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Unsteady Flow of Non— Newtonian Fluid in Pipe by Spectral Method
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Abstract: In the present investigation, the unsteady flow of upper— convected Maxwell fluid in a horizontal circular
pipe is studied by spectral method. The unsteady problem is mathematically reduced to a partial differential equation of
second order. By using spectral method the partial differential equation can be reduced to a system of ordinary differen
tial equations for different terms of Chebyshev polynomials approximations. The ordinary differential equations are solved
by the method of Laplace transform and the eigenvalue method that led to an analytical form of the solutions.
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In 1930 s non— Newtonian fluid mechanics was developed rapidly as a new branch of fluid mechanics'? . The non
— Newtonian fluid was studied originally because of its application in polymer processing. At present the principle of non
— Newtonian fluid mechanics has application nearly in every field of industrial processes. The time dependent flow in a
tube has received both theoretical and practical interest as an important type of flows encountered in industrial processes.
Although it is usually solved with numerical method, the analytical approach is desirable for this problem. The variation
method of Kantorovich' ™ is one of analytical approaches. In the present paper a time dependent flow in a tube is analyt-

cally studied with spedral method for a non— Newtonian fluid, i. e. the upper— conveded Mawell fluid.

1 Governing Equations
The upper— convected Maxwell fluid as a non— Newtonian fluid model is used.The fluid is assumed to be
incompressible. The cylindrical coordinate system (r, ,z) is used. The velocity field is assumed to be of the
following form:
Vi= 0,V = 0,V.= w(r,t). (D

The constitutive equation of the Maxwell fluid has the following form: $"+ 18" = oA" where S" is the

. ik . . . . 1s
contravariant components of the extra— stress tensor, A is the contravariant components of the first order Rivlin
— Ericksen tensor, 1 is relaxation time. The upper— convected derivative is used because the model with this

derivative is in agreement with most of the experiments. This upper— convected derivative is defined by
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The equation of motion for the velocity field (1) is reduced as
w__ P 1 _

= 7t T (rSz). (2)

For the velocity field the constitutive equations are reduced asS, = S = S. = S5, =S, = 0,and
Se .
Se+ 1——= oA". (3)

Using the constitutive eq. (3) and the eq. (2), one obtains a partial differential equation of second order for the
velocity W which is given as

WP P
W, r

W _ _ 0 _ Ly
A (4)
. . . . . oW ot .
Introducing the following dimensionless variables, = W, = —5, = r R.Eq.(4) is then reduced
to the dimensionless form:
2 2
1
L( )= —+H,—7- —- ——- ()=0, (5)
where H, = We Re, Re= RV, o, We= Vo, R, and
P P
P=P P Z2Z=7L, ()=- Z—Hu (Z)
The boundary conditions are given as
=L (,)= (L )=0
6
=0, = 0. (6)
The mitial condition is given as
=0 (.)= (,0=0 (7)

2 Spectral Method

The Chebyshev polynomials are chosen to act as the radical of spectral method. The general solution of the

time dependent eq. (9) is assumed to be of the form: ( , ) = fi( )T,* ().Consider that ( , ) can
=0

be expanded in a series of Chebyshev polynomials whose properties are outlined in reference| 2, 5],
()= ol )To )+ fi)T( )+ ()T () +
where fi () are the unknown coefficients, T () are the Chebyshev polynomials that applies in the region 0

1 according to references[ 2 ~ 5],

To( )= LTi( )=2 - LT-( )= 8 =8 +1,
T5( )=32"-48 2+ 18 - 1,Ts( )= 128 *- 256 *+ 160 °- 32 + 1. (8)
2.1 The First Three Terms Approximation
For the first three terms,
(. )=fot+ (2 = )fi+ (87°=8 + 1I)fa. (9)

According to the initial condition eq. (7),f0(0) = f1(0) = f2(0) = 0. According to the boundary conditions eq.
(6),fo+ f1+ f2= 0,21 — 82= 0. Thus

fr= 41 fo=- 5. (10)
Substituting eq. (10) into eq. (9) yields

2

(. )==§2(1- 7). (11)
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The mtegral form is used to seek a solution to eq. (5), where 0 1. According to the orthogonality

relationship,
1 1 2 2 |

WL( )d = W[H:——=+ —= —=- ——- ()]d =0, (12)

0 0

where W, is a weighting function. Examining the classical theory of expanding a function in terms of Chebyshev

polynomials, one finds that the appropriate form of W; is
T
W, = ——— j=0,1,2 . (13)

AT

Note the property

v l L:].: 0,
i o,
T —_— - ~ L: N
- T2 !
0 i
Substituting eq. (5) and ( 13) into eq. (12) yields
d&f: dfs 32 1 .
H”d2+d+5f2+5 ()=0 =0, (14)
2
w42 j= 1, (15)
d
2
1y df2 19 -
2H,,012+201 =0 ;=2 (16)

Clearly, eq. (15) and (16) are not valid. This is due to the error created by truncating the terms.The ordinary
differential eq. (14) is solved by Laplace transform,
1

f200) == SH(ri= r2) o ( = u)(er’ = e>duv ro- rz(er1 - ). (17)
. . 2 1 32
where f2(0) = 0,f 2(0) = A, ry and r; are tow roots of the algebraic equation, r” + gt sy = 0, and
1 1 128
rip2= ZH(, 2H” - 5 H(l . ( 18)
It is assumed that f2( ) can be expanded into Taylor series for = 0. The small higher order variables

o( 2) are omitted. When  is very small, f>( ) can be considered to be a linear function for . From eq. (14),

A0 =A== % (0) == +[- H-H.—( DI -0

In this paper, only the flow under the condition of constant pressure gradient is presented, thatis, P Z is a

constant. Because the coefficient of the expression of velocity in steady axial flow is 1 4,we choose P Z = -4,
R __ 4
fam=- L == 4 (19)
Substituting eq. (19) into eq. (11) yields
()= 4 (20)
Substituting eq. (20) and A = — 4 5 into eq. (17) yields
— i_ ; "1 2y _ 1 T "2
S0 == g5yl — ) g (et et (21)
Substituting eq. (21) into eq. (11) yields
32 r . 1 . .
()= D s ayle = o) e = 1= ), (22)

and



= 0 ) = [ g - )

ri— r2
where (0, ) is the velocity of the center of the tube.
2.2 The First Four Terms Approximation
For the first four terms,
(. )= foTo + [1T1 + f2Ts + f3Ts = fo+ (2 = 1)f +
(8 7= 8 + I)f2+ (R "= 48 "+ 18 - 1)fs. (24)
According to the initial condition (14) and boundary conditions (12) and (13),
So(0) = f1(0) = f2(0) = f3(0),
Sfo+ f1+ f24 f3=0,
and
2f1— &2+ 1&5= 0. (25)
Thus fo=- 52+ &3, and
fi=42- 9. (26)
Substituting eq. (25) and (26) into eq. (24) yields

(. ) =-81(1- )+ 1652 =37+ 1). (27)
Substituting eq. (27) into eq. (12) yields
1 2 2
W[H., —x+ — —z- L () =o

Accomplishing this definite integral yields
- SHf + 8Hf5 — 52+ &3 — Rfo+ 48:- (1 )=0  j=0, (28)

QH(fz—%H(f3+Zfz—%f3—7gfs= 0 j=1 (29)
According to eq. (28) and (29),
288 720 128 528 4
Hf>» + fo =- 13f2 13f3 = LHfs + f3 =- 13f2 13f2 3 - (30)
The system of ordinary differential equations can be reduced to an ordinary differential equation of fourth order,
s g e (e D+ g s B ()= 0 (31
9 144 . . o
where () = E(Hu + ) + e . The eigenequation of eq. (31) is given by
Ho '+ 2H. '+ (&6}1« )’ %6 + ‘%28: 0. (32).
The roots of eq. (32) are given as follows:
-1 Jl— SH.(17+ 4185 )
13
2= M (33)
-1 Jl— ?_gHa(17_ J 185)
= . (34)

3,4 = .

For the first four terms approximation the general solution of eq. (31) is given by
f2 = Diet + Dye? + Die3s + Dye+ +f;, (35)
Wherefék is one of the special solutions of eq. (31). Constant Dy, D,, D3 and D4 are determined by the initial
condition. The constant pressure gradient — P Z are considered. Pressure gradient is considered as constant

gradient, it can be assumed to be of the form:
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P L P
S LoLr_, (36)
P — (P _
and () =- Z_Ha (Z)_
In this case, the special wlutionf; () of eq.(31) is assumed to as
S ()= K, (37)
where K is a constant which is not determined.
Substituting eq. (37) into eq. (31) yields
13 1
K__46O8 ()=- 8" (38)
It is assumed thatf>( ) andf;( ) can be expanded inTaylor series at = 0. When is very small,we consider

that f2( ) andf3( ) are linear functions for . Substituting this assumption into eq. (30) yields
f2(0) =-3613,f5(0) =- 16 13. (39)
Substituting eq. (37) and (38) into eq. (35) yields
4

)= Diel - L (40)
i= 1 8
Substituting eq. (40) into eq. (30) yields
4
13 288 36 13 2 2
f3( )__ 72)[H1f2+f2+ 13f2+ 13]_ i:l[_ 720(H'li+ L)_ S]Die (41)
According to initial conditions f>(0) = f3(0) = 0 and eq. (39),
4
1
L
B 2
=22 2 _ £ —
i:][_ 720(Ha i L) S]Dl - O?
s % (42)
o Di i = E,
o3 2 16
Ll 3 2y_ £ 9p. = 2
\i:l[_ 720(Ha i + l) 5 E]Dl— 13

A system of algebraic equations for D1, D2, D3 and Ds are composed of eq. (42). Di,D2, D3 and D4 are
determined by this system of equations. Substituting eq. (40) and (41) into eq. (24) yields
4 4

- 8D _ 2 _ 13
(,)=1[1+ 5=1( 8Diei )](1 ) + i=116[ 720
%](H,, T+ - Diei}(Z -3 7). (43)
The dimensionless velocity of the center of the tube is given by
4 4
: 1B oy oVl Zipe:
(O, ) = n= 1+ [=l(— 8Die )+ i=116[— 720(Ha i + L) S]Dl,e . (44)

The first five terms and more terms approximations can be deduced in the same way.

3 Results and Discussion

In the present paper the time dependent flow in a pipe is investigated for the upper — convected Maxwell
fluid. This problem is reduced mathematically to a partial differential equation of second order for the
dimensionless velocity. The spectral method is used to solve the problem.The partial differential equation is
reduced to a system of ordinary differential equations with the proper terms for a desired approximation. For each

approximation the analytical solution, i. e. the eigensolution is found. The numerical results of the problem and the
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analytical solution of the firsgt three and four terms approximations are given in fig. 1 to fig. 5 for comparison.
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K1) thefirg approx. of Kantorovich; K, ) the second approx. of Kantorovich; D ) the definite difference;
Cy4) the first four terms approx. of spectral method; Cs) the first five terms approx. of spectral method

Fig. 5 H, = 0.8,in Comparison With Results

In fig. 1 to fig. 3 the change of the dimensionless velocity at the center of the tube with time is shown for the

parameter values H, = 0.2 ~ 1.0 are chosen. In fig. 4 for H, = 0.2 the results of the first three, four and five

terms approximations are compared with that of the difference. In fig. 5 for H. = 0. 8 the results of the first four
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terms and five terms approximations compare with that of definite difference and variation approach of
Kantorovich.The change of the velocity with time has some special character because it is caused by both
unsteady behavior and the viscoelasticity of the fluid.

A new analytical method for solving the time dependent flow of non— Newtonian fluids is put forward. In
comparison with results of the definite difference and variation approach of Kantorovich, the results of spectral
method are content. The results show that the spectral method is suitable for the study of time dependent flow of

non — Newtonian fluids.
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