
Information and Computation 209 (2011) 1269–1292
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Algebraic proofs over noncommutative formulas

Iddo Tzameret 1

Institute for Theoretical Computer Science, The Institute for Interdisciplinary Information Science (IIIS), FIT building, Tsinghua University, Beijing, 100084, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 July 2010
Revised 12 July 2011
Available online 4 August 2011

Keywords:
Proof complexity
Algebraic proof systems
Frege proofs
Lower bounds
Noncommutative formulas
Polynomial calculus

We study possible formulations of algebraic propositional proof systems operating with
noncommutative formulas. We observe that a simple formulation gives rise to systems
at least as strong as Frege, yielding a semantic way to define a Cook–Reckhow (i.e.,
polynomially verifiable) algebraic analog of Frege proofs, different from that given in
Buss et al. (1997) and Grigoriev and Hirsch (2003). We then turn to an apparently
weaker system, namely, polynomial calculus (PC) where polynomials are written as ordered
formulas (PC over ordered formulas, for short). Given some fixed linear order on variables, an
arithmetic formula is ordered if for each of its product gates the left subformula contains
only variables that are less-than or equal, according to the linear order, than the variables
in the right subformula of the gate. We show that PC over ordered formulas (when the
base field is of zero characteristic) is strictly stronger than resolution, polynomial calculus
and polynomial calculus with resolution (PCR), and admits polynomial-size refutations for
the pigeonhole principle and Tseitin’s formulas. We conclude by proposing an approach for
establishing lower bounds on PC over ordered formulas proofs, and related systems, based
on properties of lower bounds on noncommutative formulas (Nisan, 1991).
The motivation behind this work is developing techniques incorporating rank arguments
(similar to those used in arithmetic circuit complexity) for establishing lower bounds on
propositional proofs.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

This work investigates algebraic proof systems establishing propositional tautologies, in which proof-lines are written
as noncommutative arithmetic formulas (noncommutative formulas, for short). Research into the complexity of algebraic
propositional proofs is a central line in proof complexity (cf. [18,28] for general expositions). Another prominent line of
research is that dedicated to connections between circuit classes and the propositional proofs based on these classes. In
particular, considerable efforts were made to borrow techniques used for lower bounding certain circuit classes, and uti-
lize them to show lower bounds on proofs operating with circuits from the given classes. For example, bounded depth
Frege proofs can be viewed as propositional logic operating with AC0 circuits, and lower bounds on bounded depth Frege
proofs use techniques borrowed from AC0 circuits lower bounds (cf. [1,16,19]). Pudlák [20] and Atserias et al. [4] stud-
ied proofs based on monotone circuits, motivated by known exponential lower bounds on monotone circuits. Raz and the
author [25,24,28] investigated algebraic proof systems operating with multilinear formulas, motivated by lower bounds on

E-mail address: tzameret@tsinghua.edu.cn.
1 This work was supported in part by the National Basic Research Program of China Grants 2007CB807900, 2007CB807901, the National Natural Science

Foundation of China Grants 61033001, 61061130540, 61073174. Part of this research was done while the author was at the Mathematical Institute, Academy
of Sciences of the Czech Republic, Žitná 25, 115 67 Prague 1, Czech Republic; supported by The Eduard Čech Center for Algebra and Geometry and The
John Templeton Foundation.
0890-5401/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2011.07.004

http://dx.doi.org/10.1016/j.ic.2011.07.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:tzameret@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.ic.2011.07.004

1270 I. Tzameret / Information and Computation 209 (2011) 1269–1292
multilinear formulas for the determinant, permanent and other explicit polynomials [22,21]. Atserias et al. [5], Krajíček [15]
and Segerlind [27] have considered proofs operating with ordered binary decision diagrams (OBDDs).

The current work is a contribution to this line of research, where the circuit class is noncommutative formulas. The
motivation behind this work is the hope that certain rank arguments, found successful in lower bounding the size of certain
types of arithmetic circuits, might also help in establishing lower bounds for the corresponding algebraic proofs. For this
purpose, the choice of noncommutative formulas is natural, since such formulas constitute a fairly weak circuit class, and the
proof of exponential-size lower bounds on noncommutative formulas, given by Nisan [17], uses a considerably transparent
rank argument.

We will show that for certain formulations of propositional proof systems over noncommutative formulas demonstrating
lower bounds is likely to be hard, as the systems we get are quite strong, and specifically, at least as strong as Frege proofs.
On the other hand, by formulating a proof system operating with fairly restricted formulas that compute a certain type of
noncommutative polynomials, we obtain a system that we show is strictly stronger than known algebraic proof systems (like
the polynomial calculus). For this apparently weaker system, demonstrating lower bounds seems not to be outside the reach
of current techniques. In particular, we propose to study the complexity of these proofs by measuring the maximal rank of a
polynomial appearing in a proof, instead of the maximal degree (the latter is done in the polynomial calculus). It is known
that the rank of a noncommutative polynomial (as defined for instance by Nisan [17]) is proportional to the minimal size
of a noncommutative formula computing the polynomial. We argue for the usefulness of measuring the maximal rank of a
polynomial in algebraic proofs, by demonstrating a certain property of ranks of “ordered polynomials” (as defined formally),
and relating it to proof complexity lower bounds (via an example of a conditional lower bound).

1.1. Results and related work

We concentrate on algebraic proofs establishing propositional contradictions where polynomials are written as noncom-
mutative formulas. We deal with two kinds of proof systems—both are variants (and extensions) of the polynomial calculus
(PC) introduced in [10]. In PC we start from a set of initial polynomials from F[x1, . . . , xn], the ring of polynomials with
coefficients from F (the intended semantics of a proof-line p is the equation p = 0 over F). We derive new proof-lines
by using two basic algebraic inference rules: from two polynomials p and q, we can deduce α · p + β · q, where α,β are
elements of F; and from p we can deduce xi · p, for a variable xi (i = 1, . . . ,n). We also have Boolean axioms x2

i − xi = 0,
for all i = 1, . . . ,n, expressing that the variables range over {0,1} values. Our two proof systems extend PC as follows:

NFPC PC over noncommutative formulas. This proof system operates with noncommutative polynomials over a field,
written as noncommutative formulas, where every proof-line consists of a polynomial p and can be written as any
formula F that computes p (these kind of algebraic proof systems are sometimes called semantic proof systems).
The rules of addition and multiplication are similar to PC, except that multiplication is done either from left or from
right. We also add a “Boolean” axiom xi x j − x j xi , for any pair of variables, that expresses the fact that for 0,1
values to the variables, multiplication is in fact commutative (indeed, note that in any noncommutative F-algebra
this axiom must be true when the variables xi, x j range over {0,1} values; see Section 3.1).

OFPC PC over ordered formulas. This proof system is PC operating with ordered polynomials written as ordered formu-
las, in which, as before, every ordered polynomial p inside the proof can be written as any ordered formula F
that computes p. An ordered polynomial is a noncommutative polynomial such that the order of products in all
monomials respects a fixed linear order on the variables, and an ordered formula is a noncommutative formula in
which every subformula computes an ordered polynomial (see Definition 4.1). The rules of OFPC are similar to PC,
namely, addition of two previously derived ordered polynomials and the product of a previously derived ordered
polynomial p with a variable xi (where now, the result of multiplying p by xi is the corresponding ordered poly-
nomial; e.g., multiplying the ordered polynomial x1 · x4 + x3 by x2 results in x1 · x2 · x4 + x2 · x3, assuming the order
on variables is defined via the increasing order on their indices).

Both proof systems are shown to be Cook–Reckhow systems (that is, polynomial verifiable, sound and complete proof
systems for propositional tautologies).

(1) The first proof system NFPC is shown to polynomially simulate Frege (this is partly because of the choice of Boolean
axioms). This gives a semantic definition of a Cook–Reckhow proof system operating with arithmetic formulas, simpler in
some way from that proposed by Buss et al. [9] and Grigoriev and Hirsch [12]: the paper of Buss et al. discusses systems of
equational logic based on axioms of commutative rings with identity [9, Section 2.2], and points out that when considered
over a finite field (or augmented with the Boolean axioms x2

i − xi over any field) these systems polynomially simulate
Frege. Similarly, Grigoriev and Hirsch aim at formulating a formal propositional proof system for establishing propositional
tautologies (that is, a Cook–Reckhow proof system), which is an algebraic analog of the Frege proof system. In order to
make their system polynomially-verifiable, the authors augment it with a set of auxiliary rewriting rules, intended to derive
arithmetic formulas from previous arithmetic formulas via the polynomial-ring axioms (that is, associativity, commutativity,
distributivity and the zero and unit elements rules). In this framework arithmetic formulas are treated as syntactic terms,
and one must explicitly apply the polynomial-ring rewrite rules to derive a formula from previous ones. Our proof system
NFPC is simpler in the sense that we get a similar proof system to that in [12], while adding no rewriting rules: both

I. Tzameret / Information and Computation 209 (2011) 1269–1292 1271
proof systems can simulate Frege and both are polynomially verifiable and operate with arithmetic formulas, or in our case
with noncommutative formulas. The idea is that because we use noncommutative formulas as proof-lines, to verify that
a line was derived correctly from previous lines we can use the deterministic polynomial identity testing algorithm for
noncommutative formulas devised by Raz and Shpilka [23] (and so we do not need any rewriting rules).

(2) For the second proof system OFPC we show that, despite its apparent weakness, it is stronger than Polynomial
Calculus with Resolution (PCR; and hence it is also stronger than both PC and resolution), and also can polynomially simulate
a proof system operating with restricted forms of disjunctions of linear equalities called R0(lin) (introduced in [24]). The
latter implies polynomial-size refutations for the pigeonhole principle and the Tseitin graph formulas, due to corresponding
upper bounds demonstrated in [24].

We then propose a simple lower bound approach for OFPC, based on properties of products of ordered formulas (these
properties are proved in a similar manner to Nisan’s size lower bounds on noncommutative formulas, that is, by lower
bounding the rank of certain matrices associated with noncommutative polynomials). We show that certain conditions are
sufficient to yield super-polynomial lower bounds on OFPC proofs.

Note. All the results in this paper hold when one considers algebraic branching programs (ABPs) (Definition 6.1) instead of
noncommutative formulas, and ordered-ABPs instead of ordered-formulas. An ordered-ABP is an ABP such that the order of
variables appearing on the edges of every path from source to sink on the ABP graph, respects a fixed linear order on the
variables (see [14] for a close model called π -ordered ABP).

Related work. There is some resemblance between noncommutative formulas (and in fact, algebraic branching programs)
and ordered binary decision diagrams (OBDDs) (e.g., close techniques were used to obtain polynomial identity testing al-
gorithms for noncommutative formulas [23] and for OBDDs [29]). Thus, proofs operating with noncommutative formulas
are reminiscent to the OBDD-based proof systems introduced and studied in [5,15,27]. Nevertheless, one difference be-
tween OBDD-based proofs and noncommutative formulas-based proofs is that the feasible monotone interpolation lower
bound technique is applicable in the case of OBDD-based systems, while this technique does not known to lead to super-
polynomial size lower bounds even on PC proofs (and thus, also on OFPC proofs which are shown to polynomially simulate
PC proofs).

Another proof system, that is even closer to OFPC, is that operating with multilinear formulas introduced in [25] (under
the name fMC). The upper bounds on OFPC proofs are similar to that shown for multilinear proofs in [25]. Moreover,
the technique used by Raz to establish super-polynomial lower bounds on multilinear formulas in [22] is close (though
more involved and includes additional ingredients) to that used by Nisan in the lower bound proof for noncommutative
formulas [17]. Therefore, proving lower bounds on OFPC proofs might help in establishing lower bounds on multilinear
proofs.

2. Preliminaries

For a natural number we let [n] = {1, . . . ,n}.

2.1. Noncommutative polynomials and formulas

Let F be a field. Denote by F[x1, . . . , xn] the ring of (commutative) polynomials with coefficients from F and vari-
ables x1, . . . , xn . We denote by F〈x1, . . . , xn〉 the noncommutative ring of polynomials with coefficients from F and variables
x1, . . . , xn . In other words, F〈x1, . . . , xn〉 is the ring of polynomials (where a polynomial is a formal sum of products of
variables and field elements) conforming to all the polynomial-ring axioms excluding the commutativity of multiplication
axiom. For instance, if xi, x j are two different variables, then xi · x j and x j · xi are two different polynomials in F〈x1, . . . , xn〉
(note that variables do commute with field elements).

We say that A is an algebra over F, or an F-algebra, if A is a vector space over F together with a distributive multiplica-
tion operation; where multiplication in A is associative (but it need not be commutative) and there exists a multiplicative
unity in A.

A noncommutative formula is just a (standard, commutative) arithmetic formula, except that product gates compute
product of polynomials in the noncommutative ring F〈x1, . . . , xn〉 (and thus children of product gates are ordered):

Definition 2.1 (Noncommutative formula). Let F be a field and x1, x2, . . . be variables. A noncommutative arithmetic formula (or
noncommutative formula for short) is a labeled tree, with edges directed from the leaves to the root, and with fan-in at most
two, such that there is an order on the edges coming into a node (the first edge is called the left edge and the second one
the right edge). Every leaf of the tree (namely, a node of fan-in zero) is labeled either with an input variable xi or a field
F element. Every other node of the tree is labeled either with + or × (in the first case the node is a plus gate and in the
second case a product gate). We assume that there is only one node of out-degree zero, called the root. A noncommutative
formula computes a noncommutative polynomial in F〈x1, . . . , xn〉 in the following way. A leaf computes the input variable or
field element that labels it. A plus gate computes the sum of polynomials computed by its incoming nodes. A product gate

1272 I. Tzameret / Information and Computation 209 (2011) 1269–1292
computes the noncommutative product of the polynomials computed by its incoming nodes according to the order of the
edges. (Subtraction is obtained using the constant −1.) The output of the formula is the polynomial computed by the root.
The depth of a formula is the maximal length of a path from the root to the leaf. The size of a noncommutative formula f
is the total number of nodes in its underlying tree, and is denoted | f |.

Definition 2.2 (Arithmetic formula). An arithmetic formula is defined in a similar way to a noncommutative formula, except
that we ignore the order of multiplication (that is, a product node does not have order on its children and there is no order
on multiplication when defining the polynomial computed by a formula).

Given a pair of noncommutative formulas F and G and a variable xi , we denote by F [G/xi] the formula F in which every
occurrence of xi is substituted by the formula G .

Raz and Shpilka [23] showed that there is a deterministic polynomial identity testing (PIT) algorithm that decides
whether two noncommutative formulas compute the same noncommutative polynomial:

Theorem 2.3 (PIT for noncommutative formulas). (See [23].) There is a deterministic polynomial-time algorithm that decides whether
a given noncommutative formula over a field F computes the zero polynomial 0.2

Let p ∈ F[x1, . . . , xn] be a polynomial. Then, p is said to be multilinear if the power of every variable in all its monomials
is at most one. Also, p is said to be homogenous if the total degree of each of its monomials is the same. If p is a polynomial
of (total) degree d, then p = ∑d

i=0 p(i) , where p(i) is the ith homogenous component of p, that is, the sum of all monomials
of total degree i in p.

2.2. Proof systems and simulations

Let L ⊆ Σ∗ be a language over some alphabet Σ . A proof system for a language L is a polynomial-time algorithm A
that receives x ∈ Σ∗ and a string π over a binary alphabet (“the [proposed] proof” of x), such that there exists a π with
A(x,π) = true if and only if x ∈ L. Following [11], a Cook–Reckhow proof system (or simply a propositional proof system) is
a proof system for the language of propositional tautologies in the de Morgan basis {true, false,∨,∧,¬} (coded in some
efficient [polynomial-time] way, e.g., in the binary {0,1} alphabet).

Assume that P is a proof system for the language L, where L is not the set of propositional tautologies in De Morgan’s
basis. In this case we can still consider P as a proof system for propositional tautologies by fixing a translation between
L and the set of propositional tautologies in De Morgan basis (such that x ∈ L iff the translation of x is a propositional
tautology [and such that the translation can be done in polynomial-time]). If two proof systems P1 and P2 establish two
different languages L1, L2, respectively, then for the task of comparing their relative strength we fix a translation from one
language to the other.

In some cases, we shall confine ourselves to proofs establishing propositional tautologies or unsatisfiable CNF formulas.
A propositional proof system is said to be a propositional refutation system if it establishes the language of unsatisfiable

propositional formulas (this is clearly a propositional proof system by the definition above, since we can translate every
unsatisfiable propositional formula into its negation and obtain a tautology).

Definition 2.4. Let P1, P2 be two proof systems for the same language L (in case the proof systems are for two different
languages we fix a translation from one language to the other, as described above). We say that P2 polynomially simulates P1
if given a P1 proof (or refutation) π of a F , then there exists a proof (respectively, refutation) of F in P2 of size polynomial
in the size of π . In case P2 polynomially simulates P1 while P1 does not polynomially simulates P2 we say that P2 is
strictly stronger than P1.

2.3. Polynomial calculus

Algebraic propositional proof systems are proof systems for finite collections of polynomial equations having no 0,1
solutions over some fixed field. (Formally, each different field yields a different algebraic proof system.) Proof-lines in alge-
braic proofs (or refutations) consist of polynomials p over the given fixed field. Each such proof-line is interpreted as the
polynomial equation p = 0. To consider the size of algebraic refutations we fix the way polynomials inside refutations are
written.

Notation. An inference rule is written as A
B or AB

C , meaning that given the proof-line A one can deduce the proof-line B , or
given both the proof-lines A, B one can deduce the proof-line C , respectively.

2 We assume here that the field F can be efficiently represented (e.g., the field of rationals).

I. Tzameret / Information and Computation 209 (2011) 1269–1292 1273
The Polynomial Calculus is a propositional algebraic proof system first considered in [10]:

Definition 2.5 (Polynomial Calculus (PC)). Let F be some fixed field and let Q = {Q 1, . . . , Q m} be a collection of multivariate
polynomials from F[x1, . . . , xn]. Let the set of axiom polynomials be:

Boolean axioms xi · (1 − xi), for all 1 � i � n.

A PC proof from Q of a polynomial g is a finite sequence π = (p1, . . . , p�) of multivariate polynomials from F[x1, . . . , xn],
where p� = g and for every 1 � i � �, either pi = Q j for some j ∈ [m], or pi is a Boolean axiom, or pi was deduced from
p j , pk , for j,k < i, by one of the following inference rules:

Product
p

xr · p
, for 1 � r � n.

Addition
p q

a · p + b · q
, for a,b ∈ F.

A PC refutation of Q is a proof of 1 (which is interpreted as 1 = 0, that is the unsatisfiable equation standing for false)
from Q . The degree of a PC-proof is the maximal degree of a polynomial in the proof. The size of a PC proof π is the total
number of monomials (with nonzero coefficients) in all the proof-lines, denoted |π |.

Important note. The size of PC proofs can be defined as the total formula sizes of all proof-lines, where polynomials are
written as sums of monomials, or more formally, as (unbounded fan-in depth-2 arithmetic) ΣΠ formulas.3 This complexity
measure is equivalent up to a factor of n to the standard complexity measure counting the total number of monomials
appearing in the proofs (Definition 2.5).

Definition 2.6 (Polynomial Calculus with Resolution (PCR)). The PCR proof system is defined similarly to PC (Definition 2.5),
except that for every variable xi a new formal variable x̄i and a new axiom xi + x̄i − 1 are added to the system, and the
Boolean axioms of PCR are as follows:

Boolean axioms xi · x̄i .

The inference rules, and all other definitions are similar to that of PC. Specifically, the size of a PCR proof is defined as the
total number of monomials in all proof-lines (where now we count monomials in the variables xi and x̄i).

3. Polynomial calculus over noncommutative formulas

In this section we propose a possible formulation of algebraic propositional proof systems that operate with noncom-
mutative polynomials. We observe that dealing with propositional proofs—that is, proofs whose variables range over 0,1
values—makes the variables “semantically” commutative. Therefore, for the proof systems to be complete (for unsatisfi-
able collections of noncommutative polynomials over 0,1 values), one may need to introduce rules or axioms expressing
commutativity. We show that such a natural formulation of proofs operating with noncommutative formulas polynomially
simulate the entire Frege system. This justifies—if one is interested in concentrating on propositional proof systems weaker
than Frege (and especially on lower bounds questions)—our formulation in Section 4 of algebraic proofs operating with
noncommutative arithmetic formulas with a fixed product order (called ordered formulas). The latter system can be viewed
as operating with commutative polynomials over a field precisely like PC, while the complexity of proofs is measured by
the total size of ordered formulas needed to write the polynomials in the proof. In other words, the role played by the
noncommutativity in this system is only in measuring the sizes of proofs: while in PC-proofs the size measure is defined as
the number of monomials appearing in the proofs—or equivalently, the total size of formulas in proofs in which formulas
are written as (depth-2) ΣΠ circuits—the proof system developed in Section 4 is measured by the total ordered formula
size.

3.1. The proof system NFPC

We now define a proof system operating with noncommutative polynomials written as noncommutative arithmetic for-
mulas.

In algebraic proof systems like the polynomial calculus we transform unsatisfiable propositional formulas into a collection
Q of polynomials having no solution over a field F. In the noncommutative setting we translate unsatisfiable propositional
formulas into a collection Q of noncommutative polynomials from F〈x1, . . . , xn〉 that have no solution over any noncom-
mutative F-algebra (e.g., the matrix algebra with entries from F). Although our “Boolean” axioms will not force only 0,1

3 A ΣΠ formula F is an arithmetic formula whose underlying tree is of depth 2 and has unbounded fan-in, such that the root is labeled with a plus
gate, the children of the root are labeled with product gates and the leaves are labeled with either variables or field elements.

1274 I. Tzameret / Information and Computation 209 (2011) 1269–1292
solutions over noncommutative F-algebras, they will be sufficient for our purpose: every unsatisfiable propositional formula
translates (via a standard polynomial translation) into a collection Q of noncommutative polynomials from F〈x1, . . . , xn〉, for
which Q and the Boolean axioms have no (common) solution in any noncommutative F-algebra. Furthermore, the Boolean
axioms will in fact force commutativity of variables product—as required for variables that range over 0,1 values (although,
again, the Boolean axioms do not force only 0,1 values when variables range over noncommutative F-algebras). Let us
elaborate further on this point:

We say that an (algebraic) proof system is implicationally complete whenever for any collection of polynomials
q1, . . . ,qm, p over a field F, if every assignment that satisfies q1 = 0, . . . ,qm = 0 also satisfies p = 0, then there is a proof
of p from the assumptions q1, . . . ,qm . In our case, since the variables x1, . . . , xn intend to range over 0,1 values, we have
the Boolean axioms x2

i − xi , for any i ∈ [n]. But since over any noncommutative F-algebra, any assignment that satisfies
x2

1 − x1 = 0, . . . , x2
n − xn = 0 must satisfy also xi · x j − x j · xi = 0 (for all i, j ∈ [n]), any implicationally complete propositional

proof system for noncommutative polynomials over a noncommutative F-algebra must be able to derive (from only the
Boolean axioms) the polynomials xi · x j − x j · xi , for all i, j ∈ [n].

Definition 3.1 (Polynomial calculus over noncommutative formulas: NFPC). Fix a field F and let Q := {q1, . . . ,qm} be a collection
of noncommutative polynomials from F〈x1, . . . , xn〉. Let the set of axiom polynomials be:

Boolean axioms xi · (1 − xi), for all 1 � i � n.

xi · x j − x j · xi, for all 1 � i 	= j � n.

Let π = (p1, . . . , p�) be a sequence of noncommutative polynomials from F〈x1, . . . , xn〉, such that for each i ∈ [�], either
pi = q j for some j ∈ [m], or pi is a Boolean axiom, or pi was deduced by one of the following inference rules using p j , pk ,
for j,k < i:

Left/right product
p

xr · p

p

p · xr
, for 1 � r � n.

Addition
p q

a · p + b · q
, for a,b ∈ F.

We say that π is an NFPC proof of p� from Q if all proof-lines in π are written as noncommutative formulas. (The semantics
of an NFPC proof-line pi is the polynomial equation pi = 0.) An NFPC refutation of Q is a proof of the polynomial 1 from Q .
The size of an NFPC proof π is defined as the total size of all the noncommutative formulas in π and is denoted |π |.

Remark. (i) The Boolean axioms might have roots different from 0,1 over noncommutative F-algebras. (ii) The Boolean
axioms are true for 0,1 assignments: xi · x j − xi · x j = 0 for all xi, x j ∈ {0,1}.

We now show that NFPC is a sound and complete Cook–Reckhow proof system. First note that we have defined NFPC
with no rules expressing the polynomial-ring axioms (the latter are sometimes added to algebraic proof systems oper-
ating with arithmetic formulas for the purpose of verifying that every formula in the proof was derived correctly [via
the deduction rules of the system] from previous lines; see discussion in Section 1.1). Nevertheless, due to the deter-
ministic polynomial-time PIT procedure for noncommutative formulas (Theorem 2.3) the proof system defined will be a
Cook–Reckhow system (that is, verifiable in polynomial-time [whenever the base field and its operations can be efficiently
represented]).

Proposition 3.2. There is a deterministic polynomial-time algorithm that decides whether a given string is an NFPC-proof (over
efficiently represented fields).

Proof. We can assume that the proof also indicates from which previous lines a new line was inferred via the NFPC infer-
ence rules. Then, by Proposition 2.3, there is a polynomial-time algorithm that, e.g., given two noncommutative formulas
F1, F2 such that the proof indicates that F2 was inferred from F1 via the Left product rule, decides whether the formula
xi × F1 and F2 computes the same noncommutative polynomial. And similarly for the other deduction rules of NFPC. �
Proposition 3.3. The systems NFPC is sound and complete. Specifically, let Q be a collection of noncommutative polynomials from
F〈x1, . . . , xn〉. Assume that for every F-algebra, there is no 0,1 solution for Q (that is, an 0,1 assignment to variables that gives all
polynomials in Q the value 0), then the contradiction 1 = 0 can be derived in NFPC from Q .

Proof. Soundness holds because both rules of inference are sound over any F-algebra. Completeness stems by the simulation
of F -P C shown in Theorem 3.6 below (and the fact that if no F-algebra has a solution then also there is no solution in F

itself, which implies, by completeness of F -P C , that there exists an F -P C refutation of Q). �

I. Tzameret / Information and Computation 209 (2011) 1269–1292 1275
For the next statements we use the algebraic propositional proof system F -P C introduced by Grigoriev and Hirsch [12]
as an algebraic analog of the Frege system. The proof system F -P C is an algebraic propositional proof system operating
with (general, that is, commutative) arithmetic formulas over a field, and it includes auxiliary rewriting rules allowing to
develop equal polynomials syntactically via the polynomial-ring axioms. The proof system F -P C has the Boolean axioms of
PC, the rules of PC and in addition the rewrite rules expressing the polynomial-ring axioms. Each line in F -P C is treated
as a term, that is, a formula, and so the rules are also syntactic: addition of terms via the plus gate and product of a term
by a variable from the left. We first need to define the notion of a rewrite rule:

Definition 3.4 (Rewrite rule). A rewrite rule is a pair of formulas f , g denoted f → g . Given a formula Φ , an application of a
rewrite rule f → g to Φ is the result of replacing at most one occurrence of f in Φ by g (that is, substituting a subformula
f inside Φ by the formula g). We write f ↔ g to denote the pair of rewriting rules f → g and g → f .

Definition 3.5 (F -P C). (See [12].) Fix a field F. Let F := { f1, . . . , fm} be a collection of formulas4 computing polynomials
from F[x1, . . . , xn]. Let the set of axioms be the following formulas:

Boolean axioms xi · (1 − xi), for all 1 � i � n.

A sequence π = (Φ1, . . . ,Φ�) of formulas computing polynomials from F[x1, . . . , xn] is said to be an F -P C proof of Φ� from F ,
if for every i ∈ [�] we have one of the following:

1. Φi = f j , for some j ∈ [m];
2. Φi is a Boolean axiom;
3. Φi was deduced by one of the following inference rules from previous proof-lines Φ j,Φk , for j,k < i:

Product
Φ

xr · Φ , for r ∈ [n].

Addition
Φ Θ

a · Φ + b · Θ , for a,b ∈ F.

(Where Φ, xr ·Φ,Θ,a ·Φ,b ·Θ are formulas constructed as displayed; e.g., xr ·Φ is the formula with product gate at the
root having the formulas xr and Φ as children.)5

4. Φi was deduced from previous proof-line Φ j , for j < i, by one of the following rewriting rules expressing the polynomial-
ring axioms (where f , g,h range over all arithmetic formulas computing polynomials in F[x1, . . . , xn]):

Zero rule 0 · f ↔ 0
Unit rule 1 · f ↔ f
Scalar rule t ↔ α, where t is a formula containing no variables (only field F elements) that computes the constant

α ∈ F.
Commutativity rules f + g ↔ g + f , f · g ↔ g · f
Associativity rule f + (g + h) ↔ (f + g) + h, f · (g · h) ↔ (f · g) · h
Distributivity rule f · (g + h) ↔ (f · g) + (f · h)

(The semantics of an F -P C proof-line pi is the polynomial equation pi = 0.) An F -P C refutation of F is a proof of the
formula 1 from F . The size of an F -P C proof π is defined as the total size of all formulas in π and is denoted by |π |.

Theorem 3.6. NFPC (over any field) polynomially-simulates Frege. Specifically, NFPC polynomially-simulates F -P C in the following
sense: let f1, . . . , fm be a set of commutative formulas computing (commutative) polynomials that have no common 0,1 root, and
assume that there is a size s F -P C refutation of f1, . . . , fm. Then, there exists an NFPC refutation of the same set of formulas f1, . . . , fm

(but now viewed as computing noncommutative polynomials) of size polynomial in s.

Proof. By [12] (see Theorem 3 there), F -P C polynomially simulates Frege. We proceed by showing a simulation of F -P C
by NFPC by induction on the number of steps in an F -P C proof.

Base case: Axioms and initial formulas. All axioms of F -P C are also axioms in NFPC. Also, if the F -P C refutation uses an
initial formula f i , then we use the same formula in NFPC.

4 Note here that we are talking about formulas (treated as syntactic terms), and not polynomials. Also notice that all formulas in F -P C are (commutative)
formulas computing (commutative) polynomials.

5 In [12] the product rule of F -P C is defined so that one can derive Θ · Φ from Φ , where Θ is any formula, and not just a variable. However, the
definition of F -P C in [12] and our Definition 3.5 polynomially-simulate each other.

1276 I. Tzameret / Information and Computation 209 (2011) 1269–1292
Induction step:

Case 1. Addition rule. Assume we derive in F -P C the formula p + q. By induction hypothesis we already have the two
formulas p,q in NFPC. Thus, we can add them via the addition rule.

Case 2. Product rule. Assume we derive the formula xi · p from the formula p in F -P C . By induction hypothesis we already
have the formula p in NFPC. Thus, we can derive xi · p by the Left product rule.

Case 3. Rewriting rules. Assume we derived a formula f using one of the rewriting rules of F -P C . The rewriting rules
of associativity, distributivity, scalar rule, and unit and zero rules of F -P C do not change the noncommutative polynomial
computed by an arithmetic formula. Therefore, we get them “for free” in NFPC, in the sense that we can choose to write a
noncommutative polynomial p in the proof as any noncommutative formula, as long as the chosen formula computes the
noncommutative polynomial p. Thus, we only need to show how to simulate the commutativity rule, namely to show how
to simulate commuting a term inside a formula. The key lemma for this is the following:

Lemma 3.7. Let F be any field and let f , g be two noncommutative formulas computing (non-constant) polynomials from
F〈x1, . . . , xn〉. Then, there is an NFPC proof of size polynomial in | f | + |g| of the formula f · g − g · f .

Proof. First, we need to show that NFPC allows for substitution of identities inside proof-lines. Let A, h be noncommutative
formulas and assume that the variable z occurs inside A only once. Then A[h/z] denotes the noncommutative formula
obtained from A by replacing the leaf labeled z by the formula h.

Claim 3.8. Let A be a noncommutative formula, and let z be a variable that occurs only once inside A. Let h, h′ be two noncommutative
formulas h,h′ of maximal size s. Then, there is an NFPC proof of A[h/z] − A[h′/z] from h − h′ of size polynomial in |A| + s.

Proof. Straightforward induction on the size of A. �
We get back to the proof of Lemma 3.7: proceed by induction on | f | + |g| � 2.

Base case: | f | + |g| = 2. By assumption the polynomials computed by f , g are both non-constant, and so f = xi and g = x j ,
for some i, j ∈ [n]. Therefore, we are done by the Boolean axiom xi x j − x j xi .

Induction step: Either | f | > 1 or |g| > 1. Assume without loss of generality that | f | > 1. Following Claim 3.8, we shall use
freely substitutions in formulas.

Case (i). f = f1 + f2. Start from

f · g − f · g = f · g − (f1 + f2) · g = f · g − f1 · g − f2 · g. (1)

By induction hypothesis we have a proof of f1 · g − g · f1 and of f2 · g − g · f2. Thus, we can substitute these identities in
(1), to get f · g − g · f1 − g · f2 = f · g − g · (f1 + f2) = f · g − g · f .

Case (ii). f = f1 · f2. Start from

f · g − f · g = f · g − (f1 · f2) · g = f · g − f1 · (f2 · g). (2)

By induction hypothesis we have a proof of f2 · g − g · f2. Thus, we can substitute this identity in (2), to get f · g − f1 ·
(g · f2) = f · g − (f1 · g) · f2. By induction hypothesis again, we have f1 · g − g · f1. And similarly, we get by substitution
f · g − (g · f1) · f2 = f · g − g · f .

This concludes the proof of Lemma 3.7. �
To conclude the simulation of the commutativity rewrite rule of F -P C (which will also conclude the proof of Theo-

rem 3.6) we notice that, by Claim 3.8 and by Lemma 3.7, for any noncommutative formula A, such that z is a variable that
occurs only once inside A, there is an NFPC proof of A[(f · g)/z] − A[(g · f)/z] of size polynomial in |A[(f · g)/z]|. �
4. Polynomial calculus over ordered formulas

In this section we formulate an algebraic proof system OFPC that operates with noncommutative polynomials in which
every monomial is a product of variables in nondecreasing order (from left to right; and according to some fixed linear order
on the variables), and where polynomials in proofs are written as ordered formulas, as defined below.

I. Tzameret / Information and Computation 209 (2011) 1269–1292 1277
Let X = {x1, . . . , xn} be a set of variables and let F be a field. Let � be a linear order on the variables X , that is, a total,
reflexive and antisymmetric order on X . Let f = ∑

j∈ J b jM j be a commutative polynomial in F[x1, . . . , xn], where the b j ’s
are coefficient from F and the M j ’s are monomials in the X variables. We define � f � ∈ F〈x1, . . . , xn〉 to be the (unique)
noncommutative polynomial

∑
j∈ J b j · �M j �, where �M j � is the (noncommutative) product of all the variables in M j such

that the order of multiplications respects �. We denote the image of the map �·� : F[x1, . . . , xn] → F〈x1, . . . , xn〉 by G . We
say that a polynomial is an ordered polynomial if it is a polynomial in G .

Definition 4.1 (Ordered formula). Assume we fix some linear order � on variables x1, . . . , xn . A noncommutative formula
(Definition 2.1) is said to be an ordered formula if the noncommutative polynomial computed by each of its subformulas
is ordered. We say that an ordered formula F computes the commutative polynomial f ∈ F[x1, . . . , xn] whenever F com-
putes � f �.

When we speak about ordered formulas and ordered polynomials, we shall assume we have some fixed linear order �
on the variables in the background (and so ordered formulas and ordered polynomials are always considered with respect
to this ordering).

We characterize ordered formulas in a simple syntactic way, different from Definition 4.1, and then prove the equivalence
of the two characterizations (Proposition 4.4):

Definition 4.2 (Syntactic ordered formula). An ordered formula is a syntactic ordered formula if for each of its product gates
the left subformula contains only variables that are less-than or equal, via �, than the variables in the right subformula of
the gate.

Definition 4.3. We say that a variable xi occurs in the polynomial h (commutative or noncommutative) if there is a monomial
with a nonzero coefficient in h in which xi has a positive power.

Note that a variable can appear (or “occur”) inside a formula while not occur in the polynomial the formula computes.

Proposition 4.4. There is a polytime algorithm that receives a noncommutative formula Φ and a linear order on its variables, and
returns false if Φ is not an ordered formula (with respect to the given linear order), and otherwise returns a syntactic ordered formula
of the same size as Φ that computes the same (ordered) polynomial.

Proof. First note that for any noncommutative formula F , the formula F [0/xi] computes the polynomial f�xi=0 (namely, the
polynomial f in which xi is assigned 0) and so F [0/xi] computes f iff xi does not occur in f .

The algorithm is as follows:

1. Search for a product node in F that has on its left subformula a variable that is strictly greater (via the order �) from
some variable in its right subformula. If there is no such product node, then F itself is a syntactic ordered formula, and
the algorithm returns F .

2. Otherwise, let v be a product gate in F , with F1 and F2 its left and right subformulas, respectively. And suppose that
F1 contains the variable xi and F2 contains the variable x j , such that xi x j (i.e., xi � x j and xi 	= x j). Let h1,h2 be the
polynomials computed by F1 and F2, respectively. Check whether xi occurs in h1. To this end:

Check if the resulted formula F1[0/xi] computes the same noncommutative polynomial as F1 computes (using the PIT
algorithm for noncommutative formulas).

Case I If the answer is “yes”, then conclude that xi does not occur in the polynomial h1, and run the algorithm with
the input formula F in which F1 is substituted by F1[0/xi].

Case II If the answer is “no”, we know that the variable xi does occur in the polynomial h1. We check in a similar
manner whether x j occurs in h2.
(a) If x j does not occur in h2 run the algorithm with the formula F in which F2 is substituted by F2[0/x j].
(b) Otherwise, x j does occur in the polynomial h2. We already know that xi occurs in h1, and so it must be

that h1 · h2 is not an ordered polynomial,6 and so the polynomial computed at v is not ordered and we
return false.

Note that the algorithm described above returns either false (in case F is not an ordered formula) or a new formula that
computes the same noncommutative polynomial as F and with the same size as F (because the only changes applied to the

6 Note that h1, h2 are polynomials (not formulas) and so if xi occurs in h1 and x j occurs in h2, it must be that there is a monomial with a nonzero
coefficient in h1 · h2 in which xi multiplies from left x j .

1278 I. Tzameret / Information and Computation 209 (2011) 1269–1292
original formula F is substitution of variables by the constant 0). The running time of the algorithm is polynomial in the
size of F . �

We can now define OFPC in a convenient way, without referring to noncommutative polynomials: the system OFPC is
defined similarly to PC, except that the proof-lines are written as ordered formulas.

Definition 4.5 (PC over ordered formulas: OFPC). Let π = (p1, . . . , pm) be a PC proof of pm from some set of initial polynomials
Q (that is, pi are commutative polynomials from the ring of polynomials F[x1, . . . , xn]), and let � be some linear order
on the variables x1, . . . , xn . The sequence (f1, . . . , fm) in which f i is an ordered formula computing pi (according to the
order �), is called an OFPC proof of pm from Q . The size of an OFPC proof is the total size of all the ordered formulas
appearing in it.

Similar to the proof system NFPC we have defined OFPC with no rules expressing the polynomial-ring axioms. Also,
similar to NFPC, the system OFPC will constitute a Cook–Reckhow proof system, that is, there is a deterministic polynomial-
time algorithm that decides whether a given string is an OFPC proof or not (whenever the base field and its operations can
be efficiently represented):

Proposition 4.6. For any linear order on the variables, OFPC is a sound, complete and polynomially-verifiable refutation system for
establishing that a collection of (commutative) polynomial equations over a field does not have 0,1 solutions. Specifically, (considering
the language of polynomial translations of Boolean contradictions) OFPC is a Cook–Reckhow proof system.

Proof. The soundness and completeness of OFPC stem from the soundness and completeness of PC. The fact that OFPC is a
Cook–Reckhow proof system is proved in Proposition 4.8 below. �

We first need the following lemma:

Lemma 4.7. For any linear order � on variables, there exists a polytime algorithm that receives an ordered formula Φ computing
� f � ∈ F〈x1, . . . , xn〉 (for some polynomial f ∈ F[x1, . . . , xn]) and a variable xr , for some 1 � r � n, and outputs a new ordered
formula that computes �xr · f �.

Proof. We can assume that Φ is a syntactic ordered formula, as otherwise we can transform it into such a formula by the
algorithm in Proposition 4.4. We show that there is an algorithm A(Φ, xr) that outputs the desired formula by induction on
the size of Φ .

Base case:

1. A(c, xr) := c · xr , for c ∈ F.

2. A(xi, xr) :=
{

xi · xr, if xi � xr;
xr · xi, otherwise.

Induction step:

1. A(Φ1 + Φ2, xr) := A(Φ1, xr) + A(Φ2, xr).

2. A(Φ1 · Φ2, xr) :=
{

A(Φ1, xr) · Φ2, if xr is � from every variable in Φ2;
Φ1 · A(Φ2, xr), otherwise.

�
Proposition 4.8. For any linear order � on variables, there exists a polytime algorithm that given a sequence π of ordered formulas
and another sequence (Q 1, . . . , Q m, G) of ordered formulas, outputs true iff π is an OFPC proof of the polynomial computed by G from
the polynomials computed by Q 1, . . . , Q m.

Proof. We verify the following:

1. All formulas in π are ordered formulas (according to the fixed linear order). By Proposition 4.4, this can be done in
polynomial-time in the size of π .

2. The last formula in π computes the same polynomial as G (using the PIT algorithm for noncommutative formulas).
3. For every proof-line f ∈ π , one of the following holds:

(i) The formula f computes an axiom. This can be verified by checking whether f computes the same noncommu-
tative polynomial as the formula x2

i − xi , for some 1 � i � n, or whether f computes some polynomial computed
by Q i , for some 1 � i � m (by Theorem 2.3).

I. Tzameret / Information and Computation 209 (2011) 1269–1292 1279
(ii) The formula f computes the same ordered polynomial as F1 + F2, for some pair F1, F2 of ordered formulas in
previous proof-lines (Theorem 2.3).

(iii) The formula f computes �xi · h�, for some 1 � i � n, where h is a polynomial computed by some previous proof-
line. This can be checked as follows. Considering all possible pairs H and xi , for H being a proof-lines (preceding
f in π) and i = 1, . . . ,n, run the algorithm in Lemma 4.7 where the inputs are H and xi . We get a new ordered
formula H ′ , and we check if H ′ computes the same noncommutative polynomial as f . �

Note. Formally, for different n’s, every set of variables x1, . . . , xn may have linear orders that are incompatible with each
other. Nevertheless, in this paper, given a family Q of collections of initial polynomials {Q n|n ∈ N} parameterized by n, and
assuming that Q n ⊆ F[x1, . . . , xn] for all n, we will consider only linear orders such that: for every n > 1, the linear order
on x1, . . . , xn is an extension of the linear order on x1, . . . , xn−1. Equivalently, we can consider one fixed linear order on a
countable set of variables X = {x1, x2, . . .}.

5. Simulations, short proofs and separations for OFPC

In this section we are concerned with the relative strength of OFPC. Specifically, we show that OFPC, when operating
with polynomials over fields of characteristic 0, is strictly stronger than the polynomial calculus, polynomial calculus with
resolution (PCR) and resolution (for a definition of resolution, see for example [2]). For this purpose, we show first that,
for any linear order on the variables OFPC polynomially simulates PCR. Since PCR polynomially simulates both PC and
resolution, we get that OFPC also polynomially simulates PC and resolution. Second, we show that OFPC admits polynomial-
size refutations of hard tautologies for PCR (that is, tautologies that do not have polynomial-size PCR proofs). This is done by
demonstrating that OFPC over fields of characteristic 0 polynomially simulates the R0(lin) refutation system for the language
of CNF formulas. The system R0(lin) is an extension of resolution introduced in [24]. Since R0(lin) is provably stronger than
PCR [24], the result will follow.

5.1. OFPC polynomially simulates PCR

Let τ denote the linear transformation that maps the variables xi , for any i ∈ [n], to (1 − xi), and denote p � τ the
polynomial p under the transformation τ .

Proposition 5.1. For any linear order on the variables, OFPC polynomially simulates PCR (and PC and resolution). Specifically, if there
is a size s PCR proof (with the variables x1, . . . , xn, x̄1, . . . , x̄n) of p from the axioms p j1 , . . . , p jk , then there is an OFPC proof of p � τ
from p j1 � τ , . . . , p jk � τ of size O (n · s).

Proof. Given some linear order on the variables, we assume that all ordered formulas respect this linear order (and so we
do not refer explicitly to this order).

Let π = (p1, . . . , pt) be a PCR proof of size s from the axioms p j1 , . . . , p jk (that is, pi ’s are [commutative] polynomials
from F[x1, . . . , xn, x̄1, . . . , x̄n], for some field F, such that the total number of monomials occurring in all proof-lines in π
is s). We need to show that there is an OFPC proof π ′ of pi from the axioms, such that π ′ has size O (n · s).

Let Γ be the sequence obtained from π by replacing every product rule application in π , deriving x̄i · p from p (for any
i = 1, . . . ,n), by the following proof sequence:

1. p
2. xi · p
3. (1 − xi) · p

(the second polynomial is derived by the product rule from the first polynomial, and the third polynomial is derived by the
addition rule from the first and second polynomials).

Let Γ � τ be the sequence obtained from Γ by applying the substitution τ on every proof-line in Γ . We claim that
Γ � τ is a PC proof of pt � τ from the initial polynomials p j1 � τ , . . . , p jk � τ : first, note that all product rule applications
using x̄i variables were eliminated in Γ � τ , and thus all product rule applications in Γ � τ are legitimate PC product
rule applications. Second, note that for any pair of polynomials g,h we have g � τ + h � τ = (g + h) � τ . Third, note that
the axioms of PCR transform under τ to either 0 (which we can ignore in the new proof sequence) or to the PC axiom
xi(1 − xi).

By construction, every proof-line in Γ � τ is either pi � τ or x j · (pi � τ), for some pi ∈ π and j ∈ [n]. Therefore, by
definition of OFPC, it suffices to show that every pi � τ and x j · (pi � τ), for some pi ∈ π and j ∈ [n], have ordered formulas
of size at most O (m · n), where m is the number of monomials in pi . For this purpose it is enough to show that for every
monomial M in pi there exists an O (n) ordered formula computing the polynomial M � τ . The latter is true since every
such polynomial is a product of at most n terms, where each term is either xi or 1 − xi , for some i ∈ [n]; such a product
can be clearly written as an ordered formula of size O (n). �

1280 I. Tzameret / Information and Computation 209 (2011) 1269–1292
In the rest of this section we show that OFPC polynomially simulates the proof system R0(lin), and then use it to
establish short proofs in OFPC.

5.2. Resolution over linear equations R(lin) and its subsystem R0(lin)

Here we follow [24] and define the refutation systems R(lin) and R0(lin). The system R(lin) is an extension of the
resolution refutation system that works with disjunctions of linear equations instead of disjunction of literals. R0(lin) is
defined to be a subsystem of R(lin) in which certain restrictions are put on proof-lines in a proof.

Disjunctions of linear equations. Let L be a linear equation a1x1 + · · · + anxn = a0. Then, the right-hand side a0 is called the
free-term of L and the left-hand side a1x1 + · · · + anxn is called the linear form of L (the linear form can be 0). A disjunction
of linear equations is of the following form:(

a(1)
1 x1 + · · · + a(1)

n xn = a(1)
0

) ∨ · · · ∨ (
a(t)

1 x1 + · · · + a(t)
n xn = a(t)

0

)
, (3)

where t � 0 and the coefficients a(j)
i are integers (for all 0 � i � n, 1 � j � t). We remove duplicate linear equations from

a disjunction of linear equations. The semantics of such a disjunction is the following: an assignment of integral values to
the variables x1, . . . , xn is said to satisfy (3) if and only if there exists j ∈ [t] so that a(j)

1 x1 + · · · + a(j)
n xn = a(j)

0 holds under
the given assignment. The size of a linear equation a1x1 + · · · + anxn = a0 is defined to be

∑n
i=0 |ai |, that is, the sum of

the bit sizes of all ai written in unary notation. Accordingly, the size of the linear form a1x1 + · · · + anxn is
∑n

i=1 |ai |. The
size of a disjunction of linear equations is the total size of all linear equations in it. Similar to resolution, the empty disjunction
is unsatisfiable and stands for the truth value false. We will consider only disjunctions of linear equations with integral
coefficients. Given a vector �a of n integers and a vector �x of n variables x1, . . . , xn , we write �a · �x to abbreviate

∑n
i=1 ai xi .

Translation of clauses. We can translate any CNF formula to a collection of disjunctions of linear equations as follows: every
clause

∨
i∈I xi ∨∨

j∈ J ¬x j in the CNF is translated into the disjunction
∨

i∈I (xi = 1)∨∨
j∈ J (x j = 0). Any Boolean assignment

to the variables x1, . . . , xn satisfies a clause D if and only if it satisfies its translation into disjunction of linear equations
(where true is identified with 1 and false with 0).

The refutation system R(lin).

Definition 5.2 (R(lin)). Let K := {K1, . . . , Km} be a collection of disjunctions of linear equations in the variables x1, . . . , xn .
An R(lin)-proof from K of a disjunction of linear equations D is a finite sequence π = (D1, . . . , D�) of disjunctions of linear
equations, such that D� = D and for every i ∈ [�] one of the following holds:

1. Di = K j , for some j ∈ [m];
2. Di is a

Boolean axiom (xt = 0) ∨ (xt = 1), for some t ∈ [n];

3. Di was deduced by one of the following R(lin)-inference rules, using D j, Dk for some j,k < i:

Resolution Let A, B be two, possibly empty, disjunctions of linear equations and let L1, L2 be two linear equations.
From A ∨ L1 and B ∨ L2 derive A ∨ B ∨ (L1 − L2).

Weakening From a possibly empty disjunction of linear equations A derive A ∨ L, where L is an arbitrary linear
equation over the variables x1, . . . , xn .

Simplification From A ∨ (0 = k) derive A, where A is a possibly empty disjunction of linear equations and k 	= 0.

An R(lin) refutation of a collection of disjunctions of linear equations K is a proof of the empty disjunction from K . The size
of an R(lin) proof π is the total size of all the disjunctions of linear equations in π (where coefficients are written in unary
representation) denoted |π |.

In light of the translation between CNF formulas and collections of disjunctions of linear equations, we can consider
R(lin) to be a proof system for the set of unsatisfiable CNF formulas.

The refutation system R0(lin). For our purposes we need to consider the restriction of R(lin), denoted R0(lin) [24]. The
system R0(lin) operates with disjunctions of (arbitrarily many) linear equations with constant coefficients excluding the free
terms, under the following restriction: every disjunction can be partitioned into a constant number of sub-disjunctions,
where each sub-disjunction either consists of linear equations that differ only in their free-terms or is a (translation of a)
clause. Any linear inequality with Boolean variables can be represented by a disjunction of linear equations that differ only
in their free-terms. So the R0(lin) proof system resembles, to some extent, a proof system operating with disjunctions of
constant number of linear inequalities with constant integral coefficients.

I. Tzameret / Information and Computation 209 (2011) 1269–1292 1281
Example. The following is an example of an R0(lin) proof-line:

(x1 + · · · + x� = 1) ∨ · · · ∨ (x1 + · · · + x� = �) ∨ (x�+1 = 1) ∨ · · · ∨ (xn = 1),

for some 1 � � � n. Note that in the left part (x1 + · · · + x� = 1) ∨ · · · ∨ (x1 + · · · + x� = �) every disjunct has the same linear
form with coefficients 0,1, and the right part (x�+1 = 1) ∨ · · · ∨ (xn = 1) is a translation of a clause.

To formally define the R0(lin) proof system we introduce the following definition:

Definition 5.3 (Rc,d(lin)-line). Let D be a disjunction of linear equations whose variables have integer coefficients with
absolute values at most c (the free-terms are unbounded). Assume D can be partitioned into at most d sub-disjunctions
D1, . . . , Dd , where each Di either consists of (an unbounded) disjunction of linear equations that differ only in their free-
terms, or is a translation of a clause. Then the disjunction D is called an Rc,d(lin)-line. The size of an Rc,d(lin)-line D is
defined as before, that is, as the total bit-size of all equations in D , where coefficients are written in unary representation.

Thus, any Rc,d(lin)-line is of the following general form:∨
i∈I1

(�a(1) · �x = �
(1)
i

) ∨ · · · ∨
∨
i∈Ik

(�a(k) · �x = �
(k)
i

) ∨
∨
j∈ J

(x j = b j), (4)

where k < d and for all r ∈ [n] and t ∈ [k], a(t)
r is an integer such that |a(t)

r | � c, and b j ∈ {0,1} (for all j ∈ J), and the �
(k)
i ’s

are (unbounded) integers (and I1, . . . , Ik, J are unbounded sets of indices). Since a disjunction of clauses is a clause in itself,
we can assume that in any Rc,d(lin)-line only a single (translation of a) clause occurs.

The R0(lin) proof system is a restriction of R(lin) in which each proof-line is an Rc,d(lin)-line, for some fixed constants
c, d:

Definition 5.4 (R0(lin)). Let K := {Kn | n ∈ N} be a family of collections of disjunctions of linear equations. Then {Pn | n ∈ N}
is a family of R0(lin)-proofs of K if there exist constant integers c, d independent of n, such that: (i) each Pn is an R(lin)-
proof of Kn; and (ii) for all n, every proof-line in Pn is an Rc,d(lin)-line. The size of an R0(lin) proof is defined the same
way as the size of R(lin) proofs, that is, as the total size of all the proof-lines.

If Kn is a collection of disjunctions of linear equations parameterized by n ∈ N, we shall say that Kn has a polynomial-size
(in n) R0(lin) proof, if there are some constants c, d independent of n and a polynomial p, such that for every n, Kn has
R(lin) proof of size at most p(n) in which every proof-line is an Rc,d(lin)-line.

Both R(lin) and R0(lin) are sound and complete Cook–Reckhow refutation systems for unsatisfiable CNF formulas (see
[24, Section 3.2]).

5.3. OFPC polynomially simulates R0(lin)

Here we prove that OFPC over fields of characteristic 0 polynomially simulates R0(lin) for the language of unsatisfiable
CNF formulas. We translate a CNF, that is, a collection of clauses, into a collection of polynomials as follows: every clause∨

i∈I xi ∨ ∨
j∈ J ¬x j in the CNF is translated into

∏
i∈I (1 − xi) ∨ ∏

j∈ J x j .

Theorem 5.5. For any linear order on the variables, OFPC operating with polynomials over a field of characteristic 0 polynomially
simulates R0(lin) for the language of unsatisfiable CNF formulas. Moreover, we can assume that all formulas appearing in the OFPC
proofs simulating R0(lin) are ordered formulas of depth at most 3.

In the rest of this subsection we work out the proof of Theorem 5.5.
Assume we have a family of R0(lin) refutations {π�: � ∈ N} of a CNF family {K�: � ∈ N}, in which every line is an

Rc,d(lin)-line for two constants c, d independent of �. We wish to show an OFPC refutation of K� with size polynomial in
|π�|. Thus, consider a refutation π = π� = (D1, . . . , Dm), for some �. The proof is almost similar to the proof that multilinear
proofs can polynomial simulate R0(lin), given in [24]. We begin by providing an overview of the simulation:

Step I First we translate disjunctions of linear equations into polynomials. This is easy to do by considering a dis-
junction as a product, and turning any linear equation into its corresponding homogenous linear form. Thus,
π = (D1, . . . , Dm) can be transformed into a sequence π̃ = (D̃1, . . . , D̃m) of polynomials.

Step II We then show how to transform the sequence π̃ into a PC refutation by adding new PC proof-lines, so that if
Dk was derived from previous lines Di , D j by one of R(lin) rules, then the added proof-lines will constitute a PC
derivation of D̃k from previous lines D̃i , D̃ j . This is not hard to do, but we have to take care that:
1. the number of added lines is polynomial in the size of the original R0(lin) refutation; and

1282 I. Tzameret / Information and Computation 209 (2011) 1269–1292
2. every newly added PC proof-line is a polynomial translation D̃ of some Rc′,d′(lin)-line D (Definition 5.6 below),
where D is of size polynomial in |π | and c′ , d′ are constants independent of n.

Step III We now have a PC proof π ′ whose number of lines is polynomial in |π | in which every line is a polynomial
translation D̃ of some Rc′,d′(lin)-line D , such that |D| is polynomial in |π |. For the current step we extend the
system PCR with the Product Rule p

g·p , for any polynomial g (note that g is not necessarily a variable), and denote
this extended system by PCR� . We then transform π ′ into a PCR� proof π� in which every line is roughly a
multilinearization M[D̃] of a polynomial translation D̃ of some Rc′,d′+1(lin)-line D , where |D| is polynomial in |π |;
However, the variables in π� will be {x1, . . . , xn, x̄1, . . . , x̄n}. Also, note that if D is a clause, then D̃ is already
multilinear, which means that M[D̃] = D̃ , and so π� is a refutation of the original CNF.

Step IV In this step we show that every proof-line in π� can be written as a certain simple depth-3 formula of polynomial-
size in |π |. This step is accomplished by observing that the multilinearization of a polynomial translation of an
Rc,d(lin)-line is close to a product of constantly many symmetric polynomials (cf. [24]). And then showing that any
such product has a ΣΠΣ depth-3 formula whose size is polynomial in the size of the original Rc,d(lin)-line, over
large enough fields (that is, over fields with at least 2n + 1 elements, for 2n being the number of variables), and
whose bottom level linear forms have only a single variable.

Step V We now have a PCR� proof π� of the original CNF formula with polynomial in |π | many lines and in which
the following invariant holds: every proof-line can be written as a ΣΠΣ depth-3 formula of polynomial-size in
|π | in which the bottom level linear polynomials have only a single variable. Since in OFPC the product rule can
only multiply previous lines by a variable, we first show how to polynomially simulate in PCR, applications of the
extended PCR� product rules p

g·p that occur in π� , while keeping the above invariant. Second, we need to change
the resulting refutation into a PC refutation of the same CNF formula K having only the {x1, . . . , xn} variables (and
not using the axioms xi · x̄i and xi + x̄i − 1), and where the above invariant on the structure of lines still holds.
This is easy to do by applying the linear transformation x̄i �→ 1 − xi on all polynomials in the refutation. We then
claim that every line in the obtained PC refutation of K can be written as an ordered formula of depth-3 and of
polynomial-size in |π | (for any given order on variables).

We now turn to the formal construction.

Step I. Here we show how to transform disjunctions of linear equations D into polynomials D̃ . We turn a disjunction
into a product and a linear equation L = d, for d the free term, into the polynomial L − d. Note that R0(lin) operates
with unbounded free-terms: the number d in the example above (or the �

(t)
i ’s in (4)) are unbounded (their values may

depend on n). Since we translate an integer d ∈ Z to the field element 1 + · · · + 1 (d times), we need to use a field whose
characteristic is big enough to include (an isomorphic copy of) the integers up to d. We will simply assume that our field
has characteristic 0, which means it includes every integer.

More concretely, our polynomial translation is as follows. A polynomial translation of a clause
∨

j∈ J (x
b j

j) is any product of

the form
∏

j∈ J (x j −b j), where b j ∈ {0,1} for all j ∈ J , and where x
b j

j is the literal x j if b j = 1 and ¬x j if b j = 0. Accordingly,
we define the polynomial translation of a CNF formula as the set consisting of the polynomial translations of the clauses in the
CNF.

Definition 5.6 (Polynomial translation of Rc,d(lin)-lines). A polynomial translation of an Rc,d(lin)-line is a product of linear poly-
nomials (that is, polynomials of the form

∑n
i=1 ai xi + a0), such that:

1. All variables in the linear polynomials have integer coefficients with absolute values at most c (the constant terms [that
correspond to the free-terms] are unbounded).

2. D can be written as
∏d

i=1 Di , where each Di either consists of (an unbounded) product of linear forms that differ only
in their free-terms, or is a polynomial translation of a clause.

The degree of a polynomial-translation of an Rc,d(lin)-line D is defined to be the total degree of the polynomial D .

In other words, any polynomial translation of an Rc,d(lin)-line has the following general form:

∏
j∈ J

(x j − b j) ·
k∏

t=1

∏
i∈It

(
n∑

r=1

a(t)
r xr − �

(t)
i

)
, (5)

where k < d and for all r ∈ [n] and t ∈ [k], a(t)
r is an integer such that |a(t)

r | � c, and b j ∈ {0,1} (for all j ∈ J) and the �
(t)
i ’s

are integers (and I1, . . . , Ik, J are unbounded sets of indices).

Notation. As noted earlier, given an Rc,d(lin)-line D we write D̃ to denote its polynomial translation.

I. Tzameret / Information and Computation 209 (2011) 1269–1292 1283
Step II. We now show how to obtain a PC proof π ′ from the R(lin) proof π , using the polynomial translation in Step I.

Proposition 5.7 (Translating R0(lin) proofs to PC proofs). Let K = {Km | m ∈ N} be a family of unsatisfiable CNF formulas translated
into disjunctions of linear equations and let {Pm | m ∈ N} be a family of R0(lin)-proofs of K , where each proof-line in every Pm is an
Rc,d(lin)-line, for two constants c,d independent of m. Then, there are two constants c′ , d′ depending only on c,d and a family of PC
refutations {P ′

m | m ∈ N} of (the polynomial translations of) K , such that for every m ∈ N:

(i) the number of lines in P ′
m is polynomial in |Pm|; and

(ii) every line in P ′
m is a polynomial translation of an Rc′,d′(lin)-line of degree polynomial in |Pm|.

Proof. We proceed by induction on the number of lines in Pm .

Base case: An R0(lin) Boolean axiom (xi = 0) ∨ (xi = 1) is translated into xi · (xi − 1) which is already an axiom of PC (or can
be derived from an axiom by multiplying b the scalar −1). An initial disjunction of linear equations from Kn is translated
into its corresponding polynomial translation (Definition 5.6). In both cases we get polynomial translations of Rc,d(lin)-lines
with a polynomial (in |Pm|) degree (note that the initial disjunctions in K are Rc,d(lin)-lines since they are clauses).

Induction step: We translate every R0(lin) inference rule application into a PC proof sequence with polynomial in |Pm|
number of lines, and with each line being a polynomial translation of an Rc′,d′(lin)-line for two constants c′ , d′ depending
only on c, d, whose degree is bounded by a polynomial in |Pm|. We use the following claim:

Claim 5.8. Let p,q ∈ F[x1, . . . , xn] be two polynomials and let s be the minimal size of an arithmetic formula computing q. Then one
can derive from p in PC the polynomial q · p, with only a polynomial in s number of steps. Furthermore, assume that q, p are polynomial
translations of Rc,d(lin)-lines Q , P , respectively, for some constants c,d independent of n and with |Q |, |P | � t, then the PC derivation
of q · p from p has polynomial in t number of lines and contains only polynomial translations of Rc′,d′(lin)-lines of degree polynomial
in t, for some constants c′ , d′ independent of n.

Proof. By induction on s (and t in the second statement). We omit the details. �
Assume that Di = D j ∨ L was derived from D j using the weakening inference rule of R0(lin), and L is some linear

equation. Then, by Claim 5.8, D̃i = D̃ j · L̃ can be derived from D̃ j with a PC derivation having at most polynomial in |D j ∨ L|
many steps, in which every line is a polynomial translation of an Rc′,d′(lin)-line of degree polynomial in t , for some constants
c′ , d′ independent of n.

Otherwise, assume that Di was derived from D j where D j is Di ∨ (0 = k), using the simplification inference rule of
R0(lin), and k is a nonzero integer. Then, D̃i can be derived from D̃ j = D̃i · −k by multiplying with −k−1 (via the Addition
rule of PC, and using the fact that we work in a field).

Thus, it remains to simulate the resolution rule application of R0(lin). Let A, B be two disjunctions of linear equations
and assume that

A ∨ B ∨ (
(�a − �b) · �x = a0 − b0

)
was derived in Pm from A ∨ (�a · �x = a0) and B ∨ (�b · �x = b0).

We need to derive

Ã · B̃ · ((�a − �b) · �x − a0 + b0
)

from Ã · (�a · �x − a0) and B̃ · (�b · �x − b0). This is done by multiplying Ã · (�a · �x − a0) with B̃ and multiplying B̃ · (�b · �x − b0)

with Ã and then subtracting the second resulted polynomial from the first resulted polynomial. By Claim 5.8, this can be
done in PC with polynomial in t = |A ∨ (�a · �x − a0)| + |B ∨ (�b · �x − b0)| many steps and where each proof-line is a polynomial
translation of an Rc′,d′(lin)-line, where the degree of every such Rc′,d′(lin)-line is polynomial in t (which also implies that
the degree of such lines is also upper bounded by |Pm|). �

By Proposition 5.7, given our refutation π of a CNF, there exists a PC refutation π ′ of K with polynomial in |π | number
of lines, and with every line a polynomial translation D̃ of an Rc′,d′(lin)-line D with degree at most polynomial in |π |, for
two constants c′ , d′ .

Step III. Recall that a polynomial p ∈ F[x1, . . . , xn] is said to be multilinear if the power of every variable in all its monomials
is at most one. Given the PC refutation π ′ from the previous step, we construct a PCR� refutation π� of the same CNF, and
where PCR� is an extension of PCR, defined as follows:

1284 I. Tzameret / Information and Computation 209 (2011) 1269–1292
Definition 5.9 (PCR�). The proof systems PCR� is an extension of the PCR system (Definition 2.6) with the following product
rule:

Product
p

g · p
, for any polynomial g ∈ F[x1, . . . , xn, x̄1, . . . , x̄n].

Definition 5.10 (Multilinearization operator). Given a field F and a polynomial q ∈ F[x1, . . . , xn], we denote by M[q] the unique
multilinear polynomial equal to q modulo the ideal generated by all the polynomials x2

i − xi , for all variables xi .

For example, if q = x2
1x2 + ax3

4 + 1 (for some a ∈ F) then M[q] = x1x2 + ax4 + 1.
The main idea in Step III is formulated in the next proposition. It states that a PC refutation consisting of only translations

of Rc′,d′(lin)-lines can be transformed without much increase in the number of lines into a “multilinearized” refutation, in
which every line is roughly a multilinearization of (a polynomial translation of) an Rc′,d′(lin)-line. Formally, we have:

Proposition 5.11. Let P be a PC refutation from an initial set K of multilinear polynomials in F[x1, . . . , xn], and assume that every
proof-line in P is a polynomial translation of an Rc′,d′ (lin)-line D of size at most t, for some fixed c′ , d′ . Then there exists a PCR�

refutation P ′ of K , such that:

1. the number of lines in P ′ is polynomially bounded in the number of lines in P ;
2. for every polynomial p in P ′ , p is a multilinear polynomial in F[x1, . . . , xn, x̄1, . . . , x̄n] that can be written as a sum

∑h
i=1 M[D̃i],

where h is a constant (independent of n, c′ , d′) and where each D̃i is a degree O (t) polynomial translation of an Rc′,d′+1(lin)-line.

Proof. Let (p1, . . . , pm) be the PC refutation P , where for any i ∈ [m], pi is a polynomial in F[x1, . . . , xn]. The desired PCR�

proof P ′ is constructed as follows.
First, we put Q = (M[p1], . . . ,M[pm]). We construct the PCR� refutation P ′ of K by adding appropriate PCR� proof-

sequences to Q . This is done as follows:

Case A. If pi is from K then by multilinearity of pi we have pi = M[pi]. And condition (2) in the statement of the proposition
holds by assumption that pi is a polynomial translation of an Rc′,d′ (lin)-line D , where the size of D is at most t (and hence
t is an upper bound on the degree of pi).

Case B. If pi was derived in P by the addition rule from previous lines p j , pk , for some j,k < i, then pi = αp j + βpk , for
some α,β ∈ F. Thus, M[pi] = αM[p j] + βM[pk] can be derived in PCR� from previous lines M[p j] and M[pk]. Similarly to
Case A, condition (2) holds by assumption that pi is a polynomial translation of an Rc′,d′(lin)-line D of size at most t .

Case C. If pi = x j · pk , for some j ∈ [n] and k < i, was derived in P by the product rule from a previous line pk , then M[pi]
can be derived in P ′ as follows:

If x j does not appear with a positive power in pk , then we can derive M[pi] = M[x j · pk] = x j · M[pk] from M[pk] via the
product rule. Otherwise, assume that x j appears with a positive power in pk . Then we have

M[pk] = x j · f1 + f2

for some two multilinear polynomials f1, f2, where x j does not appear with a positive power in f1 and x j does not appear
with a positive power in f2. We add the following PCR� proof-sequence to Q :

1. x j · f1 + f2 this is M[pk]
2. x̄ j · (x j · f1 + f2) product of (1)

3. (1 − x̄ j) · (x j · f1 + f2) (1) minus (2)

4. x j · x̄ j Boolean axiom

5. (x j · x̄ j) · f1 product of (4)

6. (1 − x̄ j) · (x j · f1 + f2) + (x j · x̄ j) · f1 (3) plus (5)

7. x j + x̄ j − 1 Boolean axiom

8. (x j + x̄ j − 1) · f2 product of (7)

9. (1 − x̄ j) · (x j · f1 + f2) + (x j · x̄ j) · f1 + (x j + x̄ j − 1) · f2 (6) plus (8)

The last line (line 9) equals x j · f1 + x j · f2 = M[x j · pk] = M[pi], which is the desired line.

I. Tzameret / Information and Computation 209 (2011) 1269–1292 1285
Observe that (by opening brackets) every line in the sequence above is a linear combination of at most four of the
following polynomials:

x j · x̄ j, x j · f1, f2, x̄ j · x j · f1, x̄ j · f2, x j · f2. (6)

We need the following claim:

Claim 5.12. Every polynomial in (6) can be written as a sum M[D̃1] + M[D̃2], such that D̃1 , D̃2 are (possibly zero) polynomial
translations of Rc′,d′+1(lin)-lines of degree O (t).

Proof. The first polynomial x̄ j · x j is of the required form since it is a translation of a clause. We now consider the rest of
the polynomials in (6).

Consider the polynomials f1 and f2. By assumption, we know that x j · f1 + f2 = M[pk] = M[D̃], for some Rc′,d′(lin)-line
D of size at most t , where x j does not appear in f1 and in f2. Therefore,

f1 = M[D̃] �x j=1 −M[D̃] �x j=0= M[D̃ �x j=1] − M[D̃ �x j=0], and

f2 = M[D̃ �x j=0]
(where the notation p �x j=b means that we assign the value b to the variable x j in the polynomial p).

We thus get:

x j · f1 = x j · M[D̃ �x j=1] − x j · M[D̃ �x j=0] = M[x j · D̃ �x j=1] − M[x j · D̃ �x j=0],
where x j · D̃ �x j=1 and x j · D̃ �x j=0 are both polynomial translations of Rc′,d′+1(lin)-lines, of degree at most t + 1.

The rest of the polynomials in (6), namely, f2, x̄ j · x j · f1, x̄ j · f2, x j · f2, can be treated in a similar manner (note also that
x̄ j does not appear in f1 and f2). �

Notice that if a polynomial translation D̃ of an Rc′,d′+1(lin)-line D is of degree at most |π |, then D is of size at most
O (n · |π |) (for constants c′ , d′). Thus, Proposition 5.11 shows that we can transform the PC refutation π ′ from Step II into a
PCR� refutation π� of the same CNF, in which every line is a sum

∑
i∈I M[D̃i] such that:

1. |I| is constant (independent of n, c,d);
2. every D̃i is a polynomial translation of some Rc′,d′+1(lin)-line Di such that the size |Di | is polynomial in the size |π | of

the original refutation π (for constants c′ , d′ independent of n).
3. The number of lines in π� is polynomially bounded in the number of lines in π .

Note again that the new PCR� proof may contain the “negative” variables x̄1, . . . , x̄n .

Step IV. We now show that every PCR� proof-line in π� has a certain simple depth-3 arithmetic formula. We shall use
the fact that Rc,d(lin)-lines are close to a product of d symmetric polynomials, and the fact that multilinear symmetric
polynomials can be computed by small ordered formulas (of depth-3) over large enough fields [6] (cf. [28] for a proof).

We say that an arithmetic formula Φ is a ΣΠΣ formula if every path from the root to the leaf in the formula tree
starts with a plus gate and the number of alternations in the path between plus and product gates is at most two, where
field elements α ∈ F can label any edge e in the formula, meaning that the polynomial computed in the tail of e (i.e., the
node the edges e emanates from) is multiplied by α. In other words, Φ can be written as a sum of products of linear
polynomials.

We need the following proposition, proved in [25]:

Proposition 5.13. (See [25, Proposition 7.27].) Let F be a field such that |F| > n. For a constant c, let X1, . . . , Xc be c finite sets
of variables (not necessarily disjoint), where

∑c
i=1 |Xi| = n. Let f1, . . . , fc be c symmetric polynomials over X1, . . . , Xc (over the

field F), respectively. Then, there is a ΣΠΣ formula Φ for M[f1 · · · fc] of size polynomial (in n), such that all bottom level linear
forms consist of only a single variable (that is, axi + b, for some a,b ∈ F).

Observation. Note that for any order on variables, every ΣΠΣ formula Φ as in Proposition 5.13 can be transformed into
an ordered formula with the same size: since all products are of linear forms, each with a single variable, for any order � on
variables one can order the products in the formula in a way that respects �.

The key lemma of the simulation is the following:

Lemma 5.14. Let F be a field such that |F| > n. Let s, t be two constants, let D be an Rs,t(lin)-line with n variables and let D̃ be the
polynomial translation of D. Then, M[D̃] has a ΣΠΣ formula Φ of size polynomial in |D| over F, such that all bottom level linear
forms consist of only a single variable (that is, axi + b, for some a,b ∈ F).

1286 I. Tzameret / Information and Computation 209 (2011) 1269–1292
Proof. Assume that the underlying variables of D are �x = {x1, . . . , xn}.7 By assumption, we can partition the disjunction D
into a constant number t of disjuncts, where each disjunct is a (possibly empty translation of a) clause C (if there is more
than one clause in D we combine all the clauses into a single clause) and all other disjuncts have the following form:

m∨
i=1

(�a · �x = �i), (7)

where the �i ’s are integers, m is bounded by |D| and �a denotes a vector of n constant integer coefficients, each having
absolute value at most s.

Suppose that the clause C is
∨

i∈I xi ∨ ∨
j∈ J ¬x j , and let

q =
∏
i∈I

(xi − 1) ·
∏
j∈ J

x j (8)

be the polynomial representing C .
Consider a disjunct as shown in (7). Since the coefficients �a are constants (having absolute value at most s), �a · �x can be

written as a sum of constant number of linear forms, each with the same constant coefficient. In other words, �a · �x can be
written as z1 + · · · + zd , for some constant d (depending on s only), where for all i ∈ [d]:

zi := b ·
∑
j∈ J

x j, (9)

for some J ⊆ [n] and some constant integer b. We shall assume without loss of generality that d is the same constant for
every disjunct of the form (7) in D (otherwise, take d to be the maximal such d). Thus, (7) is translated (as in Definition 5.6)
into:

m∏
i=1

(z1 + · · · + zd − �i). (10)

By fully expanding the product in (10), we arrive at:

∑
r1+···+rd+1=m

(
α�r ·

d∏
k=1

zrk
k

)
, (11)

where the ri ’s are non-negative integers, and where each α�r ’s, for �r = 〈r1, . . . , rd+1〉, is an integer coefficient.

Claim 5.15. The polynomial translation D̃ of D is a linear combination (over F) of polynomially (in |D|) many terms, such that each
term can be written as

q ·
∏
k∈K

zrk
k , (12)

where K is a collection of a constant number of indices, rk’s are non-negative integers, and the zk’s and q are as above (that is, the zk’s
are linear forms, where each zk has a single coefficient for all variables in it, as in (9), and q is from (8)).

Proof. By assumption, the total number of disjuncts of the form (7) in D is � t . In D̃ , we actually need to multiply at most
t many polynomials of the form shown in (11) and the polynomial q.

For every j ∈ [t] we write the (same) linear form in the jth disjunct as a sum of constantly many linear forms z j,1 +
· · · + z j,d , where each (sub-)linear form z j,k has the same coefficient for every variable in it. Thus, D̃ can be written as:

q ·
t∏

j=1

⎛⎜⎜⎜⎜⎜⎝
∑

r1+···+rd+1=m j

(
α

(j)
�r ·

d∏
k=1

zrk
j,k

)
︸ ︷︷ ︸

(�)

⎞⎟⎟⎟⎟⎟⎠ (13)

(where the m j ’s are bounded by |D|, and the coefficients α
(j)
�r are as above except that here we add the index (j) to denote

that they depend on the jth disjunct in D). Denote the maximal m j , for all j ∈ [t], by m0. We have m0 � |D|. Note that since
d is a constant (depending only on s) the number of summands in each of the big (middle) sums in (13) is polynomial in m0,

7 We will apply Lemma 5.14 on lines with 2n variables {x1, . . . , xn, x̄1, . . . , x̄n}. For the sake of simplicity, in this lemma we assume that our underlying
variables are {x1, . . . , xn}.

I. Tzameret / Information and Computation 209 (2011) 1269–1292 1287
which is at most polynomial in |D| (specifically, it is �
(m0+d

m0

)
< (m0 +d)d). Therefore, since t is constant (independent of n),

by expanding the outermost product in (13), we arrive at a sum of polynomially in |D| many summands. Each summand
in this resulting sum is a product of t terms (each of the form designated by (�) in Eq. (13)) multiplied by q. But this
is precisely the required form of a summand in (12); where also, since d, t are constants, |K | is a constant independent
of n. �

To finish the proof of Lemma 5.14 it remains to apply the multilinearization operator (Definition 5.10) on D̃ , and verify
that the resulting polynomial has the desired form. Since M[·] is a linear operator, it suffices to show that when applying
M[·] on each summand in D̃ , as described in Claim 5.15, one obtains a polynomial that has a ΣΠΣ formula of size
polynomial in |D| over F, such that all bottom level linear forms consist of only a single variable. This is established in the
following claim:

Claim 5.16. (Under the same notation as in Claim 5.15.) The polynomial M[q · ∏k∈K zrk
k] has a ΣΠΣ formula (over F) of polynomial-

size in the number of variables n and with a plus gate at the root, such that all bottom level linear forms consist of only a single variable
(that might be different for each linear form).

Proof. Note that a power of a symmetric polynomial is a symmetric polynomial in itself. Thus, since for any k ∈ K , zk is
a symmetric polynomial, zrk

k is also symmetric. The polynomial q is a translation of a clause, hence it is a product of two
symmetric polynomials (over different variables): the symmetric polynomial that is the translation of the disjunction of
literals with positive signs, and the symmetric polynomial that is the translation of the disjunction of literals with negative
signs. Therefore, q · ∏k∈K zrk

k is a product of constant number of symmetric polynomials (over different, though possibly not
disjoint, sets of variables). By Proposition 5.13, M[q · ∏k∈K zrk

k] (where here the M[·] operator operates on the �x variables in
the zk ’s and q) is a polynomial for which there is a ΣΠΣ polynomial-size (in n) formula such that all bottom level linear
forms consist of only a single variable (over F). �
Step V. In the previous step we obtained a PCR� refutation π� = (q1, . . . ,qr) of the CNF K with r polynomial in |π |, and
such that every qi can be computed by a ΣΠΣ formula Q i of polynomial-size in |π |, and where each bottom level in Q i
consists of only a single variable (that is, axi + b, for some a,b ∈ F).

Note that π� is not a legal PCR refutation of K since π� used the extended PCR� product rule p
g·p , for some polynomial g ,

while in PCR we only have the rule p
x·p , for some variable x. We now show that we can add new PCR proof-sequences to

π� to obtain a PCR refutation of K with the appropriate properties:

Claim 5.17. Assume that in π� the polynomial qi = g · p was derived from q j = p by the PCR� product rule. Then, there exists a PCR
proof of Q i from Q j with size polynomial in |Q i | (where Q i , Q j are the corresponding formulas for qi , q j , respectively), such that every
proof-line can be written as a ΣΠΣ formula of polynomial-size in |Q i | in which each bottom level consists of only a single variable.

Proof. If g is a variable from {x1, . . . , xn, x̄1, . . . , x̄n}, then we are done. Otherwise, by construction of π� , the polynomial
qi = g · p is either an instance of Line 5 or of Line 8 in the PCR� proof-sequence described in Proposition 5.11. By Claim 5.12
and Lemma 5.14 we thus obtain that one of the following holds:

1. qi = (x j · x̄ j) · f1 for p = (x j · x̄ j), such that x j, x̄ j do not appear in f1;
2. qi = (x j + x̄ j − 1) · f2 for p = (x j + x̄ j − 1), such that x j, x̄ j do not appear in f2,

and where both f1 and f2 can be computed by a ΣΠΣ formula Q i of polynomial-size in |π |, and the bottom level linear
polynomials in Q i consists of only a single variable.

The proof of the claim now is straightforward. First, we derive from g in PCR the polynomial g · Fi , for any i such that Fi
is the polynomial computed by the ith product gate in Q i . Each such proof of g · Fi can be carried out by induction on the
degree of qi . Then, we add together g · Fi , for all i, which yields the desired ΣΠΣ formula computing the polynomial qi .
Also, note that every proof-line in this derivation can be written as a ΣΠΣ formula of polynomial-size in |Q i | such that
each bottom level linear polynomial consists of only a single variable, and where the number of proof-lines is polynomial
in |Q i |. �

By Claim 5.17 there exists a PCR refutation π ′′ of K of size polynomial in |π | in which every line is a ΣΠΣ formula in
which each bottom level consists of only a single variable.

Since the formulas in π ′′ possibly contain the variables x̄1, . . . , x̄n , we need to take these variables out in order to
construct our final PC refutation with only the x1, . . . , xn variables. We do this by first substituting every variable x̄i , i ∈ [n],
by (1 − xi) in every line of π ′′ , and then adding required PC lines to transform the resulting sequence into a legal PC
refutation.

Let τ denote the linear transformation that maps the variables x̄i , for any i ∈ [n], to (1 − xi), and denote p � τ the
polynomial p under the transformation τ .

1288 I. Tzameret / Information and Computation 209 (2011) 1269–1292
Claim 5.18. Let Π be the sequence of polynomials π ′′ � τ obtained from π ′′ by applying τ to every proof-line. Then, there exists a
PC refutation Π ′ refuting the same CNF as π ′′ does, with only a polynomial increase in numbers of lines, and whose each line can be
computed by a ΣΠΣ formula of polynomial-size in |π |, such that each bottom level in the formula consists of only a single variable.

Proof. By induction on the number of lines in π ′′ .
Base case: Axioms turn into axioms (the axiom xi + x̄i − 1 turns into the polynomial 0, which can be ignored in the refuta-
tion).

Induction step:

Case 1. Addition rule in π ′′ stays legal in Π .

Case 2. Product rule: if we derive xi · p from p in π ′′ , for some i ∈ [n], then in Π we derive xi · (p � τ) from p � τ , which is
legal.

Assume we derived x̄i · p from p. Then, we need to derive (1 − xi) · (p � τ) from p � τ . For this, first derive xi · p � τ , and
then use the addition rule to add p � τ with −xi · p � τ .

Note also that all lines in the new PC refutation Π ′ can be written as ΣΠΣ formulas of polynomial-size in |π |, and
where each bottom level in the formula consists of only a single variable. �

Now, since every proof-line in the refutation Π ′ obtained from Claim 5.18 can be written as a ΣΠΣ ordered formula of
size polynomial in |π | in which all bottom levels are linear forms axi + b, for some a,b ∈ F and some i ∈ [n], every proof-line
in Π ′ can be written as an ordered formula of size O (|π |). This is because we can simply order the linear forms hanging from
any product gate in a way that respects the order �. Also, Since the number of proof-lines in Π ′ is polynomial in |π |, we
conclude that OFPC polynomially simulates R0(lin).

This concludes the proof of Theorem 5.5.

5.4. Short proofs and separations

For natural numbers m > n, denote by ¬FPHPm
n the following unsatisfiable collection of polynomials:

Pigeons: ∀i ∈ [m], (1 − xi,1) · · · (1 − xi,n)

Functional: ∀i ∈ [m] ∀k < � ∈ [n], xi,k · xi,�

Holes: ∀i < j ∈ [m] ∀k ∈ [n], xi,k · x j,k. (14)

As a consequence of the polynomial simulation of R0(lin) by OFPC, and the upper bounds on R0(lin) refutations demon-
strated in [24], we get the following result:

Corollary 5.19. For any linear order on the variables, and for any m > n there are polynomial-size (in n) OFPC refutations of the m to
n pigeonhole principle ¬FPHPm

n (over fields of characteristic zero).

The contradiction ¬FPHPm
n is a direct translation of the CNF formula for the m to n functional pigeonhole principle. Thus,

by known lower bounds, OFPC is strictly stronger than resolution and is separated from bounded depth Frege. On the other
hand, Razborov [26] and subsequently Impagliazzo et al. [13] gave exponential lower bounds on the size of PC-refutations of
a different low degree version of the Functional Pigeonhole Principle. In this low degree version the Pigeons polynomials in
(14) are replaced by 1−(xi,1 +· · ·+xi,n), for all i ∈ [m]. It is not hard to show (via reasoning inside R0(lin)) that OFPC admits
polynomial-size refutations also for this low-degree version of the functional pigeonhole principle. This shows that OFPC is
strictly stronger than PC (under the size measures defined for OFPC and PC).

The Tseitin graph tautologies were proved to be hard tautologies for several propositional proof system. We refer the
reader to [24], Definition 6.5, for the precise definition of the (generalized, mod p) Tseitin tautologies. We have the follow-
ing:

Corollary 5.20. Let G be an r-regular graph with n vertices, where r is a constant, and fix some modulus p. Then, for any linear order
on the variables there are polynomial-size (in n) OFPC refutations (over fields of characteristic 0) of the corresponding Tseitin mod p
formulas over G.

This stems from the R0(lin) polynomial-size refutations of the Tseitin mod p formulas demonstrated in [24]. From the
known exponential lower bounds on PCR (and PC and resolution) refutation size of Tseitin mod p tautologies (when the
underlying graphs are appropriately expanding; cf. [8,7,3]), and for the polynomial simulation of PCR by OFPC, we conclude
that OFPC is strictly stronger than PCR.

I. Tzameret / Information and Computation 209 (2011) 1269–1292 1289
6. Useful lower bounds on products of ordered polynomials

In this section we show that the ordered formula size of certain polynomials can increase exponentially when multiply-
ing the polynomials together. We use this to suggest an approach for lower bounding the size of OFPC proofs in Section 6.1.
We use a method of partial derivatives matrix introduced by Nisan to obtain exponential-size lower bounds on noncommu-
tative formulas in [17]. We shall state the results of Nisan using the model of algebraic branching programs (ABP) (this will
help us in the example of conditional lower bound discussed in the next sub-section). Algebraic branching programs can
polynomially simulate noncommutative formulas, and hence also ordered formulas.

Definition 6.1 (ABP). An algebraic branching program is a directed acyclic graph with one node of in-degree zero, called the
source, and one node of out-degree zero called the sink. The graph is partitioned into levels 0, . . . ,d, and nodes in level
i = 0, . . . ,d − 1 have edges only to level i + 1. The source is the only node in level 0 and the sink is the only node in level d.
The edges of the graph are labeled with homogenous linear forms in the variables x1, . . . , xn and coefficients from a field F

(i.e., linear polynomials with no free terms). An ABP computes a noncommutative polynomial in F〈x1, . . . , xn〉 as follows:
every directed path from the source to a node v computes the product of linear forms on the path in the order of their
appearance. The node v computes the sum of all the polynomials computed by all the directed paths from source to v . An
ABP computes the noncommutative polynomial computed at its sink.

Note that an ABP computes only homogenous polynomials. We have the following simple structural property, showing
that the noncommutative formula size of a noncommutative polynomial is polynomially proportional to its ABP size:

Lemma 6.2. (See [23, Lemma 2.2].) Let f be a noncommutative polynomial which is computed by a noncommutative formula of size s.
Assume that the free term of f is zero (in other words, f (0, . . . ,0) = 0). Then there exist deg(f) noncommutative ABP’s such that
the ith ABP computes the homogeneous component of f of degree i, for i = 1, . . . ,deg(f). Moreover, the size of each of these ABP’s is
O (s2).

Let f ∈ F[x1, . . . , xn] be a commutative polynomial. Recall that � f � is the noncommutative polynomial obtained from f
by ordering the products in every monomial in accordance to the linear order �, and that an ordered formula computing
f is a noncommutative formula computing � f �. Thus, if we denote by O F (f) the minimal size of an ordered formula
computing f and by A(f) the minimal total ABP-sizes of a sequence of ABP’s computing the homogenous components
f (1), . . . , f (deg(f)) of f , then by Lemma 6.2, we have:

O F (f) �
(

A(f)
)O (1)

(note that deg(f) � O F (f), because f is a formula). To conclude, a super-polynomial lower bound on the ordered formula
size of f ∈ F[x1, . . . , xn] follows from a super-polynomial lower bound on the minimal total ABP-sizes of a sequence of ABP’s
computing the homogenous components of the noncommutative polynomial � f �.

Proposition 6.3. Let F be a field, X := {x1, . . . , xn} be a set of variables and � some linear order on X. Then, for any natural numbers
m � n and d � �n/m�, there exist polynomials f1, . . . , fd from F[x1, . . . , xn], such that every fi can be computed by an ordered
formula of size O (m) and every ABP computing �

∏d
i=1 f i � has size 2d.

Proof. First, note that it is sufficient to prove the proposition for m = 2 and any d � �n/2�. (Because, assume that the
proposition holds for m = 2 and any d � �n/2�. And let m′,d′ be such that m′ � n and d′ � �n/m′�. By assumption, for
m = 2 and d′ � �n/m′� � �n/2�, there are f1, . . . , fd′ from F[x1, . . . , xn] that can be computed by ordered formulas of size
constant [that is, O (2), and hence of size O (m′)], and such that every ABP computing �

∏d′
i=1 f i � has size 2Ω(d′) .)

Thus, let m = 2 and d � �n/2�. Assume without loss of generality that the linear order � is such that x1 � x2 � · · · �
xn . Abbreviate the variables x1, . . . , xd as y1, . . . , yd , respectively, and abbreviate the variables xd+1, . . . , x2d as z1, . . . , zd ,
respectively (that is, the yi ’s and zi ’s are just abbreviations for their corresponding xi variables, introduced to simplify the
writing). We thus have y1 � · · · � yd � z1 � · · · � zd .

For every i = 1, . . . ,d, define the following polynomial (that obviously has a constant size ordered formula):

f i := (yi + zi).

Define

HARDd :=
d∏

i=1

f i =
d∏

i=1

(yi + zi).

We show that every ABP computing �HARDd � (under �) is of size at least 2d . Note that HARDd is a homogenous non-
commutative and multilinear polynomial of degree d. To lower bound the ABP size of a homogenous noncommutative
polynomial we use the rank argument introduced in [17]. Nisan defined the matrix Mk(f) associated with a homogenous
noncommutative polynomial f as follows:

1290 I. Tzameret / Information and Computation 209 (2011) 1269–1292
Definition 6.4. (See [17].) Let f ∈ F〈x1, . . . , xn〉 be a noncommutative homogenous polynomial of degree d. For every
0 � k � d, we define Mk(f) to be a matrix of dimension nk × nd−k as follows: (i) there is a row corresponding to every
degree k noncommutative monomial over the variables {x1, . . . , xn}, and a column corresponding to every degree d − k
noncommutative monomial over the variables {x1, . . . , xn}; (ii) for every degree k monomial M and every degree d − k
monomial N , the entry in Mk(f) on the row corresponding to M and column corresponding to N is the coefficient of
the degree d monomial M · N in f .

Theorem 6.5. (See [17, Theorem 1].) Let f be a degree r homogenous noncommutative polynomial. Then, every ABP computing f has
size at least

∑r
k=0 rank(Mk(f)).

In view of Theorem 6.5, it suffices to prove the following claim:

Claim 6.6. For any 0 � k � d: rank(Mk(�HARDd �)) �
(d

k

)
.

Proof. Consider the matrix Mk(�HARDd �). Let Ak be the matrix obtained from Mk(�HARDd �) by removing all rows and
columns excluding the following rows and columns:

1. the rows corresponding to degree k multilinear monomials containing only yi variables, such that the order of products
in the monomial respects �;

2. the columns corresponding to degree d − k multilinear monomials containing only zi variables, such that the order of
products in the monomial respects �.

Consider a degree k monomial M = yi1 · · · yik , where i1 < · · · < ik . Let J = [d] \ {i1, . . . , ik}. We can denote the elements
of J as { j1, . . . , jd−k}, where j1 < · · · < jd−k . Observe that the monomial M has on its corresponding row in Ak only zeros,
except for a single 1 in the position (that is, column) corresponding to the degree d−k monomial N = z j1 · · · z jd−k . (Indeed,
note that the coefficient of the degree d monomial M · N in �HARDd � is 1.)

Note that Ak contains
(d

k

)
rows corresponding to all possible degree k multilinear monomials M in the y variables

whose product order respect �. Similarly, Ak contains
(d

k

)
columns corresponding to all possible degree d − k multilinear

monomials N in the z variables whose product order respect �. By the previous paragraph: (i) each of the rows in Ak has
only one nonzero entry; and (ii) for every row, the nonzero entry is in a different column from those of other rows. We then
conclude that Ak is a permutation matrix. Therefore:

rank(Ak) =
(

d

k

)
.

The claim follows since clearly rank(Ak) � rank(Mk(�HARDd �)). �
By the claim and by Theorem 6.5, we conclude that the ABP size of �HARDd � is at least

d∑
k=0

rank(Ak) =
d∑

k=0

(
d

k

)
= 2d. �

6.1. Suggested lower bound approach

Here we discuss a simple possible approach intended to establish lower bounds on OFPC proofs, roughly, by reducing
OFPC lower bounds to PC degree lower bounds and using the bound in Section 6 (Proposition 6.3).

Setting 1: Let Q 1(x), . . . , Q m(x) be a collection of constant degree (independent of n) polynomials from F[x1, . . . , xn] with
no common solutions in F, such that m is polynomial in n. Let f1(y), . . . , fn(y) be m homogenous polynomials of the same
degree from F[y1, . . . , y�], such that the ordered formula size of each f i(y) (for some fixed linear order on the variables) is
polynomial in n and such that the f i(y)’s do not have common variables (that is, each f i(y) is over disjoint sets of variables
from y). Suppose that for any distinct i1, . . . , id ∈ [n] the ABP size of �

∏d
j=1 f i j (y)� is 2Ω(d) .

Note. By the proof of Proposition 6.3, the conditions above are easy to achieve. Indeed, the f i(yi, zi)’s defined in the
proof of Proposition 6.3 have these properties: homogeneity, same degrees for all f i ’s and disjointness of variables, and an
exponential increase in ABP sizes computing products of the f i ’s.

Consider the polynomials Q 1(x), . . . , Q m(x) after applying the substitution:

xi �→ f i(y). (15)

I. Tzameret / Information and Computation 209 (2011) 1269–1292 1291
In other words, consider

Q 1
(

f1(y), . . . , fn(y)
)
, . . . , Q m

(
f1(y), . . . , fn(y)

)
. (16)

Note that (16) is also unsatisfiable over F.
We suggest to lower bound the OFPC refutation size of (16), based on the following simple idea: it is known that

some families of unsatisfiable collections of polynomials require linear Ω(n) degree PC refutations (where n is the number
of variables). In other words, every refutation of these polynomials must contain some polynomial of linear degree. By
definition, also every OFPC refutation of these polynomials must contain some polynomial of linear in n degree.

For the purpose of super-polynomial lower bounds even a weaker ω(log n) degree lower bound on PC refutations would
suffice. Hence, assume that the initial polynomials Q = {Q 1(x), . . . , Q m(x)} in the x1, . . . , xn variables require ω(logn) degree
PC refutations. This means that every PC refutation of Q contains some polynomial h of degree ω(log n). Then, we might
expect that every PC refutation of its substitution instance (16) contains a polynomial g ∈ F[y] which is a substitution
instance (under the substitution (15)) of an ω(logn) degree polynomial in the x variables. This, in turn, leads (under some
conditions; see below) to a lower bound on OFPC refutations.

An example of sufficient conditions for super-polynomial OFPC lower bounds, are the following: assume that every PC
refutation of (16) contains a polynomial g so that one of g ’s homogenous components is a substitution instance of a degree
ω(log n) multilinear polynomial from F[x1, . . . , xn]. We formalize this argument:

Example (Conditional OFPC size lower bounds). (Assume the above Setting 1 and notations.)
If: every PC refutation of (16) that has polynomial in n number of proof-lines contains a polynomial g ∈ F[y1, . . . , y�]

such that for some t = poly(n), the t-th homogenous component g(t) of g is a substitution instance of a degree ω(log n)

multilinear polynomial from F[x1, . . . , xn] (under the substitution (15));
Then: every OFPC refutation of (16) is of super-polynomial size (in n).

Proof of example. It suffices to show that any ordered formula of g is of super-polynomial size in n. By Lemma 6.2, it
suffices to show that � g(t)�, the t-th homogenous component of � g� (note that � g�(t) = � g(t)�), requires an ABP of super-
polynomial size in n.

By assumption, g(t) is a substitution instance of some degree ω(log n) multilinear polynomial h ∈ F[x1, . . . , xn]. Since
g(t) is homogenous and all the f i(y)’s have the same degree and are homogenous, h must be homogenous too. Since h
is multilinear we can write h = ∑

j∈ J b jM j , where the M j ’s are multilinear monomials in the x variables and b j are
coefficients from F. Now, consider some single monomial M from

∑
j∈ J b jM j . By multilinearity and homogeneity of h

every other monomial M ′ 	= M in h must contain an xi variable that does not appear in M . We can assign 0 to such
xi . Doing this for every monomial M ′ 	= M , we get that h (under this partial assignment to the x variables) is equal to
bM , for some coefficient b ∈ F. In a similar manner, by disjointness of the variables in the f i(y)’s, there exists a partial
assignment ρ : y → {0}, such that g(t) � ρ is just a substitution instance (under the substitution (15)) of a single multilinear
monomial of degree ω(log n) in the x variables. This means that g(t) � ρ is the product of ω(log n) distinct f i(y)’s (multiplied
by b). Therefore, by assumption on the f i(y)’s, every ABP computing � g(t)� is of size 2ω(logn) , which is super-polynomial
in n. �
Remark. The conditional lower bound example above inherits its hardness from the hard polynomials in Proposition 6.3.
Since the hard polynomial HARDd in the proof of Proposition 6.3 is hard for ordered formulas (and ABP’s) only with respect
to a specific order on variables, the family of polynomials in (16) are (conditionally) hard for OFPC only with respect to this
specific order.

According to the lower bound suggested above, a natural starting point to search for hard candidates for OFPC might be
the following: assume that the substitution (15) consists of f1(y1,1, . . . , y1,n), . . . , fn(yn,1, . . . , yn,n), where f i(y1, . . . , yn)

has exponentially many monomials, while still having small ordered formulas, for any i = 1, . . . ,n; e.g.,

f i(yi,1, . . . , yi,n) = (yi,1 + yi,2) · · · (yi,(n/2)−1 + yi,n/2).

(Then � = n2 in the notation of (15).) Then, one might expect that the premise of the example for conditional OFPC size
lower bounds above possibly hold. Intuitively, the (speculative) reason is that any PC refutation with a polynomial in n
number of proof-lines would need to operate with the f i ’s as “almost atomic formulas”, since they include exponential
many monomials.

Acknowledgments

I wish to thank Emil Jeřabek, Sebastian Müller, Pavel Pudlák, Neil Thapen and Youming Qiao for helpful discussions on
issues related to this paper and the anonymous referees for many comments improving the exposition of this paper. I also
wish to thank Ran Raz for suggesting this research direction, and Jan Krajíček for inviting me to give a talk at TAMC 2010
on this subject.

1292 I. Tzameret / Information and Computation 209 (2011) 1269–1292
References

[1] Miklós Ajtai, The complexity of the pigeonhole principle, in: Proceedings of the IEEE 29th Annual Symposium on Foundations of Computer Science,
1988, pp. 346–355.

[2] Michael Alekhnovich, Ben-Sasson Eli, Alexander A. Razborov, Avi Wigderson, Space complexity in propositional calculus, SIAM J. Comput. 31 (4) (2002)
1184–1211 (electronic).

[3] Michael Alekhnovich, Ben-Sasson Eli, Alexander A. Razborov, Avi Wigderson, Pseudorandom generators in propositional proof complexity, SIAM J.
Comput. 34 (1) (2004) 67–88. (A preliminary version appeared in Proceedings of the 41st Annual Symposium on Foundations of Computer Science
(Redondo Beach, CA, 2000)).

[4] Albert Atserias, Nicola Galesi, Pavel Pudlák, Monotone simulations of non-monotone proofs, in: Special issue on complexity, Chicago, IL, 2001, J. Com-
put. System Sci. 65 (4) (2002) 626–638.

[5] Albert Atserias, Phokion G. Kolaitis, Moshe Y. Vardi, Constraint propagation as a proof system, in: CP, 2004, pp. 77–91.
[6] Michael Ben-Or, unpublished notes, 1980.
[7] Eli Ben-Sasson, Russell Impagliazzo, Random CNF’s are hard for the polynomial calculus, in: Proceedings of the IEEE 40th Annual Symposium on

Foundations of Computer Science, New York, 1999, IEEE Computer Soc., Los Alamitos, CA, 1999, pp. 415–421.
[8] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, Toniann Pitassi, Linear gaps between degrees for the polynomial calculus modulo distinct primes,

in: Special issue on the 14th Annual IEEE Conference on Computational Complexity, Atlanta, GA, 1999, J. Comput. System Sci. 62 (2) (2001) 267–289.
[9] Samuel R. Buss, Russell Impagliazzo, Jan Krajíček, Pavel Pudlák, Alexander A. Razborov, Jiří Sgall, Proof complexity in algebraic systems and bounded

depth Frege systems with modular counting, Comput. Complexity 6 (3) (1997) 256–298.
[10] Matthew Clegg, Jeffery Edmonds, Russell Impagliazzo, Using the Groebner basis algorithm to find proofs of unsatisfiability, in: Proceedings of the 28th

Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, 1996, ACM, New York, 1996, pp. 174–183.
[11] Stephen A. Cook, Robert A. Reckhow, The relative efficiency of propositional proof systems, J. Symbolic Logic 44 (1) (1979) 36–50.
[12] Dima Grigoriev, Edward A. Hirsch, Algebraic proof systems over formulas, in: Logic and Complexity in Computer Science, Créteil, 2001, Theoret. Comput.

Sci. 303 (1) (2003) 83–102.
[13] Russell Impagliazzo, Pavel Pudlák, Jiří Sgall, Lower bounds for the polynomial calculus and the Gröbner basis algorithm, Comput. Complexity 8 (2)

(1999) 127–144.
[14] Maurice Jansen, Youming Qiao, Jayalal Sarma, Deterministic black-box identity testing π -ordered algebraic branching programs, Electronic Colloquium

on Computational Complexity (ECCC), TR10-015, February 2010.
[15] Jan Krajíček, An exponential lower bound for a constraint propagation proof system based on ordered binary decision diagrams, J. Symbolic Logic 73 (1)

(2008) 227–237.
[16] Jan Krajíček, Pavel Pudlák, Alan Woods, An exponential lower bound to the size of bounded depth Frege proofs of the pigeonhole principle, Random

Structures Algorithms 7 (1) (1995) 15–39.
[17] N. Nisan, Lower bounds for non-commutative computation, in: Proceedings of the 23th Annual ACM Symposium on the Theory of Computing, 1991,

pp. 410–418.
[18] Toniann Pitassi, Algebraic propositional proof systems, in: Descriptive Complexity and Finite Models, Princeton, NJ, 1996, in: DIMACS Ser. Discrete

Math. Theoret. Comput. Sci., vol. 31, Amer. Math. Soc., Providence, RI, 1997, pp. 215–244.
[19] Toniann Pitassi, Paul Beame, Russell Impagliazzo, Exponential lower bounds for the pigeonhole principle, Comput. Complexity 3 (2) (1993) 97–140.
[20] Pavel Pudlák, On the complexity of the propositional calculus, in: Sets and Proofs, Leeds, 1997, in: London Math. Soc. Lecture Note Ser., vol. 258,

Cambridge Univ. Press, Cambridge, 1999, pp. 197–218.
[21] Ran Raz, Separation of multilinear circuit and formula size, Theory Comput. 2 (2006), article 6.
[22] Ran Raz, Multi-linear formulas for permanent and determinant are of super-polynomial size, J. ACM 56 (2) (2009).
[23] Ran Raz, Amir Shpilka, Deterministic polynomial identity testing in non commutative models, Comput. Complexity 14 (1) (2005) 1–19.
[24] Ran Raz, Iddo Tzameret, Resolution over linear equations and multilinear proofs, Ann. Pure Appl. Logic 155 (3) (2008) 194–224, arXiv:0708.1529.
[25] Ran Raz, Iddo Tzameret, The strength of multilinear proofs, Comput. Complexity 17 (3) (2008) 407–457.
[26] Alexander A. Razborov, Lower bounds for the polynomial calculus, Comput. Complexity 7 (4) (1998) 291–324.
[27] Nathan Segerlind, Nearly-exponential size lower bounds for symbolic quantifier elimination algorithms and OBDD-based proofs of unsatisfiability,

Electronic Colloquium on Computational Complexity (ECCC), TR07-009, January 2007.
[28] Iddo Tzameret, Studies in algebraic and propositional proof complexity, PhD thesis, Tel Aviv University, 2008.
[29] Stephan Waack, On the descriptive and algorithmic power of parity ordered binary decision diagrams, in: STACS, 1997, pp. 201–212.

	Algebraic proofs over noncommutative formulas
	1 Introduction
	1.1 Results and related work

	2 Preliminaries
	2.1 Noncommutative polynomials and formulas
	2.2 Proof systems and simulations
	2.3 Polynomial calculus

	3 Polynomial calculus over noncommutative formulas
	3.1 The proof system NFPC

	4 Polynomial calculus over ordered formulas
	5 Simulations, short proofs and separations for OFPC
	5.1 OFPC polynomially simulates PCR
	5.2 Resolution over linear equations R(lin) and its subsystem R0(lin)
	Disjunctions of linear equations.
	Translation of clauses.
	The refutation system R(lin).
	The refutation system R 0(lin).

	5.3 OFPC polynomially simulates R0(lin)
	Step I.
	Step II.
	Step III.
	Step IV.
	Step V.

	5.4 Short proofs and separations

	6 Useful lower bounds on products of ordered polynomials
	6.1 Suggested lower bound approach

	Acknowledgments
	References

