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Abstract—Chunked codes are a variation of random linear
network codes with low computational complexities. In chunked
codes, the packets in a file are grouped into small (non-overlapped
or overlapped) chunks, and random linear encoding operations
are performed within each chunk. Previous studies show that
when the chunk size is lower bounded by some increasing
function of the file length, chunked codes asymptotically achieve
the min-cut capacity. However, in most real applications, the
chunk size is required to be a small constant due to the
computational constraints of network devices. In this case, it
remains unknown which rates can be achieved by chunked codes.
In this paper, we address the analysis and design of chunked
codes with fixed constant chunk sizes. We first highlight the
importance of precoding for chunked codes to achieve constant
rates, and then present an analysis of non-overlapped chunked
(NOC) codes with precoding. We further introduce a new class of
chunked codes, called EOC codes, which are based on expander
graphs to form overlapped chunks. Numerical and simulation
results show that EOC codes achieve significantly higher rates
than NOC codes, and also outperform other state-of-the-art
overlapped chunked codes.

I. INTRODUCTION

Random linear network coding (RLNC) [1], [2] has become

a simple but powerful tool for data dissemination over com-

munication networks. In RLNC, participating nodes generate

coded packets by linear combinations of all the packets

received so far with coefficients randomly chosen from a finite

field and forward the coded packets. Due to its random nature,

RLNC can be easily implemented in a distributed fashion. It

is also capacity-achieving for networks with packet loss in a

wide range of scenarios [3], [4].

A major issue in applying RLNC is its high computational

complexities. Consider the transmission of a file with K
packets. For encoding, RLNC requires O(K) operations to

generate a coded packet. And for decoding, it has to invert

a K × K dense matrix and use the inverse to recover the

whole file. Usually, the time for decoding is dominated by

the file recovery process, which costs O(K) operations for

each original packet. When the file is very large, the cost of

both encoding and decoding operations becomes prohibitive,

making RLNC hardly to be implemented in real systems.

As a variation of RLNCs, chunked codes incur lower

computational complexities by grouping the packets of a file

into multiple small chunks (a.k.a. generations, classes, etc.),

and performing random linear encoding operations within each
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chunk [5]. One issue in applying chunked codes is scheduling,

i.e., when a transmission chance is available, which chunk

should be chosen for generating a coded packet. One scheme

is sequential scheduling, in which the sender keeps on trans-

mitting packets generated using a chunk, and when receiving

positive feedback(s) from receiver(s), it starts the transmission

of the next chunk. While some efficient feedback protocols

for specific applications have been developed [11], [7], in

general, such feedbacks incur a non-negligible delay and

may consume network resources such as bandwidth, resulting

in degraded system performance. An alternative approach

without feedbacks is random scheduling, where the chunk for

generating a coded packet is always randomly picked. Random

scheduling is also known to be resilient to any channel erasure

patterns.

In the context of random scheduling, Maymounkov et al.
[8] showed that chunked codes with disjoint chunks, referred

to as non-overlapped chunked (NOC) codes, can achieve the

capacity if the chunk size is on or higher than the logarithm

order of the file length. However, in most real applications,

the chunk size is required to be a small constant due to the

computational constraints of network devices. In this case, it

remains unknown which rates (to be formally defined) can

be achieved by NOC codes. On the other hand, two research

groups have independently shown by simulations that better

performance could be achieved for practical chunk sizes by

allowing different chunks to share same packets [9], [10],

referred to as overlapped chunked codes. Although several

overlapped chunking schemes have been proposed in the

literature [9], [10], [11], the analyzes of them are somewhat

heuristic [10], [11], or assume variable chunk sizes [12], [12].

In this paper we address the analysis and design of chunked

codes with constant chunk sizes under the strategy of random

scheduling. By noting that the random scheduling strategy

requires a large number of coded packets for decoding the

last chunks, we prove that for any chunked code with a

fixed constant chunk size, if applied directly, the rate vanishes

inevitably as the file length goes to infinity. Thus, precode,

which allows only a fraction of packets to be decoded, plays

a vital role to achieve a positive rate. We then present a tight

analysis for the NOC codes with precoding, which can help us

choose appropriate precodes such that the rates are maximized.

It is observed that the maximum rates achieved by NOC codes

are far away from 1 (e.g., in a moderate setting with a chunk

size of 32 and a finite field size of 16, the maximum rate of
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an NOC code is only about 73%).

Towards the improvement of rates, we propose a novel

expander graph based overlapped chunking (EOC) scheme,

which uses only a small number of overlaps such that the

number of chunks is increased slightly, and simultaneously

guarantees that whenever any subset of chunks is decoded,

it can provide substantial help for decoding the remaining

chunks. We also establish a lower bound for the maximum rate

of an EOC code with appropriate parameter and precoding,

which reveals that EOC codes can achieve significantly higher

rates than NOC codes (e.g., in the same setting as mentioned

earlier, the maximum rate of an EOC code is at least 93%).

Also, simulation results show that EOC outperforms other

state-of-the-art overlapped chunking schemes.

II. PRELIMINARIES

We formally describe the model of chunked codes. Consider

the distribution of a file with K packets, P1,P2, . . . ,PK ,

each of which is composed by a number of symbols from

a finite field Fq. The packets are grouped into n chunks,

C1, C2, . . . , Cn, where each chunk is a set of M packets.

Throughout the paper we assume that M is a fixed constant

which is independent of K. We call a coding scheme non-

overlapping if all chunks are disjoint, i.e., Ci ∩ Cj = ∅ for all

i �= j, and overlapping if otherwise.

Similar to [11], we assume that the file is distributed

over a unicast link modeled by an erasure channel using a

chunked code under the strategy of random scheduling. In

each transmission, the source: (1) selects a chunk uniformly

at random, say Cj , from the n chunks; (2) randomly combines

packets in Cj into a new packet Pnew =
∑

i ciPji , where

Pji’s are packets in Cj , and c = (c1, c2, . . . , cM ) is a random

vector whose entries are picked uniformly and independently

from Fq; (3) sends the newly generated packet Pnew to the

destination over the communication link. The transmission of

the source is rateless, i.e., the source does not stop transmitting

until the whole file has been decoded by the destination.

Once the destination has collected M coded packets with

linearly independent encoding vectors for some chunk, all

packets in the chunk can be decoded by the Gauss elimination.

The process is completed when all chunks have been decoded.

Furthermore, if the chunks are allowed to be overlapped,

some packets may appear in more than one chunks, thus a

successfully decoded chunk may help decoding other chunks.

This leads to an iterative decoding process: whenever a chunk

is successfully decoded, the linear system is updated accord-

ingly so that the decoded packets are substituted back helping

decode other chunks.

Since each transmitted coded packet is erased randomly

and independently, all the received packets are statistically

the same. Thus, we can define N as the minimum number

of coded packets to be collected such that the whole file can

be reliably decoded, i.e., the file fails to be recovered with

probability at most inverse polynomial in K, and evaluate the

efficiency of a chunked code by the ratio between K and N .

Formally, we define the (normalized) rate R(M) of a chunked

code with chunk size M as

R(M) = lim
K→∞

K

N
. (1)

With some abuse of notation, we also refer to K/N as its rate.

Since the rate of any chunked code is upper bounded by 1,

our main objective is to design efficient chunked codes with

rates close to 1.

III. PRECODES

As mentioned earlier, for chunked codes, the random

scheduling strategy will incur a long tail of the “coupon

collector’s curve”, i.e., a large number of packets have to be

collected for decoding the last chunks, which reminds us not to

apply chunked codes directly. Formally, we have the following

result.

Theorem 3.1: For any chunked code with a constant chunk

size, if applied directly, then its rate decays at a rate of

Ω( 1
log K ) as the file length K grows.

The proof of the above result is similar to the one in [14]

for a result for LT codes, and is thus omitted to save the space.

Example 3.2: Consider an NOC code with n chunks, each

with size M . To decode the file completely, the destination has

to collect M packets of each chunk.1 It is shown in [15] that,

when K → ∞, N = n log n + (M − 1)n log log n + O(n).
Noting n = K

M , K
N = Θ( 1

log K ) vanishes.

The idea to achieve a positive constant rate is to apply

precoding before using chunked codes for transmission: the

source first encodes the original K packets into K ′ > K
precoded packets using some precoding scheme, and then

transmits these precoded packets using a chunked code. In

this case, only a fraction of precoded packets is required to

be decoded at the destination so that the whole file can be

recovered, thus avoiding the long tail, and achieving a non-

vanishing rate.

We make the following assumption about precoding: for any

0 < η < 1 and ε > 0, there exists some precode PC(η), which

encodes K original packets into K ′ = K/η precoded packets

such that all K original packets can be recovered reliably from

any (1+ε)ηK ′ = (1+ε)K precoded packets. The assumption

holds for various codes, including Tornado codes [16], right-

regular codes [17], etc.

IV. ANALYSIS FOR NON-OVERLAPPED CHUNKED CODES

Let ζj
M be the probability that an M×j matrix with entries

uniformly chosen from Fq at random has rank M . We have

(see a derivation in [18])

ζj
M =

{∏M−1
l=0 (1− 1

qj−l ) j ≥ M

0 j < M.

According to the random linear coding scheme, ζj
M is just the

probability that a chunk is decodable when j coded packets

of this chunk are collected.

1To make the illustration simple, here q is assumed to be sufficiently large,
such that the encoding vectors of any collected packets of a chunk are linearly
independent.
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Let p(x) =
∑∞

j=M
e−xxj

j! ζj
M .

The following result establishes the relationship between

the number of decodable original packets and the number of

received coded packets when an NOC code without precoding

is applied.
Lemma 4.1: Consider the transmission of K packets using

a precode-free NOC code with chunk size M . Let η be the

fraction of decodable original packets when receiving N coded

packets, and μ = NM
K be the average number of received

packets of each chunk. Then for any 0 < ε < 1, the event

(1− ε)p(μ) < η < (1 + ε)p(μ) (2)

fails to hold with probability exponentially small in K.
Proof: (Sketch) We employ the technique of Poisson

approximation [19]. First, approximate the number of received

packets of each chunk by i.i.d. Poisson distribution with

mean value μ. Then it is easy to see that p(μ) gives the

probability that a chunk can be decoded, thus the expected

fraction of decodable chunks. By Chernoff bounds, the fraction

of decodable chunks in the Poisson approximation is tightly

concentrated around p(μ). By applying the same argument as

in [19], this implies the tight concentration in the real case,

where the number of received packets of each chunk follows

a Binomial distribution with mean value μ. Therefore, η is

sharply concentrated around p(μ).
According to the above result, one can choose an appro-

priate precode for NOC codes such that the number of coded

packets required for decoding the whole file is minimized, and

thus the rate is maximized.
Theorem 4.2: Let μ∗ = arg maxμ>0

p(μ)
μ and η∗ = p(μ∗).

Then by precoding with PC(η∗), an NOC code can achieve its

maximum rate Rmax(M), which satisfies

p(μ∗)
μ∗

M − ε ≤ Rmax(M) ≤ p(μ∗)
μ∗

M + ε. (3)

for any arbitrarily small constant ε > 0.
As the theorem implies, NOC codes with precoding can

achieve positive rates. However, such rates are a bit low. For

example, when M = 32 and q = 16, the rate is only about

73%. In the next section, we propose an expander graph based

overlapped chunking scheme, which can improve the rates of

chunked codes significantly.

V. EXPANDER GRAPH BASED OVERLAPPED CHUNKED

CODES

A. Scheme Description
An expander graph based overlapped chunked (EOC) code

with K original packets, chunk size M and a parameter d
can be constructed as followings. Here d is an integer with

3 ≤ d ≤ M . Let n = K
M− d

2
. To keep the analysis simple, we

assume that n is an integer and dn is even.

1) Generate a random d-regular graph2 G = (V, E) with n

2A random d-regular graph can be generated using different models. In
this paper, we adopt the uniform model, i.e., the d-regular graph is uniformly
chosen from all d-regular graphs with node set {1, 2, . . . , n}. However, one
can obtain the same result for many other models (e.g., permutation model,
perfect matching model [20]) by conducting a similar analysis.

nodes, where V = {1, 2, . . . , n}. A random regular graph

is an expander graph with high probability.

2) First associate each edge e ∈ E with a distinct original

packet, denoted by Pe, and then assign the rest original

packets evenly over the nodes. Denote the set of packets

assigned to node v as PSv .

3) Chunk Cj , 1 ≤ j ≤ n, consists of packets in PSj and

packets associated with edges incident to j, i.e.,

Cj = PSj ∪ {Pe : e is incident to node j}.
Due to the one-to-one correspondence between chunks and

nodes, we use the names interchangeably in this section.

From the above description, it is straightforward to see that

every chunk overlaps with d chunks, each on a distinct packet.

Therefore, when decoding, a chunk can enjoy different help

from different decoded neighboring chunks.

B. Analysis

To state the main theorem of this section, we need to

introduce some notations. For any x > 0, we define a function

fx(y) as

fx(y) =
d−1∑
w=0

(
d− 1

w

)
yw(1−y)d−1−w

∞∑
j=0

e−xxj

j!
ζj
M−w. (4)

With this function and its functional powers, we introduce

a sequence as fx(0), f2
x(0), . . . , f l

x(0), where l is an integer,

and f i+1
x (0) = fx(f i

x(0)) for all i ≥ 0. It can be verified that

the sequence is strictly increasing and is upper bounded by

1. Therefore, the sequence converges to a limit, denoted by

f∗x(0), when l goes to infinity, i.e., f∗x(0) = liml→∞ f l
x(0).

We further define a function g(d, x) as

g(d, x) =
(M −√d− 1)f∗x(0)− (d

2 −
√

d− 1)(f∗x(0))2

x
.

The following theorem provides a lower bound on the

maximum rate of an EOC code with precoding.

Theorem 5.1: Let (d∗, μ∗) = arg max3≤d≤M,μ>0 g(d, μ)
and η∗ = g(d∗,μ∗)μ∗

M−d∗/2 . Then by precoding with PC(η∗), an EOC

code with degree d∗ can achieve a rate of at least g(d∗, μ∗)−ε,

where ε > 0 is an arbitrarily small constant.

According to Theorem 5.1, it can be shown that EOC codes

achieve higher rates than NOC codes for different chunk sizes.

For example, when M = 32 and q = 16, an EOC code can

achieve a rate of at least 93%, while the rate of an optimal

NOC code is only about 73%.

Now we proceed to prove Theorem 5.1.

Definition 5.2: The l-neighborhood of a node v, denoted

by Gl(v), is defined as the subgraph of G induced by v and

all its neighbors within distance l. We say that v is l-decodable
if Gl(v) is a tree and v can be decoded when the decoding

process is restricted within the tree.

In the rest of the section, we set l = 1
3 logd−1 n.

We first derive the probability that a node v is l-decodable

in the case that the number of received packets of each chunk

follows an i.i.d. Poisson distribution.
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Lemma 5.3: Assume that the number of received packets

of each chunk follows an i.i.d. Poisson distribution with mean

value μ. Then for any node v and ε > 0, the probability that v
is l-decodable is at least (1− ε)f∗μ(0) for all sufficiently large

n.

Proof: For a random d-regular graph G with n nodes, let

τ(n) be the number of nodes whose l-neighborhood is a tree.

Due to [21], for any ε > 0, we have that

Pr(τ(n) < (1− ε)n) ≤ 1
ε2

O
( (d− 1)4l

n2

)
=

1
ε2

O(n−
2
3 ).

So, for sufficiently large n, it can be shown that

Pr(Gl(v) is a tree) =
E[τ(n)]

n
≥ 1− ε. (5)

Now assume that Gl(v) is a tree rooted at v. After deleting a

subtree rooted at a child of v, we obtain a (d−1)-ary tree. We

abuse the notation and denote the resulting tree also by Gl(v).
Number the level of root by l and level of leaves by 0. Define

pi(μ) as the probability that a node at level i is decodable

when the decoding process is restricted within the subtree of

Gl(v) rooted at the node. In the following, we calculate pi(μ)
in a bottom-up fashion.

For any leaf, it cannot get any help from other chunk. So,

p0(μ) =
∞∑

j=0

e−μμj

j!
ζj
M = fμ(0).

For an internal node at level i > 0, assume that its w children

have been decoded. Thus, each received packet of this node

can be seen as a random linear combination of all packets

of this node except for the w overlapping packets. Therefore,

when j packets are collected for this node, the node can be

decoded with probability ζj
M−w. By the definition of function

fμ(·), it can be verified that

pi(μ) = fμ(pi−1(μ)) = f i
μ(0).

Noting that f∗μ(0) = liml→∞ f l
μ(0), we have

pl(μ) > (1− ε)f∗μ(0) (6)

for any ε > 0 when n is sufficiently large.

Combining (5) and (6), the lemma follows.

The following lemma gives the number of l-decodable

chunks when receiving a number of coded packets.

Lemma 5.4: Let μ be the average number of received coded

packets of each chunk in the actual case. Then for any ε > 0,

the probability that the number of l-decodable chunks is less

than (1− ε)f∗μ(0)n is exponentially small in n.

Proof: (Sketch) The proof is by combining the Pois-

son approximation with Martingale concentration, where the

later benefits from the locality of l-decoding process. In the

Poisson case, consider a standard vertex exposure martingale

on the random regular graph G. Note that the exposure on

one node can affect the number of l-decodable nodes by at

most the number of nodes in its l-neighborhood, which is

on the order of n
1
3 . Therefore, we can apply the Azuma-

Hoeffding Inequality [19] to show that in the Poisson case, the

number of l-decodable chunks is tightly concentrated around

its expectation, which is at least (1 − ε)f∗μ(0)n according to

Lemma 5.3. This property holds in the actual Binomial case,

which can be shown by applying the argument in [19] to

remove the Poisson assumption.

Since each packet can appear in at most two chunks, the

above result can provide a lower bound for the number of

decodable packets. However, such bound is a bit loose. In the

following, we provide a much tighter analysis based on some

expander arguments.

Consider a d-regular graph G with n nodes. Let An×n be its

adjacency matrix, where A(u, v) is the number of edges in G
between nodes u and v. Clearly, A has n real eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn. Also, λ1 = d, and for all 1 ≤ i ≤ n, |λi| ≤ d.

Denote that λmax = max{|λ2|, |λn|}. The following theorem

lists some known results about expansion and spectrum of

random regular graphs.

Lemma 5.5: Let G be a random d-regular graph on n
nodes.

• ([22]) For any subset S of δn nodes, the number of edges

between nodes in S is at most dn
2

(
δ2 + λmax

d δ(1− δ)
)

.

• ([23]) λmax ≥ 2
√

d− 1 · (1−O(1/ log2 n)).
• ([24]) For any ε > 0, there exists some constant c > 0,

such that Pr[λmax ≤ 2
√

d− 1 + ε] = 1−O(n−c).
Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1: Let μ be the average number

of received packets of each chunk, and η be the fraction of

decodable chunks. According to Lemma 5.4, η ≥ (1−ε)f∗μ(0)
for any ε > 0 with high probability. So, according to

Lemma 5.5, the number of l-decodable packets is at least

ηnM − dn

2

(
η2 +

λmax

d
η(1− η)

)
≥((M −√d− 1)η − (

d

2
−√d− 1)η2)n

≥((M −√d− 1)f∗μ(0)− (
d

2
−√d− 1)(f∗μ(0))2 − ε)n

=(g(d, μ)− ε)n.

This provides a lower bound for the number of decodable

packets, which implies that the fraction of decodable packets

is at least
(g(d,μ)−ε)n

K ≥ g(d,μ)
M−d/2 −ε. Now it is straightforward

to show the theorem.

VI. PERFORMANCE EVALUATION

We evaluate the performance of our EOC scheme, and

compare it with the NOC scheme, the head-to-toe overlapped

chunking (H2T) scheme [9], and the random annex coding

(RAC) scheme [6].

In Fig. 1, we evaluate numerically the achievable rates of

both NOC codes and EOC codes provided in Theorem 4.2 and

Theorem 5.1, respectively. We see that EOC codes achieve

significantly higher rates than NOC codes with the same

parameters. In particular, when the chunk size is 128, and

the size of finite field is 16, an EOC code can achieve a rate

of at least 0.96.
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We also conduct simulations to compare EOC with NOC,

H2T and RAC. Without precode, the relationships between

the number of received packets and the fraction of decodable

packets for all mentioned schemes are plotted in Fig. 2. In all

simulations, the chunk size is 32 and the finite field size q is set

to be infinity to see the extreme performance. (The results in

the figure can be well approximated by using sufficiently large

finite fields, e.g., q = 28.) Since it is not easy to get the optimal

chunk numbers in EOC, H2T and RAC analytically, for each

scheme we perform the simulation for all the valid chunk

numbers and choose the one such that the number of received

coded packets for decoding the whole file is minimized. The

results of EOC� are obtained by using EOC with degree d
optimized for using precode (see Theorem 5.1).
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Fig. 1. Comparison of rates achieved by NOC and EOC codes with
precoding.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 6000  8000  10000  12000  14000  16000

F
ra

c
ti
o

n
 o

f 
D

e
c
o

d
a

b
le

 P
a

c
k
e

ts

Number of Received Coded Packets

NOC  
H2T   
RAC  
EOC  
EOC*

Fig. 2. Comparison between NOC, H2T, RAC, and EOC in terms of the
number of received coded packets for decoding a file with 10000 packets. For
each scheme, the values in the figure are the average of 100 transmissions.

We observe that both RAC and EOC show an avalanche of

decoding after certain number of packets have been received.

EOC� is the most efficient scheme for recovering a large

fraction (e.g., 95%) of the original packets, but it incurs a

longer tail than EOC for decoding the whole file.

VII. CONCLUSION

In this paper we studied the performance of chunked codes

with constant chunk sizes. We highlighted the importance of

precoding, and presented a tight analysis for NOC codes.

We proposed and analyzed a novel expander graph based

overlapped chunking scheme EOC, which outperforms NOC

and all state-of-the-art overlapped chunking schemes. In the

future, we would like to analyze the performance of EOC

codes of finite lengths and in more generalized network

models.
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