On the homogeneous distance of negacyclic codes over
 Z＿2＾a

ZHU Shixin，KAI Xiaoshan
（School of Mathematics，Hefei University of Technology）

Abstract

In this paper，we investigate the homogeneous distance of negacyclic codes over Z＿2＾a of any length．We determine the torsion codes of a negacyclic code over $Z_{_} 2^{\wedge}$ a for a given length．Using the higher torsion codes，we give a bound for the homogeneous distance of negacyclic codes over $\mathrm{Z} _2^{\wedge} \mathrm{a}$ of any length．The exact homogeneous distance of some negacyclic codes over $\mathrm{Z} _2^{\wedge} \mathrm{a}$ is also obtained．

Key words：cyclic code；negacyclic codes；homogeneous distance．

1 Introduction

Negacyclic codes over finite fields are a class of important codes that were initiated by Berlekamp in the early 1960s［1，2］．After successful applications of codes over Z_{4} to good error－correcting codes［3］and unimodular lattices［4］，codes over finite rings have received a lot of attention．In 1999，Wolfmann first introduced negacyclic codes over Z_{4} of odd length and studied their binary images［5，6］．Later，Blackford［7］used a transform approach to classify negacyclic codes over Z_{4} of even length．Recently，Dinh［8，9］computed various kinds of distances of all negacyclic codes of length 2^{s} over $Z_{2^{a}}$ ．

In the present work，we investigate the distances of negacyclic codes over $Z_{2^{a}}$ for an arbitrary length．We consider the homogeneous distance of negacyclic codes over $Z_{2^{a}}$ and the Euclidean distance of self－dual negacyclic codes over $Z_{2^{a}}$ ．It is well known that for a linear code C over Z_{4} ，the Lee distance can be bounded by $\operatorname{Re} s(C)$ and $\operatorname{Tor}(C)$ ［10］．We extend this bound to the homogeneous distance of negacyclic codes over $Z_{2^{a}}$ in terms of the Hamming distances of torsion codes．To do this，we determine all torsion codes of a negacyclic code over $Z_{2^{a}}$ ．The material is organized as follows．In Section 2，we introduce some basic definitions and notations．We also review main results about negacyclic codes over $Z_{2^{a}}$ ．Section 3 determines all torsion codes of a negacyclic code $Z_{2^{a}}$ ．Bounds on the homogeneous distance of a negacyclic code $Z_{2^{a}}$ are presented in Section 4.

2 Preliminaries

Let $Z_{2^{a}}$ denote the finite commutative ring of integers modulo 2^{a} where $a \geq 2$ is a positive integer．Denote by $Z_{2^{a}}[x]$ the ring of polynomials in the indeterminate x with coefficients in $Z_{2^{a}}$ ．A polynomial in $Z_{2^{a}}[x]$ is called a basic irreducible polynomial if its reduction modulo 2 ，
denoted by $\bar{f}(x)$ ，is irreducible in $F_{2}[x]$ ．Each element $r \in Z_{2^{a}}$ can be written uniquely as

$$
r=r_{0}+2 r_{1}+2^{2} r_{2}+\cdots+2^{a-1} r_{a-1}
$$

where $r_{i} \in\{0,1\}$ for $0 \leq i \leq a-1$ ．
Two polynomials $f_{1}(x), f_{2}(x) \in Z_{2^{a}}[x]$ are said to be coprime if there exist $\lambda_{1}(x), \lambda_{2}(x) \in Z_{2^{a}}[x]$ such that $\lambda_{1}(x) f_{1}(x)+\lambda_{2}(x) f_{2}(x)=1$ ．It is known that $f_{1}(x)$ and $f_{2}(x)$ are coprime in $Z_{2^{a}}[x]$ if and only if $\bar{f}_{1}(x)$ and $\bar{f}_{2}(x)$ are coprime in $F_{2}[x]$（cf． ［11］）．

A code of length N over $Z_{2^{a}}$ is a nonempty subset of $Z_{2^{a}}^{N}$ ，and a code of length N over $Z_{2^{a}}$ is linear if it is a $Z_{2^{a}}$－submodule of $Z_{2^{a}}^{N}$ ．A linear code of length N over $Z_{2^{a}}$ is negacyclic if C is invariant under the permutation of $Z_{2^{a}}^{N}$ ：

$$
\left(c_{0}, c_{1}, \ldots, c_{N-1}\right) \rightarrow\left(-c_{N-1}, c_{0}, \ldots, c_{N-2}\right)
$$

We identify a codeword $c=\left(c_{0}, c_{1}, \ldots, c_{N-1}\right)$ with its polynomial representation $c(x)=c_{0}+c_{1} x+\cdots+c_{N-1} x^{N-1}$ ．Then $x c(x)$ corresponds to a negacyclic shift of $c(x)$ in the ring $Z_{2^{a}}[x] /\left\langle x^{N}+1\right\rangle$ ．Thus negacyclic codes of length N over $Z_{2^{a}}$ can be identified as ideals in the ring $Z_{2^{a}}[x] /\left\langle x^{N}+1\right\rangle$ ．Let $N=2^{k} n$ ，where k is a nonnegative integer and n is an odd number．Denote

$$
\mathfrak{R}_{a}=Z_{2^{a}}[x] /\left\langle x^{N}+1\right\rangle
$$

In particular，when $a=1, \mathfrak{R}_{1}=F_{2}[x] /\left\langle x^{N}+1\right\rangle$ ．This means that a binary cyclic code of length $N=2^{k} n$（ n odd ）is an ideal of \mathfrak{R}_{1} ．It has been shown in $[12,13]$ that negacyclic codes over $Z_{2^{a}}$ of any length are principally generated．The following theorem gives the generators of negacyclic codes over $Z_{2^{a}}$ for an arbitrary length．

Theorem 2.1 （［13］）．Let $x^{n}-1=\prod_{i=1}^{r} f_{i}(x)$ be the unique factorization of $x^{n}-1$ into a product of monic basic irreducible divisors in $Z_{2^{a}}[x]$ ．If C is a negacyclic code over $Z_{2^{a}}$ of length $N=2^{k} n(n$ odd $)$ ，then $C=\left\langle\prod_{i=1}^{r} f_{i}(x)^{k_{i}}\right\rangle$ ．Moreover

$$
|C|=2^{\sum_{i-0}^{r}\left(2^{2^{k}} a-i\right) \operatorname{deg}\left(f_{i}\right)} .
$$

The homogeneous weight on $Z_{2^{a}}$ is a weight function on $Z_{2^{a}}$ defined by

$$
w_{\mathrm{hom}}(r)=\left\{\begin{array}{cc}
2^{a-2}, & \text { if } r \neq 2^{a-1} \\
2^{a-1} & \text { if } r=2^{a-1} \\
0, & \text { if } r=0
\end{array}\right.
$$

The homogeneous weight of $c=\left(c_{0}, c_{1}, \ldots, c_{N-1}\right)$ over $Z_{2^{a}}$ is the rational sum of the
homogeneous weights of components of C ．The homogeneous distance $d_{\text {hom }}(C)$ of a linear code C is the smallest homogeneous weight of nonzero codewords of C ．The homogeneous weight on Z_{4} coincides with the Lee weight．Carlet［14］introduced a generalized Gray isometry on $Z_{2^{a}}$ with the above homogeneous weight to obtain the generalized Kerdock codes．Duursma et．al［15］used this Gray isometry on Z_{8} to construct a nonlinear $\left(96,2^{37}, 24\right)$ binary code．

3 Torsion codes

Let C be any code over $\quad Z_{2^{a}}$ of length N ．We now associate C with some related codes．We define $\bar{C}=\{\bar{c} \mid c \in C\}$ ．For each $i, 0 \leq \gamma \leq a-1$ ，we define the code $\left(C: 2^{\gamma}\right)=\left\{c \in Z_{2^{a}}^{N} \mid 2^{\gamma} c \in C\right\}$ ．For a linear code C over $Z_{2^{a}}$ of length N ，it is easy to verify that $\left(C: 2^{j}\right) \subseteq\left(C: 2^{j+1}\right)$ and $\overline{\left(C: 2^{j}\right)} \subseteq \overline{\left(C: 2^{j+1}\right)}, \quad 0 \leq j \leq a-2$. In general， $\bar{C}=\overline{\left(C: 2^{0}\right)}$ is called the residue code and is denoted by $\operatorname{Re} s(C)$ ．Let γ be a fixed integer with $0 \leq \gamma \leq a-1$ ．Let C be a linear code of length N over $Z_{2^{a}}$ ，If C is negacyclic over $Z_{2^{a}}$ ，then it is easy to check that $\left(C: 2^{\gamma}\right)$ is negacyclic over $Z_{2^{a}}$ and $\overline{\left(C: 2^{\gamma}\right)}$ is cyclic over F_{2} ．Norton and Salagean introduced these codes［16］and used them to study the Hamming distance of linear codes over finite chain rings［17］．The code $\left(C: 2^{\gamma}\right)$ is called the γ th torsion code of C in［18］．The following is a special case of［18，Theorem 6．2］．
Theorem 3.1 （［18］）．For any linear code C over $Z_{2^{a}}$ ，we have $|C|=\prod_{\gamma=0}^{a-1} \mid \overline{\left(C: 2^{\gamma}\right) \mid}$ ．
Next，we will determine the γ th torsion code of C ，for $0 \leq \gamma \leq m-1$ ．For this，we first give several helpful lemmas．
Lemma 3．2．In \mathfrak{R}_{a} ，we have $\left\langle\left(x^{n}-1\right)^{2^{k}}\right\rangle=\langle 2\rangle$ ．
Proof．The proof is similar to that for［7，Lemma 1］．By induction on n ，it can be shown that $\left(x^{n}-1\right)^{2^{k}}=x^{2^{k} n}+1+2 \alpha_{k}\left(x^{n}\right)$ ，where $\alpha_{k}\left(x^{n}\right)$ is a unit in \mathfrak{R}_{a} ．Therefore，$\left\langle\left(x^{n}-1\right)^{2^{k}}\right\rangle=$ $\langle 2\rangle$ in \Re_{a} ．

Lemma 3．3．Let $f(x)$ be a divisor of $x^{n}-1$ in $F_{2}[x]$ ．Then，in $\mathfrak{R}_{1},\left\langle f(x)^{2^{k}+l}\right\rangle=$ $\left\langle f(x)^{2^{k}}\right\rangle$ ，for any positive integer l
Proof．Let $g(x)=\left(x^{n}-1\right) / f(x)$ ．Since $f(x)$ and $g(x)$ are coprime in $F_{2}[x]$ ，it follows that $f(x)^{l}$ and $g(x)^{2^{k}}$ are coprime in $F_{2}[x]$ ，for any positive integer l ．Hence，there exist $\theta(x), \vartheta(x) \in F_{2}[x]$ such that $\theta(x) f(x)^{l}+\vartheta(x) g(x)^{2^{k}}=1$ in $F_{2}[x]$ ．Computing in
\mathfrak{R}_{1} ，we have

$$
\begin{aligned}
\theta(x) f(x)^{2^{k}+l} & =\left[1-\vartheta(x) g(x)^{2^{k}}\right] f(x)^{2^{k}} \\
& =f(x)^{2^{k}}-\vartheta(x)\left({ }^{n} x 4\right)^{2^{k}} \\
& =f(x)^{2^{k}}
\end{aligned}
$$

Consequently，$\left\langle f(x)^{2^{k}+l}\right\rangle=\left\langle f(x)^{2^{k}}\right\rangle$ for any positive integer l ．
Lemma 3．4．Let C be a negacyclic code over $Z_{2^{a}}$ of length $N=2^{k} n$（ n odd）with generator polynomial $\prod_{i=1}^{r} f_{i}(x)^{k_{i}}$ ，where $f_{i}(x)(1 \leq i \leq r)$ are monic basic irreducible divisors of $x^{n}-1$ in $Z_{2^{a}}[x]$ and $0 \leq k_{i} \leq 2^{k} a$ ．Let γ be a fixed integer with $0 \leq \gamma \leq a-1$ ． Then $\left(C: 2^{\gamma}\right)$ contains the negacyclic code over $Z_{2^{a}}$ of length $N=2^{k} n$（ n odd）with generator polynomial $\prod_{i=1}^{r} f_{i}(x)^{l_{i}^{(\gamma)}}$ ，where $l_{i}^{(\gamma)}=k_{i}-\min \left\{2^{k} \gamma, k_{i}\right\}$ ．
Proof．Let $D=\left\langle\prod_{i=1}^{r} f_{i}(x)^{l_{i}^{(\gamma)}}\right\rangle \subseteq \mathfrak{R}_{a}$ with $l_{i}^{(\gamma)}=k_{i}-\min \left\{2^{k} \gamma, k_{i}\right\}$ ．For any $f(x) \in D$ ，we have $f(x)=g(x) \prod_{i=1}^{r} f_{i}(x)^{l_{i}^{(\gamma)}}$ ，for some $g(x) \in \mathfrak{R}_{a}$ ．By Lemma 3．2，there exists an invertible element $\beta(x)$ in \mathfrak{R}_{a} such that $\beta(x)\left(x^{n}-1\right)^{2^{k}}=2$ ．Hence，

$$
\begin{aligned}
2^{\gamma} f(x) & =2^{\gamma} g(x) \prod_{i=1}^{r} f_{i}(x)^{l_{i}^{(\gamma)}} \\
& =\beta(x)^{\gamma}\left(x^{n}-1\right)^{2^{k} \gamma} g(x) \prod_{i=1}^{r} f_{i}(x)^{l_{i}^{(\gamma)}} \\
& =g(x) \beta(x)^{\gamma} \prod_{i=1}^{r} f_{i}(x)^{\tau_{i}^{(\gamma)}}
\end{aligned}
$$

Where $\tau_{i}^{(\gamma)}=2^{k} \gamma+k_{i}-\min \left\{2^{k} \gamma, k_{i}\right\}$ ．Obviously， $2^{\gamma} f(x) \in C$ ，so $f(x) \in\left(C: 2^{\gamma}\right)$ ．This gives that $D \subseteq\left(C: 2^{\gamma}\right)$ ．

Combining the above lemmas with Theorem 3．1，we can determine the torsion codes of a negacyclic code over $Z_{2^{a}}$ of length $N=2^{k} n$（ n odd）explicitly．
Theorem 3．5．Let C be a negacyclic code over $Z_{2^{a}}$ of length $N=2^{k} n$（ n odd）with generator polynomial $\prod_{i=1}^{r} f_{i}(x)^{k_{i}}$ ，where $f_{i}(x)(1 \leq i \leq r)$ are monic basic irreducible divisors of $x^{n}-1$ in $Z_{2^{a}}[x]$ and $0 \leq k_{i} \leq 2^{k} a$ ．Let γ be a fixed integer with $0 \leq \gamma \leq a-1$ ．Then $\overline{\left(C: 2^{\gamma}\right)}$ is a binary cyclic code of length $N=2^{k} n$（ n odd）with generator polynomial $\prod_{i=1}^{r} \overline{f_{i}}(x)^{\tau_{i}^{(\gamma)}}$ ，where $\tau_{i}^{(\gamma)}=\min \left\{2^{k}(\gamma+1), k_{i}\right\}-\min \left\{2^{k} \gamma, k_{i}\right\}$

Proof．By Lemma 3．4，for each $\gamma, 0 \leq \gamma \leq a-1$ ，it is obvious that $\overline{\left(C: 2^{\gamma}\right)} \supseteq$ $\left\langle\prod_{i=1}^{r} \overline{f_{i}}(x)^{l_{i}^{(\gamma)}}\right\rangle$ ，where $l_{i}^{(\gamma)}=k_{i}-\min \left\{2^{k} \gamma, k_{i}\right\}$. Let $\bar{D}=\left\langle\prod_{i=1}^{r} \bar{f}_{i}(x)^{l_{i}^{(\gamma)}}\right\rangle \subseteq \mathfrak{R}_{1}$ ．Applying

Lemma 3．3，we get that

$$
\bar{D}=\left\langle\prod_{i=1}^{r} \overline{f_{i}}(x)^{l_{i}^{(\gamma)}}\right\rangle=\left\langle\prod_{i=1}^{r} \bar{f}_{i}(x)^{\tau_{i}^{(\gamma)}}\right\rangle
$$

Where

$$
\begin{aligned}
\tau_{i}^{(\gamma)} & =\min \left\{2^{k}, k_{i}-\min \left\{2^{k} \gamma, k_{i}\right\}\right\} \\
& =\min \left\{2^{k}(\gamma+1), k_{i}\right\}-\min \left\{2^{k} \gamma, k_{i}\right\} .
\end{aligned}
$$

This gives that $\left|\overline{\left(C: 2^{\gamma}\right)}\right| \geq 2^{t_{\gamma}}$ where

$$
t_{\gamma}=N-\sum_{i=1}^{r} \tau_{i}^{(\gamma)} \cdot \operatorname{deg}\left(f_{i}\right)
$$

Hence，

$$
\begin{aligned}
\prod_{\gamma=0}^{a-1}\left|\overline{\left(C: 2^{\gamma}\right)}\right| & \geq 2^{t_{0}+t_{1}+\ldots+t_{a-1}} \\
& =2^{a N-\sum_{i-1}^{r} \sum_{\gamma=0}^{a-1} \tau_{i}^{(\gamma) \cdot \operatorname{deg}\left(f_{i}\right)}} \\
& =2^{a N-\sum_{i=1}^{r} k_{i} \cdot \operatorname{deg}\left(f_{i}\right)}
\end{aligned}
$$

From Theorem 3．1，we know that

$$
|C|=\prod_{\gamma=0}^{a-1}\left|\overline{\left(C: 2^{\gamma}\right)}\right|=2^{a N-\sum_{i=1}^{r} k_{i} \cdot \operatorname{deg}\left(f_{i}\right)}
$$

Hence，for each $\gamma, 0 \leq \gamma \leq a-1$ ，it must have $\left|\overline{\left(C: 2^{\gamma}\right)}\right|=|\bar{D}|$ This shows that $\overline{\left(C: 2^{\gamma}\right)}=\bar{D}$ ．The desired result follows ．

From the above theorem，we can express that the residue code $\operatorname{Re} s(C)=\left\langle\prod_{i=1}^{r} \bar{f}_{i}(x)^{\tau_{i}^{(0)}}\right\rangle$, where $\quad \tau_{i}^{(0)}=\min \left\{2^{k}, k_{i}\right\}, \quad$ and $\overline{\left(C: 2^{a-1}\right)}=\left\langle\prod_{i=1}^{r} \overline{f_{i}}(x)^{\tau_{i}^{(a-1)}}\right\rangle$ where $\quad \tau_{i}^{(a-1)}=k_{i}-$. $\min \left\{2^{k}(a-1), k_{i}\right\}$

4 Homogeneous distance

Let $C=\left\langle\prod_{i=1}^{r} f_{i}(x)^{k_{i}}\right\rangle$ be a negacyclic code over $\mathbb{Z}_{2^{a}}$ of length $N=2^{k} n(n$ odd $)$ ， where $f_{i}(x) \quad(1 \leq i \leq r)$ are monic basic irreducible divisors of $x^{n}-1$ in $\mathbb{Z}_{2^{a}}[x]$ and $0 \leq k_{i} \leq 2^{k} a$ ．For each $\gamma, 0 \leq \gamma \leq a-1$ ，let d_{γ} denote the Hamming distance of the binary cyclic code $\overline{\left(C: 2^{\gamma}\right)}=\left\langle\prod_{i=1}^{r} f_{i}^{\tau_{i}^{(\gamma)}}\right\rangle$ ，where $\tau_{i}^{(\gamma)}=\min \left\{2^{k}(\gamma+1), k_{i}\right\}-\min \left\{2^{k} \gamma, k_{i}\right\}$. Clearly，$\quad d_{0} \geq d_{1} \geq \cdots \geq d_{a-1}$ ．We first consider the Hamming distance of a negacyclic code over $\mathbb{Z}_{2^{a}}$ of length $N=2^{k} n(n$ odd $)$ ．The Hamming distance is completely determined by the
binary cyclic code $\overline{\left(C: 2^{a-1}\right)}$ ．
Theorem 4．1．Let C be a negacyclic code over $\mathbb{Z}_{2^{a}}$ of length $N=2^{k} n(n o d d)$ with generator polynomial $\prod_{i=1}^{r} f_{i}(x)^{k_{i}}$ ，where $f_{i}(x)(1 \leq i \leq r)$ are monic basic irreducible divisors of $x^{n}-1$ in $\mathbb{Z}_{2^{a}}[x]$ and $0 \leq k_{i} \leq 2^{k} a$ ．Then $d_{H}(C)=d_{a-1}$ ．
Proof．The result follows from［12，Theorem 4．2］and Theorem 3．5．
Theorem 4．2．Let C be a negacyclic code over $\mathbb{Z}_{2^{a}}$ of length $N=2^{k} n$（ n odd ）with generator polynomial $\prod_{i=1}^{r} f_{i}(x)^{k_{i}}$ ，where $f_{i}(x)(1 \leq i \leq r)$ are monic basic irreducible divisors of $x^{n}-1$ in $\mathbb{Z}_{2^{a}}[x]$ and $0 \leq k_{i} \leq 2^{k} a$ ．Then

$$
2^{a-2} \min \left\{d_{a-2}, 2 d_{a-1}\right\} \leq d_{\text {hom }}(C) \leq 2^{a-1} d_{a-1} .
$$

Proof．Let c be any nonzero codeword in C ．Then there exists $v, 0 \leq v \leq a-1$ ，such that c can be expressed in the form $2^{\nu} b$ ，where $b \in \mathbb{Z}_{2^{a}}^{N}$ is not divisible by 2 ．This gives that $0 \neq \bar{b} \in \overline{\left(C: 2^{v}\right)}$ ，which implies $w_{H}(\bar{b}) \geq d_{v}$ ．If $0 \leq v \leq a-2$ ，then $w_{\text {hom }}(c) \geq 2^{a-2} d_{v}$ ． Because $d_{0} \geq d_{1} \geq \cdots \geq d_{a-2}$ ，we have $w_{\text {hom }}(c) \geq 2^{a-2} d_{a-2}$ ，which means $d_{\text {hom }}(C) \geq$ $2^{a-2} d_{a-2}$ ．If $v=a-1$ ，then $d_{\text {hom }}(C) \geq 2^{a-1} d_{a-1}$ ．Hence，$\quad d_{\mathrm{h} \text { o }}\left(\mathrm{n} O \geq \mathrm{m} \mathrm{in}^{a-f^{2} 2 d} d\right.$ $\left.2^{a-1} d_{a-1}\right\}$ ．On the other hand，note that $2^{a-1} \bar{b}=2^{a-1} b \in C$ ，so $d_{\text {hom }}(C) \leq 2^{a-1} d_{a-1}$ ．Therefore， $2^{a-2} \min \left\{d_{a-2}, 2 d_{a-1}\right\} \leq d_{\text {hom }}(C) \leq 2^{a-1} d_{a-1}$.

For the case $a=2$ ，the upper bound in the above theorem specializes to the bound given by Rains in［10，Lemma 4］．As special cases，we have the following two corollaries which provide the exact homogeneous distance of some negacyclic codes over $\mathbb{Z}_{2^{a}}$ ．
Corollary 4．3．Let C be a negacyclic code over $\mathbb{Z}_{2^{a}}$ of length $N=2^{k} n(n$ odd $)$ with generator polynomial $\prod_{i=1}^{r} f_{i}(x)^{k_{i}}$ ，where $f_{i}(x)(1 \leq i \leq r)$ are monic basic irreducible divisors of $x^{n}-1$ in $\mathbb{Z}_{2^{a}}[x]$ and $0 \leq k_{i} \leq 2^{k} a$ ．If $d_{a-2} \geq 2 d_{a-1}$ then $d_{\text {hom }}(C)=2^{a-1} d_{a-1}$ ．
Corollary 4．4．Let $C=\left\langle\prod_{i=1}^{r} f_{i}(x)^{k_{i}}\right\rangle$ be a negacyclic code over $\mathbb{Z}_{2^{a}}$ of length $N=2^{k} n(n$ odd $)$ ，where $f_{i}(x)(1 \leq i \leq r)$ are monic basic irreducible divisors of $x^{n}-1$ in $\mathbb{Z}_{2^{a}}$ and $0 \leq k_{i} \leq 2^{k} a$ ．Let $\lambda=\max _{1 \leq i \leq r}\left\{k_{i}\right\}$ ．
（1）If $1 \leq \lambda \leq 2^{k}(a-2)$ ，then $d_{\text {hom }}(C)=2^{a-2}$ ．
（2）If $2^{k}(a-2)+1 \leq \lambda \leq 2^{k}(a-1)$ ，then $d_{\text {hom }}(C)=2^{a-1}$ ．
Proof．（1）If $1 \leq \lambda \leq 2^{k}(a-2)$ ，then，by Theorem 3．5，we get that $\overline{\left(C: 2^{a-2}\right)}=\overline{\left(C: 2^{a-1}\right)}=\langle 1\rangle$ ．
From Theorem 4．2，it must be $2^{a-2} \leq d_{\text {hom }}(C) \leq 2^{a-1}$ ．Note that $\prod_{i=1}^{r} f_{i}(x)^{2^{k}(a-2)}=$
$\left(x^{n}-1\right)^{2^{k}(a-2)}=(2 \beta)^{a-2} \in C$ for some unit β in R_{a} ，which means $2^{a-2} \in C$ ．This implies that $d_{\text {hom }}(C) \leq 2^{a-2}$ ．So，it must have $d_{\text {hom }}(C)=2^{a-2}$ ．
（2）if $2^{k}(a-2)+1 \leq \lambda \leq 2^{k}(a-1)$ ，then $\overline{\left(C: 2^{a-2}\right)}$ is not $\langle 0\rangle$ or $\langle 1\rangle$ ，but $\overline{\left(C: 2^{a-1}\right)}=$
$\langle 1\rangle$ ．Hence，$d_{a-2} \geq 2 d_{a-1}$ ．From Theorem 4．2，we obtain that $d_{\text {hom }}(C)=2^{a-1}$ ．
Using torsion codes we can find the exact homogeneous distance of some negacyclic codes over $\mathbb{Z}_{2^{a}}$ of length $N=2^{k} n(n$ odd $)$ ．However，for the case when $\lambda=\max _{1 \leq i \leq r}\left\{k_{i}\right\}>$ $2^{k}(a-1)$ ，it is difficult to determine the exact homogeneous distance for a negacyclic code over $\mathbb{Z}_{2^{a}}$ of length $N=2^{k} n(n$ odd $)$ in general．Thus，there are still a large number of negacyclic codes over $\mathbb{Z}_{2^{a}}$ of length $N=2^{k} n(n$ odd $)$ with homogeneous distance uncertain．Now we will give an upper bound for this case using simple－root binary cyclic code $C_{0}=\langle\bar{f}(x)\rangle$ of length n ．Let C be a negacyclic code over $\mathbb{Z}_{2^{a}}$ of length $N=2^{k} n(n$ odd $)$ with generator polynomial $g(x)=\prod_{i=1}^{r} f_{i}(x)^{k_{i}}$ ，where $f_{i}(x)(1 \leq i \leq r)$ are monic basic irreducible divisors of $x^{n}-1$ in $\mathbb{Z}_{2^{a}}[x]$ and $0 \leq k_{i} \leq 2^{k} a$ ．Define $f(x)$ as the product of those basic irreducible polynomials $f_{i}(x)$ of $g(x)$ with multiplicity $k_{i}>2^{k}(a-1)$ ．The following lemma easily follows from［19，Theorem 1］．
Lemma 4．5．Let $C_{1}=\left\langle\bar{f}(x)^{2^{k}}\right\rangle$ be the binary cyclic code of length $N=2^{k} n$（ n odd），and let $C_{2}=\langle\bar{f}(x)\rangle$ be the binary cyclic code of length n ．Then $d_{H}\left(C_{1}\right)=d_{H}\left(C_{2}\right)$ ．
Corollary 4．6．Let C be a negacyclic code of length $N=2^{k} n$（ n odd）with generator polynomial $g(x)=\prod_{i=1}^{r} f_{i}(x)^{k_{i}}$ ．Let C_{0} be defined as above and d be the Hamming distance of C_{0} ．Let $\lambda=\max _{1 \leq i \leq r}\left\{k_{i}\right\}>2^{k}(a-1)$ and l be the number of nonzero coefficients of the 2－adic expansion of $\lambda-2^{k}(a-1)$ ．
（1）If $\lambda=2^{k} a$ ，then $d_{\text {hom }}(C) \leq 2^{a-1} d$ ．
（2）If $2^{k}(a-1)<\lambda<2^{k} a$ ，then

$$
d_{\mathrm{hom}}(C) \leq \min \left\{2^{a+l-1}, 2^{a-1} d\right\}
$$

Proof．（1）Note that $f(x)$ is the product of those basic irreducible polynomials $f_{i}(x)$ of $g(x)$ with multiplicity $k_{i}>2^{k}(a-1)$ ，so $\overline{\left(C, 2^{a-1}\right)} \supseteq\left\langle\bar{f}(x)^{2^{k}}\right\rangle$ ．This implies that $d_{a-1} \leq$ $d_{H}\left(\left\langle\bar{f}(x)^{2^{k}}\right\rangle\right)$ ．Combining Lemma 4.5 yields $d_{\text {hom }}(C) \leq 2^{a-1} d$.
（2）If $2^{k}(a-1)<\lambda<2^{k} a$ ，then

$$
\begin{aligned}
\prod_{i=1}^{r} f_{i}(x)^{\lambda} & =\left(x^{n}-1\right)^{\lambda} \\
& =\left(x^{n}-1\right)^{2^{k}(a-1)}\left(x^{n}-1\right)^{\lambda-2^{k}(a-1)} \\
& =2^{a-1} u(x)\left(x^{n}-1\right)^{\lambda-2^{k}(a-1)} \in C,
\end{aligned}
$$

for some unit $u(x) \in \mathfrak{R}_{a}$ ．Hence， $2^{a-1}\left(x^{n}-1\right)^{\lambda-2^{k}(a-1)}$ be in C ．This gives $d_{\text {hom }}(C) \leq 2^{a+l-1}$ ． Also，we have $d_{\text {hom }}(C) \leq 2^{a-1} d$ from（1）．Thus，$d_{\text {hom }}(C) \leq \min \left\{2^{a+l-1}, 2^{a-1} d\right\}$ ．

Example 4．7．Let $C_{i}=\left\langle(x-1)^{i}\right\rangle$ be a negacyclic code of length 2^{k} over $Z_{2^{a}}$ ，for some $i \in\left\{0,1, \ldots, 2^{k} a\right\}$ ．Then by Corollary 4．4，we easily get that if $0 \leq i \leq 2^{k}(a-2)$ ，then $d_{\text {hom }}\left(C_{i}\right)=2^{a-2} \quad ;$ if $2^{k}(a-2)+1 \leq i \leq 2^{k}(a-1)$ ，then $d_{\text {hom }}\left(C_{i}\right)=2^{a-1}$ ．If $\quad 2^{k} a-2^{s-m}+1$ $\leq i \leq 2^{k} a-2^{s-m-1}$ for $0 \leq m \leq k-1$ ，then $\overline{\left(C: 2^{a-1}\right)}=\left\langle(x-1)^{j}\right\rangle \quad$ with $\quad 2^{k}-2^{k-m}+1$ $\leq j \leq 2^{k}-2^{k-m-1}$ and $\overline{\left(C: 2^{a-2}\right)}=\langle 0\rangle$ ．By Corollary 4．3，$d_{\text {hom }}\left(C_{i}\right)=2 d_{a-1}=2^{a+m}$ ．This in fact gives an alternative method of computing the homogeneous distance of negacyclic codes of length 2^{k} over $Z_{2^{a}}$［9］．

5 Conclusion

In this paper，we give a bound for the homogenous distance of negacyclic codes over $Z_{2^{a}}$ using their higher torsion codes．The bound of the homogenous distance enables us to determine the exact distance of some negacyclic codes over $Z_{2^{a}}$ ．A further work is to consider the Euclidean distance of negacyclic codes over $Z_{2^{a}}$ ．

References

［1］Berlekamp E R．Negacyclic codes for the Lee metric．In Proc．Conf．Combin．Math．and Its Appl．，Chapel Hill， NC，1968：298－316．
［2］Berlekamp E R．Algebric Coding Theory．Revised 1984 ed．Laguna Hills，CA：Aegean Park．
［3］Hammons Jr A R，Kumar P V．Calderbank A R，Sloane N J A，Sole P．The Z＿4－linearity of Kerdock Preparata， Goethals，and related codes［J］．IEEE Trans．Inform．Theory，1994，40：301－319．
［4］Bonnecaze A，Sole P，Calderbank A R．Quaternary quadratic residue codes and unimodular lattices［J］．IEEE Trans．Inform．Theory，1995，41：366－377．
［5］Wolfmann J．Negacyclic and cyclic codes over Z＿4［J］．IEEE Trans．Inform．Theory，1999，45，2527－2532．
［6］Wolfmann J．Binary images of cyclic codes over $\bar{Z} _4$［J］．IEEE Trans．Inform．Theory，2001，47：1773－1779．
［7］Blackford T．Negacyclic codes over Z＿4 of even length［J］．IEEE Trans．Inform．Theory，2003，49：1417－1424．
［8］Dinh H Q．Negacyclic codes of length 2^{\wedge} s over Galois rings［J］．IEEE Trans．Inform．Theory，2005，51： 4252－4262．
［9］Dinh H Q．Complete distances of all negacyclic codes of length 2^{\wedge} s over $Z_{-} 2^{\wedge}$ a［J］．IEEE Trans．Inform． Theory，2007，53：147－161．
［10］Rains E．Optimal self－dual codes over Z＿4［J］．Discr．Math．，1999，203：215－288．
［11］McDonald B R．Finite Rings with Identity．Dekker，New York， 1974.
［12］Salagean A．Repeated－root cyclic and negacyclic codes over finite chain rings［J］．Discr．Appl．Math．，2006， 154：413－419．
［13］Zhu S，Kai X．Dual and self－dual negacyclic codes of even length over Z＿2＾a［J］．Discr．Math．，2009， 309：2382－2391．
［14］Carlet C．Z＿2＾k－Linear codes［J］．IEEE Trans．Inform．Theory，1998，44：1543－1547．
［15］Duursma I M，Greferath M，Litsyn S N，Schmidt S E．A Z＿8－linear lift of the binary Golay code and a nonlinear binary（96，2＾37，24）－code［J］．IEEE Trans．Inform．Theory，2001，47：1596－1598．
［16］Norton G H，Salagean A，On the structure of linear and cyclic codes over a finite chain ring［J］．Appl．Algebra Engrg．Comm．Comput．，2000，10：489－506．
［17］Norton G H，Salagean A．On the Hamming distance of linear codes over a finite chain ring［J］．IEEE Trans． Inform．Theory，2000，46：1060－1067．
［18］Dougherty S T，Park Y H．On modular cyclic codes［J］．Finite Fields Appl．，2007，13：31－57．
［19］Castagnoli G，Massey J L，Schoeller P A，von Seemann N．On repeated－root cyclic codes［J］．IEEE Trans． Inform．Theory，1991，37；337－342．

关于 $Z_{-} \mathbf{2}^{\wedge} \mathrm{a}$ 上的负循环码的齐次距离

朱士信，开晓山
（合肥工业大学数学学院）
摘要：本文研究了 $Z_{-} 2^{\wedge} \mathrm{a}$ 上任意长度的负循环码的齐次距离。确立了 $Z_{-} 2^{\wedge} \mathrm{a}$ 上任意长度的负循环码的各阶挠码；利用高阶挠码给出了 Z＿2＾a上任意长度的负循环码的齐次距离界，得到了 Z＿2＾a 上某些负循环码的确切的齐次距离。
关键词：循环码；负循环码；齐次距离
中图分类号：TN911．22

