1 Introduction

Negacyclic codes over finite fields are a class of important codes that were initiated by
Berlekamp in the early 1960s [1,2]. After successful applications of codes over Z, to good
error-correcting codes [3] and unimodular lattices [4], codes over finite rings have received a
lot of attention. In 1999, Wolfmann first introduced negacyclic codes over Z, of odd length
and studied their binary images [5,6]. Later, Blackford [7] used a transform approach to
classify negacyclic codes over Z, of even length. Recently, Dinh [8,9] computed various

kinds of distances of all negacyclic codes of length 2° over ZZa .

In the present work, we investigate the distances of negacyclic codes over Zza for an
arbitrary length. We consider the homogeneous distance of negacyclic codes over Z2a and
the Euclidean distance of self-dual negacyclic codes overZZa . It is well known that for a
linear code C over Z,, the Lee distance can be bounded by Res(C) and Tor(C)

[10]. We extend this bound to the homogeneous distance of negacyclic codes over Z2a in

terms of the Hamming distances of torsion codes. To do this, we determine all torsion codes
of a negacyclic code over Zza. The material is organized as follows. In Section 2, we

introduce some basic definitions and notations. We also review main results about negacyclic
codes over Z2a . Section 3 determines all torsion codes of a negacyclic code Z2a . Bounds on

the homogeneous distance of a negacyclic code Z ,. arepresented in Section 4.

2 Preliminaries
Let Z2a denote the finite commutative ring of integers modulo 2° where a>2 is a positive
integer. Denote by Zza[x] the ring of polynomials in the indeterminate X with coefficients in

Z, . Apolynomial in Z_,[X] is called a basic irreducible polynomial if its reduction modulo 2,
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denoted by f_(x), is irreducible in  F,[X] . Each element T e ZZa can be written uniquely as
r=r+20+2°r+--+2"'r_,,
where r. €{0,1} for 0<i<a-1.
Two polynomials  f,(x), f,(x)eZ, [X] are said to be coprime if there exist
24 (X), 2, (X) € Z . [X]such that 4, (x) f,(X)+4,(x) f,(x)=1. It is known that f, (x)and
f,(x) are coprime in Z.[x] if and only if f_l(x) and f_z(x) are coprime in F,[X] (cf.
[11D.

A code of length N over Z2a is a nonempty subset of ZZNa,andacode of length N over
Z,, is linear if it is a Z, -submodule of Z;. A linear code of length N over Z, is

negacyclic if C is invariant under the permutation of Z;:
(CosCpreerCy) = (—Cnas Cor- -1 Ca )-

We identify a codeword C :(Co,q,...,CN_l) with its  polynomial representation
c(X)=c, +CXx+---+Cy, X", Then xc(X)corresponds to a negacyclic shift of c(x)in the
ring Z,, [X]/<XN +1>. Thus negacyclic codes of length N over Z,, can be identified as
ideals in the ring Z2a [X]/<XN +1>. Let N =2n,where K isa nonnegative integer and N is
an odd number. Denote

R, =2, [x]/(x" +1).
In particular, when a=1, R, = FZ[X]/<XN +1>. This means that a binary cyclic code of
length N =2"n (n odd) is an ideal of 9R,. It has been shown in [12,13] that negacyclic codes
over ZZa of any length are principally generated. The following theorem gives the generators of

negacyclic codes over Z2a for an arbitrary length.

Theorem 2.1 ([13]). Let X" —1:1_[::1 f.(X) be the unique factorization of X" —1 into a

product of monic basic irreducible divisors in Zza[x]. If C is a negacyclic code overZZa of

r

length N =2n (nodd),then C = <H f (X)ki > . Moreover

i=1 i

(2" a-i)deg(f,)

| C |= ZZi:O
The homogeneous weight on Zza is a weight function on Zza defined by

2272 ifre 2%t
Wi, (M) =4 227" if r=2"
0, if r=0.

The homogeneous weight of C:(CO,Cl,...,CN_l) over Z2a is the rational sum of the
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homogeneous weights of components of C. The homogeneous distance d,, (C) of a linear

code C is the smallest homogeneous weight of nonzero codewords of C. The homogeneous

weight on Z, coincides with the Lee weight. Carlet [14] introduced a generalized Gray isometry

on Z2a with the above homogeneous weight to obtain the generalized Kerdock codes. Duursma

et.al [15] used this Gray isometry on Z, to construct a nonlinear (96,2%,24) binary code.

3 Torsion codes

Let C be any code over Z, of length N . We now associatt C with some related
codes. We define E={E|C€C}. For each i, 0<y<a-1, we define the code

(C:27):{0622Na |2yCEC}.F0r a linear code C over Z, of length N, it is easy to

verify that (C:Zj)g(C:21+l) and (C:Zj)g(C:Zj”), 0<j<a-2. In general,

C :(C :20) is called the residue code and is denoted by Res(C). Lety be a fixed integer

with 0<y<a-1. Let C be a linear code of length N over ZZa , If C is negacyclic

over Z ., then it is easy to check that(C : 27) is negacyclic over Z,, and(C X 27) is cyclic

oa !

over F,. Norton and Salagean introduced these codes [16] and used them to study the Hamming

distance of linear codes over finite chain rings[17]. The code (C : 27) is called the y th torsion

code of C in [18]. The following is a special case of [18, Theorem 6.2].

Theorem 3.1 ([18]). For any linear code C over Z_, , we have |C|= H:‘(C ; 27)

Next, we will determine the yth torsion code of C, for 0<y <m-—1. For this, we first
give several helpful lemmas.

Lemma3.2.In R, we have <(x” —1)2k > =(2).

Proof. The proof is similar to that for [7, Lemma 1]. By induction on n, it can be shown that

(x" —1)2k =x*" +1+2a, (X"), where @, (X") is a unitin %, Therefore, <(x” _1)? > -
(2) inR,.

Lemma 3.3. Let f(x) be a divisor of x" =1 in F,[x]. Then, in %R, <f (x)2”'>:
< f (X)2k > , for any positive integer |

Proof. Let g(X) =(X” —1)/f (x).since f(x)and g(x) arecoprimein F,[x], it follows
that f (X)I and g (X)2k are coprime in 5, [ x] for any positive integer | . Hence, there exist

0(x),9(x) e F,[x] such that &(x) f (X)I +19(X)g(x)2k =1 in F,[x]. Computing in
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R, , we have

Consequently, <f(x)zk+l>=<f(x)zk> for any positive integer |.

Lemma 3.4. Let C be a negacyclic code over Z, of length N =2"n (n odd) with
generator polynomial Hir:l fi(x)ki, where f,(x)(1<i<r) are monic basic irreducible
divisors of X" —1 in Z, [X] and 0<k <2“a.Lety be afixed integer with 0<y <a-1.

Then (C:27) contains the negacyclic code overZ,, of length N =2"n (n odd) with
(7) .
generator polynomial Hir:l f.(x)"  wherel”) =k, —mln{2k 7 ki}.

i=1 !

Proof. LetD = <1_[r f (x)"m > <R, with 17 =k —min {2k7, ki} .Forany f (x)eD, we

have f(x)=g(x)1_[r f (X)I‘(” , for some g(x)eR,. By Lemma 3.2, there exists an

=1 |

invertible element S3(x)in R, such that,B(X)(X” —1)2k = 2. Hence,
21 (x)=2g()[ ] f,(x)
=09 (-1 (T (%"

r

=g(x)B(x) TT £ (x)"

i=1

|I(V)

)
Where 7" =2y +k, —min{Zk)/, ki} Obviously, 2" f(x)eC so f(x) e(C ; 27) This
givesthat D g(C : 27).

Combining the above lemmas with Theorem 3.1, we can determine the torsion codes of a
negacyclic code over Z_, of length N = 2n (n odd) explicitly.
Theorem 3.5. Let Cbe a negacyclic code over Z, of length N =2n (n odd) with
generator polynomial Hir:l f. (X)ki , where f,(x)(1<i<r) are monic basic irreducible

divisors of X"—-1 in Z,[x] and 0<k <2“a. Let y be a fixed integer with

0<y<a-1. Then (C:Zy) is a binary cyclic code of length N=2n (n odd) with

(7)

generator polynomial H::l?i(x)ri ,where z”) = min {Zk (7+1).k, } —min {2" 7, ki}
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Proof. By Lemma 3.4, for each y ,0<y<a-1, it is obvious that (C:27);>

|(7)

<H:_1?i(x)li(y)>,where I =k —min{2*y,k } . LetD :<H:_l?i(x)i

Lemma 3.3, we get that
o= (IT7" ) =(ITr 00" )
i=1 i

> < R,. Applying

i=1

Where ) :min{Zk,ki —min{2"y, ki}}
= min{2k (;/+1),ki}—min{2k7, ki} :
This gives that (C X 27) > 2" where

(C:2)

> 2t(J Hy A

a-1
Hence, H
y=0

_ XL ()

_ 2aN _zirzlki -deg( f;)

From Theorem 3.1, we know that
a-1

cl=11

7=0

_ 2aN —erzlki -deg( f;)

c2)

Hence, for each y , 0<y<a-1, it must have ‘(C:Zy):‘ﬁ‘ This shows that

(C : Zy) — D. The desired result follows .

. r T r-(o)
From the above theorem, we can express that the residue code Res(C) = <Hi=1 f.(x)" > :

where ri(o):min{Zk,ki}, and (C:2“)=<1_[_r f,(x)" >where Y=k - .

min{Zk (a—l),ki}
4 Homogeneous distance

of length N =2“n (nodd),

Let C:<1_Lr:l fi(x)k‘> be a negacyclic code over Z ,
where f,(x) (1<i<r) are monic basic irreducible divisors of Xx"—1 in Z ,[x] and

0<k < 2%a. For each y, 0<y<a-1, let dy denote the Hamming distance of the binary

cyclic code (C ; 27) :<H::1 fi"m> , where 7 = min{2k (}/+1),ki}—min{2k7, ki} :
Clearly, d,>d; >--->d_ . We first consider the Hamming distance of a negacyclic code over

Zza of length N =2n (n odd). The Hamming distance is completely determined by the

-5-
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binary cyclic code (C , 2""‘1) .

Theorem 4.1. Let C be a negacyclic code over Z, of length N =2%n (n Odd) with
generator polynomial Hirzl f.(x)" , where f,(X)(1<i<r) are monic basic irreducible
divisors of X" —1 in Z,[x] and 0<k; <2“a.Then d,(C)=d,,.
Proof. The result follows from [12, Theorem 4.2] and Theorem 3.5.
Theorem4.2. Let C be anegacyclic code over Z,, of length N =2*n (n odd) with
generator polynomial Hir:l f.(x)" , where f,(X)(1<i<r) are monic basic irreducible
divisors of X"-1 in Z,[x] and 0<Kk <2*a.Then

2**min{d, ,,2d, .} <d,,, (C)<2*"d,,.
Proof. Let ¢ be any nonzero codeword in C . Then there exists v, 0<v <a-1, such that

C can be expressed in the form 2"b, where b e Zga is not divisible by 2. This gives that

(c)222d,

hom

0%be(C:2"), which implies w, (b)>d,. If 0<v<a-2, then w
Because dy>d,>--->d,,, we have w,, (c)>2"?d, ,, which means d,, (C)>
2°%d, , . If v=a-1, then d,,(C)=2""d,,. Hence, d, (,O=min?®2d

2°*d_ ,}. On the other hand, note that 2**b=2""heC, so d

2**min{d, ,,2d, .} <d,, (C)<2**d,,.

For the case a =2, the upper bound in the above theorem specializes to the bound given by
Rains in [10, Lemma 4]. As special cases, we have the following two corollaries which provide

(C)<2*d,_,. Therefore,

hom

the exact homogeneous distance of some negacyclic codes over Z ,a -

Corollary 4.3. Let C be a negacyclic code over Z_, of length N =2%n (n Odd) with

Za
generator polynomial Hir:l f.(x)" , where f,(x)(1<i<r) are monic basic irreducible

divisors of X" -1 in Z,[x] and 0<k <2a.If d,,>2d,,then d (C)=2""d, .

Corollary 4.4, Let C=<1_Lr:1 fi(x)k‘> be a negacyclic code over Z_, of length

23

N =2n (nodd), where f,(x)(1<i<r) are monic basic irreducible divisors of X" -1 in

Z, and 0<k <2“a.Let A=max{k}.
I<i<r

@) If 1<2<2“(a-2),then d,,,(C)=2"".
@1f 2(a-2)+1<1<2(a-1),then d,,, (C)=2"".

Proof. (1) If 1<A<2(a—2), then, by Theorem 3.5, we get that (C 1287 ) = (C ; 2“) =(1).

From Theorem 4.2, it must be 2°?<d,, (C)<2*'. Note that H::l f.(x)7C2 =
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n 2(a-2) a-2 . . . a2 s
(X —1) :(2/3) € C for some unit # in R, , which means2®“ € C . This implies that

dyom (C) < 2%%. So, it must have d,,,(C)=2"2.

) if 2(a—2)+1<1<2"(a-1), then (C:ZH) is not (0) or (1), but (C:Za’l):

(1). Hence, d,_, >2d, ,.From Theorem 4.2, we obtain thatd,, (C)=2"".
Using torsion codes we can find the exact homogeneous distance of some negacyclic codes

over Z, of length N =2n(nodd). However, for the case when A=max{k;}>

I<i<r

2% (a—l), it is difficult to determine the exact homogeneous distance for a negacyclic code over
Z,. of length N = 2*n (n odd) in general. Thus, there are still a large number of negacyclic
codes over Z,, of length N = 2n (n odd) with homogeneous distance uncertain. Now we
will give an upper bound for this case using simple-root binary cyclic code C, =<f_(x)> of
length n.Let C be anegacyclic code over Z,, of length N = 2“n (n odd) with generator
polynomial g(X)= 1_[::1 f,(x) , where f, (X)(1<i<r) are monic basic irreducible divisors
of x"=1in Z,[x] and 0<k < 2“a . Define f (x) as the product of those basic
irreducible polynomials f, (x) of g(x) with multiplicity k, >2“(a—1). The following
lemma easily follows from [19, Theorem 1].
Lemma 4.5. Let C, =<f_(x)2k> be the binary cyclic code of length N =2*n (n odd), and
let C, = < f_(x)> be the binary cyclic code of length n. Then d,, (C,)=d, (C,).
Corollary 4.6. Let C be a negacyclic code of length N =2n (nodd) with generator
polynomial g(x)=1_[ir:1 f(x) . Let C, be defined as above and d be the Hamming
distance of C,.Let A= njgg)r({ki}> 2“(a—1)and | be the number of nonzero coefficients of
the 2-adic expansion of A —2"(a—1).
(1) IfA=2%a, thend, (C)<2*'d.
@) 1f 2“(a-1)<A<2"a,then

o (C) < min{28+'7, 227 d}

hom

Proof. (1) Note that f(x)is the product of those basic irreducible polynomials f.(X) of

g(x) with multiplicity k >2*(a—1), so (C,2a’1)2<f_(x)zk>.This implies that d,_, <

d, (< f(x)? >) .Combining Lemma 4.5 yields d,._(C)<2*'d.

hom

@) 1f 2“(a-1)<A<2"a,then
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r A n 2
[T 700 = (-
_ (Xn _1)2k(a—l) (Xn _1)).721((371)
=22 u(x)(x" —1)* 2@V e C,

for some unit U(X) € R, . Hence, 2* (X" —1)* 2D pein C. Thisgives d,,,(C)<2*'*,

hom

Also, we have d,,,(C)<2**d from (1). Thus, d,,,(C)<min{2*"™ 2" d}.

hom hom

Example 4.7.Let C, =<(X—1)i>be a negacyclic code of length 2° over Z_, for some

2&!
ie{0,1,...,2a}. Then by Corollary 4.4, we easily get that if 0<i<2“(a—2), then
d . (C)=2"" ;if2"(a-2)+1<i<2(a-1) then d, (C)=2"".1f 2*a—-2""+1
<i<2a-2""* for 0<m<k-1, then (C:2*")=((x-1)’) with 2-2"+1

< j<2—2""and(C:2*?%) =(0). By Corollary 4.3, d,,,(C;)=2d, , =2 This in fact
gives an alternative method of computing the homogeneous distance of negacyclic codes of length

2% over Z, [9]

hom

5 Conclusion

In this paper, we give a bound for the homogenous distance of negacyclic codes over Z2a

using their higher torsion codes. The bound of the homogenous distance enables us to determine
the exact distance of some negacyclic codes over Z2a . A further work is to consider the

Euclidean distance of negacyclic codes over Zza .
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