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Abstract: In the present investigation, the unsteady flow of upper - convected Maxwell fluid in a horizontal circular

pipe is studied by spectral method. The unsteady problem is mathematically reduced to a partial different ial equation of

second order. By using spectral method the partial different ial equat ion can be reduced to a system of ordinary differen-

tial equations for different terms of Chebyshev polynomials approximat ions. The ordinary differential equations are solved

by the method of Laplace transform and the eigenvalue method that led to an analytical form of the solut ions.
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� � In 1930�s non- Newtonian fluid mechanics was developed rapidly as a new branch of fluid mechanics
[1, 2]

. The non

- Newtonian fluid was studied originally because of its applicat ion in polymer processing.At present the principle of non

- Newtonian fluid mechanics has application nearly in every field of industrial processes.The time dependent flow in a

tube has received both theoretical and practical interest as an important type of flows encountered in industrial processes.

Although it is usually solved with numerical method, the analyt ical approach is desirable for this problem.The variation

method of Kantorovich
[ 2,3]

is one of analytical approaches. In the present paper a time dependent flow in a tube is analyt-i

cally studied with spectral method for a non- Newtonian fluid, i. e. the upper- convected Maxwell fluid.

1 �Governing Equations
� �The upper - convected Maxwell fluid as a non- Newtonian f luid model is used.The fluid is assumed to be

incompressible. The cylindrical coordinate system ( r, �, z ) is used. The velocity field is assumed to be of the

following form:

Vr = 0, V� = 0, Vz = w ( r , t ) . ( 1)

� �The const itut ive equation of the Maxwell f luid has the following form: S
ik

+ �1S
�

ik
= �0A

ik
, where S

ik
is the

contravariant components of the extra- stress tensor, A
ik

is the contravariant components of the first order Rivlin

- Ericksen tensor, �1 is relaxat ion t ime. The upper - convected derivative is used because the model with this

derivative is in agreement with most of the experiments. This upper - convected derivative is defined by
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The equation of motion for the velocity field ( 1) is reduced as

��W
�t

= - �P
�Z

+ 1
r
�
�r

( rS rz ) . ( 2)

For the velocity field the constitutive equations are reduced asS r� = S�� = Szz = S�z = S r� = 0, and

S rz + �1
�S rz

�t = �0A
rz
. ( 3)

Using the constitutive eq. ( 3) and the eq. ( 2) , one obtains a partial differential equation of second order for the

velocity W which is given as

�
�W
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2
W
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�
2
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2 -
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) = 0. ( 4)

Introducing the following dimensionless variables, � =
�0W

( �P�L ) R
2 , �=

�0 t
�R

2 , �= r�R . Eq. ( 4) is then reduced

to the dimensionless form:
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� �
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�
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2 -
1
�
��
��

- �( �) = 0, ( 5)

where H a = We�Re , Re = �R 1 V0��0 , We = �1 V0�R , and

P̂ = P��P , Ẑ = Z�L , �( �) = -
�P̂
�Ẑ

- H a

�
��

(
�P̂
�Ẑ

) .

The boundary conditions are given as

�= 1, �( �, �) = �( 1, �) = 0,

�= 0, � ����= 0.
( 6)

The init ial condition is g iven as

�= 0, �( �, �) = �( �, 0) = 0. ( 7)

2 � Spectral Method
� �The Chebyshev polynomials are chosen to act as the radical of spectral method.The general solut ion of the

t ime dependent eq. ( 9) is assumed to be of the form: �( �, �) = �
n

i= 0

f i ( �) T
*
i ( �) . Consider that �( �, �) can

be expanded in a series of Chebyshev polynomials whose properties are out lined in reference[ 2, 5] ,

�( �, �) = f 0 ( �) T
*
0 ( �) + f 1 ( �) T

*
1 ( �) + f 2 ( �) T

*
2 ( �) + � ,

where f i ( �) are the unknown coefficients, T
*
i ( �) are the Chebyshev polynomials that applies in the region 0 �

� � 1 according to references[ 2 ~ 5] ,

T
*
0 ( �) = 1, T

*
1 ( �) = 2�- 1, T

*
2 ( �) = 8�

2
- 8�+ 1,

T
*
3 ( �) = 32�

3
- 48�

2
+ 18�- 1, T

*
4 ( �) = 128�

4
- 256�

3
+ 160�

2
- 32�+ 1. ( 8)

2. 1 The First Three Terms Approximation

� �For the first three terms,

�( �, �) = f 0 + ( 2�- 1) f 1 + ( 8�
2
- 8�+ 1) f 2 . ( 9)

According to the init ial condit ion eq. ( 7) , f 0 ( 0) = f 1 ( 0) = f 2 ( 0) = 0. According to the boundary condit ions eq.

( 6) , f 0 + f 1 + f 2 = 0, 2f 1 - 8f 2 = 0. Thus

f 1 = 4f 2 , f 0 = - 5f 2 . ( 10)

Substituting eq. ( 10) into eq. ( 9) yields

�( �, �) = - 8f 2 ( 1- �
2
) . ( 11)
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The integral form is used to seek a solut ion to eq. ( 5) , where 0 � � � 1. According to the orthogonality

relationship,
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where Wj is a weighting function. Examining the classical theory of expanding a function in terms of Chebyshev

polynomials, one f inds that the appropriate form of Wj is

Wj =
T

*
j

�( 1 - �)
� � j = 0, 1, 2� . ( 13)

Note the property

�
1

0

T
*
i T

*
j

�( 1- �)
d�=

�� � � i = j = 0,

�
2 � � i = j � 0,

0� � � i � j .

Substituting eq. ( 5) and ( 13) into eq. ( 12) yields

H a

d
2
f 2

d�
2 +

df 2

d�
+

32
5
f 2 +

1
5
�( �) = 0� � j = 0, ( 14)

H a

d
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1
2
H a

d
2
f 2

d�
2 + 1

2
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= 0� � j = 2. ( 16)

Clearly, eq. ( 15) and ( 16) are not valid.This is due to the error created by truncat ing the terms.The ordinary

different ial eq. ( 14) is solved by Laplace t ransform,

f 2 ( �) = -
1

5H ( r1 - r 2 )�
�

0
� ( �- u) ( e
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u
) du +
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�
) , ( 17)

where f 2 ( 0) = 0, f�2 ( 0) = A , r 1 and r2 are tow roots of the algebraic equation, r
2
+

1
H a

r +
32

5H a

= 0, and

r 1,2 =
1

2H a

� 1
2H a

1 -
128
5
H a . ( 18)

� � It is assumed that f 2 ( �) can be expanded into Taylor series for �= 0. The small higher order variables

o ( �
2
) are omitted.When � is very small, f 2 ( �) can be considered to be a linear function for �. From eq. ( 14) ,

f�2 ( 0) = A = -
1
5 �( 0) = -

1
5 [-

�P̂
�Ẑ - H a

�
��(-

�P̂
�Ẑ ) ] | �= 0 .

� � In this paper, only the flow under the condition of constant pressure gradient is presented, that is, �P̂��Ẑ is a

constant. Because the coefficient of the expression of velocity in steady axial flow is 1�4,we choose �P̂��Ẑ = - 4,

f�2 ( 0) = - 1
5
�( 0) = - 4

5
. ( 19)

Substituting eq. ( 19) into eq. ( 11) yields

�( �) = 4. ( 20)

Substituting eq. ( 20) and A = - 4�5 into eq. ( 17) yields
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1
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Substituting eq. ( 21) into eq. ( 11) yields
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and
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where �( 0, �) is the velocity of the center of the tube.

2. 2 The First Four Terms Approximation

� �For the first four terms,

�( �, �) = f 0T
*
0 + f 1T

*
1 + f 2T

*
2 + f 3T

*
3 = f 0 + ( 2�- 1) f +

( 8�
2
- 8�+ 1) f 2 + ( 32�

2
- 48�

2
+ 18�- 1) f 3 . ( 24)

According to the initial condit ion ( 14) and boundary condit ions ( 12) and ( 13) ,

f 0 ( 0) = f 1 ( 0) = f 2 ( 0) = f 3 ( 0) ,

f 0 + f 1 + f 2 + f 3 = 0,

and

2f 1 - 8f 2 + 18f 3 = 0. ( 25)

Thus f 0 = - 5f 2 + 8f 3 , and

f 1 = 4f 2 - 9f 3 . ( 26)

Substituting eq. ( 25) and ( 26) into eq. ( 24) yields

�( �, �) = - 8f 2 ( 1- �)
2
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3
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2
+ 1) . ( 27)

Substituting eq. ( 27) into eq. ( 12) yields
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Accomplishing this definite integral yields

- 5H af 2
�
+ 8H af 3

�
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�
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�
- 32f 2 + 48f 3 - �( �) = 0� � j = 0, ( 28)
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According to eq. ( 28) and ( 29) ,
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�
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The system of ordinary different ial equations can be reduced to an ordinary differential equat ion of fourth order,

H
2
af
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2 + (
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H a + 1) f 2
�

+
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13

f 2
�

+
4 608

13
f 2 + �( �) = 0, ( 31)

where �( �) =
9

13
(H a ��+ ��) +

144
13
�. The eigenequat ion of eq. ( 31) is given by

H a�
4
+ 2H a�

3
+ (

816
13 H a + 1) �

2
+

816
13 �+

4 608
13 = 0. ( 32) .

The roots of eq. ( 32) are given as follows:

�1, 2 =
- 1 � 1-

96
13H a ( 17+ 185)

2H a

, ( 33)

�3, 4 =
- 1 � 1-

96
13
H a ( 17- 185)

2H a

. ( 34)

For the first four terms approximat ion the general solution of eq. ( 31) is given by

f 2 �= D 1e
�
1
�
+ D 2e

�
2
�
+ D 3e

�
3
�

+ D 4e
�

4
�
+ f

*
2 , ( 35)

where f
*
2 is one of the special solut ions of eq. ( 31) . Constant D 1 , D 2 , D 3 and D 4 are determined by the init ial

condition.The constant pressure gradient - �P��Z are considered. Pressure gradient is considered as constant

gradient, it can be assumed to be of the form:
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-
�P̂
�Ẑ

=
L
��
�P
�Z

= 4, ( 36)

and �( �) = -
�P̂
�Ẑ

- H a
�
��

(
�P̂
�Ẑ

) = 4.

� � In this case, the special solut ion f
*
2 ( �) of eq. ( 31) is assumed to as

f
*
2 ( �) = K , ( 37)

where K is a constant which is not determined.

� � Substituting eq. ( 37) into eq. ( 31) yields

K = -
13

4 608
�( �) = -

1
8

. ( 38)

It is assumed that f 2 ( �) and f 3 ( �) can be expanded in Taylor series at �= 0. When � is very small,we consider

that f 2 ( �) and f 3 ( �) are linear functions for �. Substituting this assumption into eq. ( 30) yields

f 2
�
( 0) = - 36�13, f 3

�
( 0) = - 16�13. ( 39)

� � Substituting eq. ( 37) and ( 38) into eq. ( 35) yields

f 2 ( �) = �
4

i= 1
D ie

�
i
�
-

1
8

. ( 40)

Substituting eq. ( 40) into eq. ( 30) yields

f 3 ( �) = -
13
720

[ H af 2
�

+ f 2
�

+
288
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f 2 +
36
13

] = �
4
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[-
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5
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�
. ( 41)

According to initial condit ions f 2 ( 0) = f 3 ( 0) = 0 and eq. ( 39) ,
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8
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�
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5
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.

( 42)

A system of algebraic equat ions for D 1 , D 2 , D 3 and D 4 are composed of eq. ( 42) . D 1 , D 2 , D 3 and D 4 are

determined by this system of equations. Substitut ing eq. ( 40) and ( 41) into eq. ( 24) yields

�( �, �) = [ 1 + �
4

i= 1

(- 8D ie
�
i
�
) ] ( 1 - �

2
) + �

4

i= 1

16[- 13
720
�

2
5

] ( H a�
2
i + �i ) - Di e

�
i
�

( 2�
3

- 3�
2
+ 1) . ( 43)

The dimensionless velocity of the center of the tube is given by

�( 0, �) = �m = 1 + �
4

i= 1
(- 8D ie

�
i
�
) + �

4

i= 1
16[-

13
720

(H a�
2
i + �i ) -

2
5

] D ie
�
i
�
. ( 44)

The f irst f ive terms and more terms approximat ions can be deduced in the same way.

3 Results and Discussion

� � In the present paper the time dependent flow in a pipe is invest igated for the upper - convected Maxwell

f luid.This problem is reduced mathemat ically to a partial different ial equat ion of second order for the

dimensionless velocity. The spectral method is used to solve the problem.The part ial differential equat ion is

reduced to a system of ordinary different ial equations with the proper terms for a desired approximat ion. For each

approximation the analytical solution, i. e. the eigensolution is found. The numerical results of the problem and the
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analyt ical solut ion of the first three and four terms approximat ions are given in fig. 1 to fig. 5 for comparison.

Fig. 1 � Ha = 0. 1 ~ 0. 3, The Change of� � � � � � Fig. 2� Ha = 0. 4 ~ 0. 6, The Change of

the Velocity With Time� � � � � � � � � � � � � the Velocity With Time

Fig. 3 Ha = 0. 8 ~ 1. 0, The Change of

   the Velocity With Time
       Fig. 4  Ha = 0. 2, Comparison of Results

K 1 ) the f irst approx. of Kantorovich;K 2 ) the second approx. of Kantorovich; D ) the definite difference;

C 4 ) the first four terms approx. of spect ral method; C5 ) the first f ive terms approx. of spect ral method

Fig. 5 Ha = 0. 8, in Comparison With Results

  In f ig. 1 to f ig. 3 the change of the dimensionless velocity at the center of the tube w ith time is shown for the

parameter values H a = 0. 2 ~ 1. 0 are chosen. In f ig. 4 for H a = 0. 2 the results of the f irst three, four and five

terms approximat ions are compared with that of the difference. In fig. 5 for H a = 0. 8 the results of the first four
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terms and f ive terms approximat ions compare with that of definite difference and variation approach of

Kantorovich.The change of the velocity w ith time has some special character because it is caused by both

unsteady behavior and the viscoelasticity of the fluid.

  A new analyt ical method for solving the time dependent flow of non - Newtonian f luids is put forward. In

comparison with results of the definite difference and variation approach of Kantorovich, the results of spectral

method are content . The results show that the spectral method is suitable for the study of t ime dependent flow of

non - Newtonian fluids.
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基 于 谱 方 法 的 管 内 非 牛 顿 流 体 非 定 常 流 动

付  强

(西南民族学院物理系, 四川 成都 610041)

  摘  要 : 以 上 随 体 Maxwell 流 体 为 非 牛 顿 流 体 介 质 , 探 索 了 一 种 用 谱 方 法 解 析 处 理 水 平 圆 管 内 非 牛 顿 流 体 非 定 常 流 动

的 方 法 . 该 非 定 常 问 题 归 结 为 一 个 非 线 性 二 阶 偏 微 分 方 程 的 求 解 问 题 . 用 谱 方 法 将 非 线 性 二 阶 偏 微 分 方 程 求 解 问 题 化 为 常

微 分 方 程 组 Chebyshev 多 项 式 数 的 近 似 问 题 , 用 Laplac 变 换 法 和 本 征 值 方 法 求 解 常 微 分 方 程 组 得 到 问 题 的 解 析 结 果 .

  关 键 词 : 谱 方 法 ; 非 定 常 流 动 ; Chebyshev 多 项 式
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