
An Efficient Rational Secret Sharing Scheme

Based on the Chinese Remainder Theorem

Yun Zhang1,2, Christophe Tartary3, and Huaxiong Wang1

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

ZHAN0233@e.ntu.edu.sg
2 School of Mathematical Science, Yangzhou University, Yangzhou, 225002,

People’s Republic of China
ctartary@mail.tsinghua.edu.cn

3 Institute for Interdisciplinary Information Sciences, Institute for Theoretical
Computer Science, Tsinghua University, Beijing, 100084,

People’s Republic of China
hxwang@ntu.edu.sg

Abstract. The design of rational cryptographic protocols is a recently
created research area at the intersection of cryptography and game the-
ory. At TCC’10, Fuchsbauer et al. introduced two equilibrium notions
(computational version of strict Nash equilibrium and stability with re-
spect to trembles) offering a computational relaxation of traditional game
theory equilibria. Using trapdoor permutations, they constructed a ra-
tional t-out-of n sharing technique satisfying these new security models.
Their construction only requires standard communication networks but
the share bitsize is 2n|s|+O(k) for security against a single deviation and
raises to (n−t+1)·(2n|s|+O(k)) to achieve (t−1)-resilience where k is a
security parameter. In this paper, we propose a new protocol for rational
t-out-of n secret sharing scheme based on the Chinese reminder theorem.
Under some computational assumptions related to the discrete logarithm
problem and RSA, this construction leads to a (t− 1)-resilient computa-
tional strict Nash equilibrium that is stable with respect to trembles with
share bitsize O(k). Our protocol does not rely on simultaneous channel.
Instead, it only requires synchronous broadcast channel and synchronous
pairwise private channels.

Keywords: rational cryptography, computational strict Nash equilib-
rium, stability with respect to trembles, Asmuth-Bloom sharing scheme.

1 Introduction

1.1 Preliminaries

In 1979, Shamir [16] and Blakley [4] independently introduced the concept of
secret sharing scheme (SSS) in order to facilitate the distributed storage of
private data in an unreliable environment. Since then, secret sharing has be-
come a major building block for cryptographic primitives in particular in the

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 259–275, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

260 Y. Zhang et al.

area of multiparty computation (MPC). The goal of a (perfect) SSS is to dis-
tribute a secret value s amongst a finite set of participants P = {P1, . . . , Pn}
in such a way that only specific subsets of P can reconstruct s while the others
have no information about this secret element whatsoever.

Traditional cryptographic models assume that some parties are honest (i.e.
they faithfully follow a given protocol) while others are malicious participants
against whom the honest players must be protected. However, in many real-
world applications, a participant will choose to be dishonest if deviating from
the protocol will provide him with some advantage. Game theory can be used
to model such a situation where players are self-interested (i.e. rational). In this
representation, each participant Pi has a utility function Ui and the execution
of the cryptographic protocol is regarded as a game over P where the n players’
strategies σ1, . . . , σn are dictated by their respective utilities U1, . . . , Un.

Halpern and Teague introduced the first general approach for rational secret
sharing in 2004 [9]. This opened new research directions and many results ap-
peared subsequently [6,1,7,12,13,10,14,2]. In game theory, a Nash equilibrium
(NE) captures the idea of stable solution for a given game. Indeed, in a NE,
no single player Pi can individually improve his welfare by deviating from the
strategy σi specified by the equilibrium (σ1, . . . , σn) if all remaining participants
stick to theirs. Most of the rational protocols quoted above focus on achieving
a NE surviving iterated deletion of weakly dominated strategies. However, as
pointed out in [12], some bad strategies still survive this deletion process. As a
remedy, Kol and Naor proposed to use the notion of strict NE requiring that
each player’s strategy is his unique best response to the other players’ strategies.
This notion is more appealing than a NE in that, in a NE, there is no incentive
to deviate while, in a strict NE, there is an incentive not to deviate. However,
it is difficult to achieve a strict NE in many cases since this notion rules out
many cryptographic techniques. In order to balance this tradeoff, Fuchsbauer et
al. [7] proposed a computational version of strict NE (which enables the use of
cryptography) and the notion of NE stable with respect to trembles. They also
provided an efficient construction for standard communication networks achiev-
ing such an equilibrium as long as all the players are computationally bounded.
However, the bitlength of their shares is 2n|s| + O(k) which gets very large es-
pecially when n (number of players) or k (security parameter) is large. While
not a serious issue in its own right, this may be problematic when their rational
SSS is used as a subroutine for rational MPC.

1.2 Our Results

In this paper, we present a protocol for rational t-out-of-n SSS. We only need
a synchronous (but non-simultaneous) broadcast channel along with pairwise
point-to-point channels. We do not assume any on-line dealer nor do we apply
any generic MPC protocol to redistribute the shares of the secret. Instead, we
borrow the idea from Joint Random Secret Sharing to allow every player to form
his ”one-time” share at the beginning of each iteration by interactions among
the group of m(m ≥ t) participants. The main idea is described as follows.

An Efficient Rational Secret Sharing Scheme 261

In the share distribution phase, the dealer use the modified version of Asmuth-
Bloom SSS proposed by Kaya and Selçuk [11] to generate n shares for the secret
s. Suppose there are m players active in the reconstruction phase, say P1, . . . , Pm.
This phase proceeds with several rounds. At the beginning of each iteration, the
”one-time” shares for (s+d) mod m0 are generated (jointly by the active players)
using the technique from Joint Random Secret Sharing, where d = d(1)+· · ·+d(m)

and each d(i) is chosen independently and uniformly at random from the domain
of the secret by Pi. If d ≡ 0 mod m0, then all the ”one-time” shares are valid for
recovering s and, in this sense, the current iteration is called the valid iteration.
Otherwise, the current iteration is invalid, which is designed only for catching
possible cheaters. Each communicated message carries a commitment with per-
fect binding and computational hiding (assuming the hardness of computing
discrete logarithm). Thus, at every point of our protocol, there is a unique legal
message that each player can send (except with negligible probability). This pre-
vents a player from outwardly appearing to follow the protocol while subliminally
communicating with other participants.

Then, all the active players are required to open their ”one-time” shares. After
each player Pi has received the ”one-time” shares from all the other active play-
ers, he is required to open d(i), which provides a unique way for the participants
to jointly identify the valid iteration. If d mod m0 �= 0, then the current iteration
is invalid and all the players are asked to restart a new iteration; otherwise, it is
valid, the secret s is recovered and the protocol terminates immediately after this
iteration. In this way, no player can identify the valid iteration before he opens
his ”one-time” share. Furthermore, each player can identify the valid iteration
only after it has occurred, that is, once a player learns that the current iteration
is valid, each player has already got the real secret. Due to this, we do not need
simultaneous channels. Our protocol is efficient in that the round complexity
and computation complexity are both polynomial (in the security parameter k).
It induces a (t−1)-resilient computational strict Nash equilibrium that is stable
with respect to trembles. However, our protocol relies on the assumption that
no player knows auxiliary information about the secret s, which has been proved
to be inherent in the non-simultaneous channels model [2].

1.3 Comparison to Fuchsbauer et al.’s Scheme

The protocol from [7] provides good point of comparison to ours since both
techniques have similar features:

– Both of them induce a (t−1)-resilient computational strict NE that is stable
with respect to trembles.

– Neither of them relies on simultaneous channels.
– Both of them assume that no player knows any auxiliary information about

the secret s. This property has been proved to be inherent to the non-
simultaneous channels model [2].

– Both protocols run in time polynomial in k (security parameter) and they
have almost the same round complexity.

262 Y. Zhang et al.

However, our protocol has smaller share size even when (t − 1)-resilience to
coalitions is required. Our shares are O(k) bits long while those from [7] need
(n− t+1) (2n|s|+O(k)) bits. The latter share length leads to practical efficiency
issues when n− t + 1 is large or when Fuchsbauer et al.’s technique is used as a
building block within more general rational MPC protocols.

2 Definitions and Background

2.1 Secret Sharing

A t-out-of-n SSS with secret domain S is a two-phase protocol (share distribu-
tion and secret reconstruction) executed by the dealer and a subgroup of the n
players P1, . . . , Pn respectively. During the share distribution phase, the dealer
chooses a secret s ∈ S and generates n shares s1, . . . , sn based on a security
parameter k. Each si is given to Pi secretly. In the secret reconstruction phase,
some collection of at least t players jointly reconstruct s from their shares with-
out any interaction with the dealer. We require the following two properties to
hold:

– Correctness. Any collection of t or more players can uniquely determine
the secret by putting their shares together honestly.

– Privacy. Any collection of fewer than t players can not recover the secret s.

In this paper, the security will be guaranteed under some computational assump-
tions related to the discrete logarithm problem and RSA which will be specified
in Sect. 3.3. Thus, the security of our rational SSS will be computational.

2.2 Notions of Game-Theoretic Equilibria

As said in Sect. 1.1, in the rational model, each player is self-interested: he does
what is in his interest. To formalize rationality, each player Pi is associated to a
real-valued utility function Ui modeling the gain that Pi obtains when following
his many strategies. For more details, we refer the reader to [1].

We now present the game theoretic concepts our cryptographic construction
relies on. We are to design a rational SSS with the expectation that, when
rationally played, the secret is revealed to all the players participating in the
reconstruction. In the share distribution phase, all n players are silent and the
dealer is assumed to be honest. The reconstruction process is to be viewed as a
game amongst m ≥ t players. We denote σ = (σ1, . . . , σm) the strategy profile
of these players where σi is P ′

i s strategy for 1 ≤ i ≤ m. As usual, let σ−C denote
the strategy profile of all m players except the players in C and σC denote the
strategy profile constricted to the coalition C ⊆ {1, . . . , m}. Given a strategy
profile σ, it induces the utility value Ui(σ) for each player Pi expressing his
payoff when σ is played by the m players.

In the following, we denote the security parameter by k and it is assumed
that the n utility functions are polynomials in k. The definitions appearing in
this subsection originate from [7].

An Efficient Rational Secret Sharing Scheme 263

Definition 1. Let ε : N → [0,∞) be a function. We say ε is negligible if for
every positive polynomial p(·) there exists an integer Np(·) > 0 such that for all
k > Np(·), it holds that ε(k) < 1

p(k) . We say that ε is noticeable if there exists
a positive polynomial p(·) and an integer Mp(·) such that ε(k) > 1

p(k) for any
k > Mp(·).

Definition 2. A strategy σ induces an r-resilient computational NE if for
any coalition C of at most r players and for any probabilistic polynomial time
strategy profile σ′, it holds:

Ui(k, σ′
C , σ−C) ≤ Ui(k, σC , σ−C) + ε(k) for any i ∈ C,

where ε is a negligible function.

Remark 1. When r = 1, the definition of r-resilient computational NE coincides
with that of the computational NE.

We need to define what it means for two strategies to be equivalent. Although
we could refer the reader to [7] for the details, for completeness of our paper,
we recall the corresponding notions below. As said before, every player is to
be considered as a polynomial-time probabilistic Turning (PPT) machine (as
function of the security parameter k). We assume that m players participate in
the reconstruction phase. As often in MPC, security will be demonstrated by
simulating the views of the different participants [8].

Definition 3. Denote PC := {Pi|i ∈ C}, P−C := {Pi|i /∈ C} and the strategy
vector of the m players by σ. Define the random variable Viewσ

−C as follows:

Let Trans denote the messages sent by PC not including any message sent
by PC after they write to their output tapes. Viewσ

−C includes the informa-
tion given by the dealer to P−C , the random coins of P−C and the (partial)
transcript Trans.

Fix a strategy ρC and an algorithm T . Define the random variable ViewT,ρC

−C as
follows:

When the m players interact, PC follows ρC and P−C follows σ−C . Let Trans
denote the messages sent by PC . Algorithm T , given the entire view of PC ,
outputs an arbitrary truncation Trans′ of Trans (defining a cut-off point and
deleting any messages sent after that point). ViewT,ρC

−C includes the informa-
tion given by the dealer to P−C , the random coins of P−C , and the (partial)
transcript Trans′.

Strategy ρC yields equivalent play with respect to σ, denoted ρC ≈ σ, if there
exists a PPT algorithm T such that for all PPT distinguishers D:

∣
∣
∣Prob[D(1k, ViewT,ρC

−C) = 1] − Prob[D(1k, Viewσ
−C) = 1]

∣
∣
∣ ≤ ε(k)

where ε(·) is a negligible function.

264 Y. Zhang et al.

Definition 4. A strategy σ is said to be an r-resilient computational strict
NE, if:

1. σ induces an r-resilient computational NE;
2. For any coalition C of at most r players and for any probabilistic polynomial

time strategy σ′
C with σ′

C �≈ σ, there is a positive polynomial p(·) such that for
any i ∈ C, it holds that Ui(k, σC , σ−C) ≥ Ui(k, σ′

C , σ−C)+ 1
p(k) for infinitely

many values of k, namely, Ui(k, σC , σ−C)−Ui(k, σ′
C , σ−C) is non-negligible.

Definition 5. For any coalition C, strategy ρC is δ-close to strategy σC if ρC

is as follows:

ρC : With probability 1 − δ, players in C play according to σC .
With probability δ, players in C follow an arbitrary (possibly correlated)
PPT strategy σ′

C (called the residual strategy of ρC).

Definition 6. σ induces an r-resilient computational NE that is stable
with respect to trembles if:

1. σ induces an r-resilient computational NE;
2. There is a noticeable function δ such that for any coalition C with |C| ≤ r,

and any vector of PPT strategies ρ−C that is δ-close to σ−C , any PPT
strategy ρC , there exists a PPT strategy σ′

C ≈ σ such that Ui(k, ρC , ρ−C) ≤
Ui(k, σ′

C , ρ−C) + ε(k), where ε(·) is negligible.

Remark 2. Intuitively, the strategy vector (σC , σ−C) is stable with respect to
trembles if σC remains a best response even if P−C plays any PPT strategies
other than σ−C with some small but noticeable probability δ.

2.3 Assumptions on the Utility Functions

Following most previous works on this topic, we assume the following properties
of the utility functions:

– each player Pi first prefers outcomes in which he outputs the real secret;
– each player Pi secondly prefers outcomes in which the fewest of the other

players output the real secret.

As in [7], the expected utility is also assumed to be a polynomial of the security
parameter k. We distinguish four cases as follows. For each i ∈ {1, . . . , n}, let
Ui(k) (respectively, U+

i (k)) be the minimal (respectively, maximal) payoff of Pi

when he outputs the correct secret and let U−
i (k) be his maximal payoff when

Pi does not output s. As usually assumed, we consider: U+
i (k) > Ui(k) > U−

i (k)
for all i ∈ {1, . . . , n}. As in [7], define

U r
i (k) :=

1
|S| · U

+
i (k) + (1 − 1

|S|) · U
−
i (k)

which is the expected utility of a player outputting a random guess for the
secret (assuming that the other players abort without any outputs, or with

An Efficient Rational Secret Sharing Scheme 265

wrong outputs). It is reasonable to assume that Ui(k) > U r
i (k), since otherwise,

players hardly have any incentive to execute the secret reconstruction phase at
all. Furthermore, it is still reasonable to assume that the difference between Ui(k)
and U r

i (k) is non-negligible for any 1 ≤ i ≤ n, that is, there exists a polynomial
p(·) such that for infinitely many k’s it holds that:

Ui(k) ≥ U r
i (k) +

1
p(k)

.

Note that, this assumption is not restrictive in that without it, it is hard to
guarantee the players have enough motivation to execute the share reconstruc-
tion phase rather than guess the secret locally, especially in the computational
setting, where no player cares about negligible difference in utilities. In this pa-
per, we consider coalitions of at most t − 1 players. We assume for simplicity
that during the whole process of share reconstruction phase, there is at most
one coalition which contains a subset of active players and all the players in this
coalition share all information they jointly have. Thus, all the players in some
coalition are assumed to share a single output.

3 Our Protocol for t-out-of-n Rational Secret Sharing

Our protocol contains two phases: share distribution and secret reconstruction.
The first phase is executed by the dealer only while the second phase is de-
signed for all the active players who want to jointly recover the secret without
the dealer. Our share distribution phase is similar to the revisited version of
the Asmuth-Bloom’s non-interactive verifiable SSS [11,3] except with minor but
necessary modifications for our needs. The dealer is available only in the initial
share distribution phase during which he is assumed to be honest. We assume
the existence of synchronous broadcast channels (but non-simultaneous) for all
participating players and the presence of private channels between any pair of
these players and the dealer.

As said in the previous section, all n players are assumed to be computation-
ally bounded. In the following, let k be a security parameter.

3.1 Initial Share Phase

This is the only phase where the dealer is active. His goal is to distribute s
over P := {P1, . . . , Pn} using the Asmuth-Bloom SSS with threshold t. As men-
tioned above, we adopt the modified version of Asmuth-Bloom SSS proposed by
Kaya and Selçuk [11] and make further modifications (mainly on the parameters
settings) to meet our needs. This initial share phase has two stages.

Remark 3. The value g is the unique integer in ZQ satisfying gi ≡ g mod pi, for
all 1 ≤ i ≤ n. Besides, the order of g in Z

∗
QN is at least

∏n
j=1 mj and for each

1 ≤ i ≤ n, we have:

E(y) mod pi = (gy mod QN) mod pi = gy mod pi = gyi

i mod pi

266 Y. Zhang et al.

Hence, during the whole protocol, we use (E(y) mod pi) as a commitment to
yi, which is perfect binding but is computational hiding. That is, the committer
cannot commit himself to two values yi and y′

i by the same commitment value
and, under the assumption that computing discrete logarithm is intractable in
Zpi , no PPT player learns yi from E(y) mod pi except with negligible probability
in k. This allows players to check the consistency of the received data. Since
the dealer is assumed to be honest, E(y) is only used to detect the players’
possible malicious behavior during the reconstruction process described in the
next section.

Initial Share Phase
1. Parameters Setup
To share a secret s, the dealer chooses m0(> s) and publishes it. This value m0

should also be lower bounded by a value depending on players’ utilities and discussed
later in this paper.

1. The dealer chooses and publishes a set of pairwise coprime integers m1, . . . , mn

of bitlength k such that the following requirements are satisfied:
(a) m0 < m1 < . . . < mn ;
(b)

∏t
i=1 mi > (n + 1)m2

0

∏t−1
i=1 mn−i+1;

(c) pj = 2mj + 1 is prime for any 1 ≤ j ≤ n.
2. For any 1 ≤ i ≤ n, let Gi be a subgroup of Z

∗
pi

of order mi and denote gi a
generator of Gi. Let Q =

∏n
i=1 pi and g = (

∑n
i=1 gi ·Q′

i · Q
pi

) mod Q and, where

Q′
i is the inverse of Q

pi
in Z

∗
pi

, for 1 ≤ i ≤ n. The dealer publishes g.
3. The dealer chooses and publishes an RSA modulus N of length at least k whose

factorization is unknown to any of the n players [15].

2. Share Distribution
To share a secret s ∈ Zm0 among a group of n players {P1, . . . , Pn}, the dealer
executes the following steps.

1. He sets M :=
⌊ ∏t

i=1 mi

n+1

⌋

. He computes y = s+A0 ·m0 for some positive integer

A0 generated randomly subject to the condition that 0 < y < M , calculates
yi = y mod mi and finally sends the share yi to player Pi secretly, for 1 ≤ i ≤ n.

2. He computes E(y) := gy mod QN and broadcasts E(y).

3.2 Secret Reconstruction Phase

We assume that m(≥ t) players participate in the secret reconstruction phase.
For ease of description, we can assume without loss of generality that those play-
ers are P1, . . . , Pm. The reconstruction phase proceeds in a series of iterations,
each of which consists of multiple communication rounds among those players.
First, we propose two subprotocols to be called upon within the reconstruction
phase.

3.2.1 Share Update Phase. This is done by the players participating in
the secret reconstruction process, namely, by P1, . . . , Pm. In this phase, each
participating Pi (sorted in index increasing order) plays a similar role to the

An Efficient Rational Secret Sharing Scheme 267

dealer’s (initial share phase) to share a random element d(i) ∈ Zm0 and to
finally get his ”one-time” share for (s + d(1) + · · · + d(m)) mod m0.

In [11], in order to prevent the dealer from distributing inconsistent shares,
the range-proof technique proposed from [5] is used to allow the dealer to con-
vince each player that some committed integer lies in a particular interval. This
range proof is statistically zero-knowledge in the random-oracle model. Besides,
provided that computing discrete logarithm problems is intractable, a cheating
dealer can only succeed with negligible probability (in k). We refer to [11,5] for
further details.

Here, in order to prevent a player Pi from distributing inconsistent shares for
his random chosen d(i), we need to apply this range-proof technique. Throughout
this section, we will use RngPrf(E(y), M) to denote the Cao-Liu’s non-interactive
range proof that a secret integer y committed with E(y) is in the interval [0, M)
[5]. In the following share update phase, we will use RngPrf(E(y), M) as a black
box and we refer to [5] for additional information.

Share Update Phase

1. Each Pi selects a random element d(i) ∈ Zm0 uniformly and independently. He
computes y(i) = Ai · m0 + d(i), where Ai is a positive integer chosen randomly
conditioned on 0 < y(i) < M . Then, he computes y

(i)
j = y(i) mod mj along

with E(y(i)) := gy(i)
mod QN , and he finally sends y

(i)
j to player Pj secretly

through a secure channel for each j �= i. In addition, Pi broadcasts E(y(i)) and
RngPrf(E(y(i)), M).

2. If player Pi only receives partial messages (hereinafter, partial messages in-
cluding the case of no message at all), then he outputs a random guess
of the secret and terminates the protocol. Otherwise, he checks whether

g
y
(j)
i

i ≡ E(y(j)) mod pi and he checks the correctness of RngPrf(E(yj), M)
for 1 ≤ j �= i ≤ m. If all the checks are successful, then Pi computes
di =

∑m
l=1 y

(l)
i mod mi. Otherwise, he outputs a random guess of the secret

and stops the protocol.
Let d := d(1) + · · ·+ d(m). Note that {d1, . . . , dm} are the shares for d mod m0.

3. Each Pi computes ỹi := (yi +di) mod mi as his ”one-time” share for the current
iteration. The commitment for ỹi is E(ỹi) := E(y)

∏m
l=1 E(y(l)) mod pi, which

can be locally computed by each player.

Proposition 1. Let Y := y + y(1) + . . . + y(m) = (s + d) + (A0 + · · · + Am) ·
m0. Then after the share update phase, {ỹ1, . . . , ỹm} are valid shares for (s +
d) mod m0 as long as all the players follow the protocol honestly. In addition,
all the commitments are correctly checked.

This proposition means that every subset of at least t players uniquely deter-
mines (s + d) mod m0 (Correctness), while for any subset of t− 1 players, every
candidate for s or for each d(i) is (approximately) equally likely, and so each
candidate for each (s + d) mod m0 is (approximately) equally likely (Privacy).

Proposition 2 ([11]). During the share update phase, any player Pi can not
distribute inconsistent shares for d(i) without being detected except with probabil-
ity negligible in k. In other words, if all checks are successful, then all the shares

268 Y. Zhang et al.

y
(i)
1 , . . . , y

(i)
m are residues of some integer less than M except with negligible prob-

ability which is introduced by the error probability of RngPrf.

Remark 4. Let T := y(1) + · · ·+ y(m). Since the ”one-time” shares {ỹ1, . . . , ỹm}
are the shares for (s + d) mod m0, they are the shares for s if and only if d ≡
0 mod m0. This is equivalent to T ≡ 0 mod m0. In this sense, the iteration in
which T ≡ 0 mod m0 is called a valid iteration. It is called an invalid iteration
otherwise.

Remark 5. The goals of the Share Update Phase are twofold. On one hand, it
makes our protocol proceed with several iterations: all except the last one are
invalid iterations, which are designed to catch possible cheaters. During the valid
iteration, all active players get the real secret. In addition, no one will know in
advance whether the current iteration is going to be the last iteration. On the
other hand, since during each iteration all the ”one-time” shares are revealed, if
the current round is invalid, the players should proceed to the next round with
totally new shares, which are provided by the share updating phase. Hence,
”one-time”shares are shares used only once (i.e. in the current iteration) and
they become meaningless in later iterations.

3.2.2 Combiner Phase. In this phase, each player Pi uses the reconstruction
algorithm from the Asmuth-Bloom SSS to recover (s + d) mod m0.

Combiner Phase
1. Let U be a collection of t shares that player Pi chooses in the reconstruction

phase and let V be the corresponding collection of the indices of the players to
whom those t shares belong. Let MV denote

∏

j∈V mj .

2. Let MV −{j} denote
∏

�∈V,� �=j m� and let M ′
V,j be the multiplicative inverse of

MV −{j} in Z
∗
mj

. Player Pi computes Y (i) :=
∑

j∈V ỹj ·M ′
V,j ·MV −{j} mod MV .

Finally, let S(i) := Y (i) mod m0.

3.2.3 Overview of the Reconstruction Phase. In order for the reader to
get an easier understanding of the reconstruction phase, we first give its general
view. The full description is in Sect. 3.2.4.

The reconstruction phase proceeds with a sequence of invalid/valid iterations
such that the last iteration is valid and each iteration has two stages. During the
first stage, players first interact to get their ”one-time” shares for (s+d) mod m0,
where d = d(1) + · · · + d(m) and each d(i) is chosen randomly by Pi. During
the second stage, each player Pi is required to open the value y(i) he chose in
the first stage. Thus, since d(i) = y(i) mod m0, the players can jointly identify
the status of the current iteration: if d mod m0 �= 0, then the current iteration
is invalid and all the players are asked to restart a new iteration; otherwise, it
is valid, the secret s is recovered and the protocol terminates immediately after
this iteration.

An Efficient Rational Secret Sharing Scheme 269

The iterations have the following properties:

– invalid iteration: no information about s is revealed since all the revealed
shares are the shares for (s+d) mod m0. At the beginning of the subsequent
iteration, all the shares are updated which guarantees that the ”one-time”
shares revealed in the current iteration are useless for the next iteration.

– valid iteration: every player recovers s on the assumption that every partic-
ipant follows the protocol (which will be demonstrated to be the case since
they are rational).

The key in this process is the fact that nobody knows before the opening of
the ”one-time” shares whether the current iteration will be valid. Furthermore,
when a given player realizes that the valid iteration occurs, each other player can
compute the secret as well. That is why we do not need simultaneous channels.

3.2.4 Secret Reconstruction Phase. We assume that m(≥ t) players par-
ticipate in the secret reconstruction. As before, we can assume that they are
P1, . . . , Pm. Our reconstruction protocol proceeds with multiple iterations, each
of which contains two stages for each of these m players. It is assumed with-
out lost of generality that in each step, each Pi executes his strategy in index
increasing order. For each of these m participants Pi, his strategy σi is as follows.

Secret Reconstruction Phase
Stage 1

1. Player Pi executes the share update phase to get his ”one-time” share ỹi for
the value (s + d) mod m0, where d = d(1) + · · · + d(m) and each d(i) is chosen
independently and uniformly at random by Pi .

2. Player Pi broadcasts his ”one-time” share ỹi obtained at the previous step. If

Pi does not receive m shares (including his own), or if he detects that g
ỹj

j mod
pj �= E(ỹj) mod pj for some j, he outputs a random guess of the secret and
aborts the protocol abruptly.

3. Otherwise, Pi chooses randomly t data from {ỹ1, . . . , ỹm} and executes the
Combiner Phase.

The second stage is used to recover T so that player Pi can identify the status
(valid/invalid) of the current round since {ỹ1, · · · , ỹm} are the shares for s if and
only if T ≡ 0 mod m0.

Stage 2

1. Player Pi broadcasts y(i). If he does not receive m messages (including his own),

or if he detects that gy(j)
mod QN �= E(y(j)) for some j, Pi outputs S(i) he

obtains in the Combiner Phase and aborts the whole protocol.
2. Otherwise, Pi computes T = y(1)+. . .+y(m). If T ≡ 0 mod m0, then he outputs

S(i) and stops the whole protocol; Otherwise, Pi goes back to Stage 1 and starts
another iteration.

270 Y. Zhang et al.

3.3 Security of our Rational SSS

The reconstruction phase is a game amongst the m active players. The strategy
profile is denoted σ = (σ1, . . . , σm) where σi is Pi’s strategy described in the
previous section. Let U∗

i (k) := 1
m0

· U+
i (k) + (1 − 1

m0
) · U r

i (k), 1 ≤ i ≤ n. Based
on the security requirements of [5], we make the following assumption:

A: The discrete logarithm problem over finite fields is intractable.
The RSA modulus N is hard to factor; the resulting RSA encryption
scheme and Schnorr signature is secure.

Theorem 1. Assuming that A holds. σ induces a (t−1)-resilient computational
NE as long as Ui(k) − U∗

i (k) is non-negligible, for 1 ≤ i ≤ n.

Theorem 2. Assuming that A holds. σ induces a (t−1)-resilient computational
strict NE provided that Ui(k) − U∗

i (k) is non-negligible, for 1 ≤ i ≤ n.

Theorem 3. Assuming that A holds. σ induces a computational NE that is
stable with respect to trembles provided that Ui(k) − U∗

i (k) is non-negligible, for
1 ≤ i ≤ n.

Remark 6. The expected number of iterations of our protocol is m0. Note that
the requirements for m0 are that m0 >

2[U+
i (k)−Ur

i (k)]

Ui(k)−Ur
i (k) , for 1 ≤ i ≤ n. Since

all the utility functions are polynomial in k and Ui(k) − U r
i (k) is assumed to

be non-negligible, m0 can be chosen to be a prime less than some polynomial
in k. Since all the computations are based on modular arithmetic, they can be
executed in polynomial time. Besides, RngPrf can also be verified in polynomial
time. All these considerations imply that our protocol is efficient.

4 Conclusion

In this paper, we presented a new protocol for t-out-of-n rational secret sharing
based on the CRT in non-simultaneous channels. Our technique leads to a (t−1)-
resilient computational strict NE that is stable with respect to trembles while
having much smaller share size than the protocol proposed by Fuchsbauer et al.
[7].

Acknowlegments

The authors would like to thanks the reviewers for their suggestions to im-
prove the quality of this paper. Christophe Tartary’s work was funded by the
National Natural Science Foundation of China grants 61033001, 61061130540,
61073174 and 61050110147 (International Young Scientists program) as well
as the National Basic Research Program of China grants 2007CB807900 and
2007CB807901. Christophe Tartary also acknowledges support from the Danish
National Research Foundation and the National Natural Science Foundation of
China (under the grant 61061130540) for the Sino-Danish Center for the The-
ory of Interactive Computation (CTIC) within which part of this work was
performed. Huaxiong Wang’s work was supported by the Singapore National
Research Foundation under Research Grant NRF-CRP2-2007-03.

An Efficient Rational Secret Sharing Scheme 271

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game
theory: Robust mechanisms for rational secret sharing and multiparty computation.
In: 25th Annual ACM Symposium on Principles of Distributed Computing (PODC
2006), pp. 53–62. ACM Press, New York (2006)

2. Asharov, G., Lindell, Y.: Utility dependence in correct and fair rational secret
sharing. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 559–576. Springer,
Heidelberg (2009)

3. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Transac-
tions on Information Theory IT-29(2), 208–210 (1983)

4. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS 1979 National Com-
puter Conference, pp. 313–317. AFIPS Press (June 1979)

5. Cao, Z., Liu, L.: Boudot’s range-bounded commitment scheme revisited. In: Qing,
S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 230–238. Springer,
Heidelberg (2007)

6. Dov Gordon, S., Katz, J.: Rational secret sharing, revisited. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg
(2006)

7. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in standard
communication networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 419–436. Springer, Heidelberg (2010)

8. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: 17th Annual ACM Symposium on Theory of Computing (STOC
1985), pp. 291–304. ACM, New York (1985)

9. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation:
Extended abstract. In: 36th Annual ACM Symposium on Theory of Computing
(STOC 2004), pp. 623–632. ACM Press, New York (2004)

10. Izmalkov, S., Micali, S., Lepinski, M.: Rational secure computation and ideal mech-
anism design. In: 46th Annual Symposium on the Foundations of Computer Science
(FOCS 2005), pp. 585–594. IEEE Computer Society, Los Alamitos (2005)

11. Kaya, K., Selçuk, A.A.: Secret sharing extensions based on the Chi-
nese reminder theorem. Cryptology ePrint Archive, Report 2010/096 (2010),
http://eprint.iacr.org/2010/096

12. Kol, G., Naor, M.: Games for exchanging information. In: 40th Annual ACM Sym-
posium on Theory of Computing (STOC 2008), pp. 423–432. ACM Press, New
York (2008)

13. Micali, S., shelat, a.: Purely rational secret sharing (Extended abstract). In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 54–71. Springer, Heidelberg (2009)

14. Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.: Fairness with an honest minor-
ity and a rational majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444,
pp. 36–53. Springer, Heidelberg (2009)

15. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

16. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

http://eprint.iacr.org/2010/096

272 Y. Zhang et al.

A Proof of Theorem 1

By Proposition 1, our protocol is a valid secret sharing scheme. All the active
players will be expected to recover the real secret in 1

Pr[d≡0 mod m0]
= m0 itera-

tions, as long as they stick to σ.
Now, we prove that σ induces a (t− 1)-resilient computational NE. Let C be

any coalition of size at most t − 1. Assume that all the players not in C stick
to their prescribed strategies. We focus on PPT deviations from some players in
C. There are several possible cases: (1) some player Pi in C deviates during the
share update phase; (2) some player Pi in C lies about his ”one-time” share or
only sends partial messages in Stage 1 - Step 2 ; (3) some player Pi in C either
opens a fake y(i) or broadcasts nothing in Stage 2.

Suppose (1) happens. There are two possible deviations. Case 1. Pi only
sends (or broadcasts) partial messages in Stage 2 of share update phase. How-
ever, this will be detected and cause the protocol to terminate. In this case,
the only profitable thing he can do is to output a random guess of the secret,
which will earn him at most U r

i (k). Obviously, it is a worse outcome to Pi,
since U r

i (k) < Ui(k). Hence, Pi will send all data, fake or real, as required.
Case 2. Pi distributes inconsistent shares for his randomly chosen d(i) to some
player Pj not in C. Under assumption A, no cheating Pi can convince any
other Pj to accept RngPrf(E(y(i), M) except with negligible probability ε′(k).
Once RngPrf(E(y(i), M) is rejected, which happens with probability 1 − ε′(k),
the protocol terminates immediately and the best that player Pi can do is to
output a random guess of the secret. Thus, the expected utility Pi can get by
distributing inconsistent shares is at most ε′(k) · U+

i (k) + (1 − ε′(k)) · U r
i (k) =

ε′(k)·(U+
i (k)−U r

i (k))+U r
i (k) < ε(k)+Ui(k), where ε(k) = ε′(k) (U+

i (k)−U r
i (k))

is a negligible function in k, since we assumed that U1, . . . , Un were polynomials
in k. That is, using this type of deviation, Pi can only increase his payoff by a
negligible amount (if at all). Thus, given our computational setting, no rational
player Pi is to deviate by distributing inconsistent shares.

Now, we consider the possible deviations in Step 2 of Stage 1. There are
two possible cases. Case 1. Pi does not broadcast anything at all. Case 2.
Pi cheats about his ”one-time” share. However, either of these deviations will
be detected and cause the protocol to terminate. Hence, we do not distinguish
between these two cases. If (d mod m0) = 0 (i.e., the current iteration is valid
which happens with probability 1

m0
), then all the players in C will output the

real secret and hence Pi will get at most U+
i (k). If (d mod m0) �= 0 (i.e., the

current iteration is invalid which happens with probability 1 − 1
m0

), then the
best thing Pi can do is to output a random guess of the secret earning at most
U r

i (k). Thus, the expected payoff of Pi with this type of deviation is at most
1

m0
·U+

i (k) + (1− 1
m0

) ·U r
i (k) = U∗

i (k). It is less than Ui(k) by our assumption.
Hence, as a rational player, Pi will not deviate in Step 2 of Stage 1.

Finally, we study what happens if some player in C does not broadcast any-
thing at all or broadcast a fake value in Stage 2. Either deviation will be detected
and cause the protocol to terminate abruptly. Since we assume players execute

An Efficient Rational Secret Sharing Scheme 273

every step of the protocol in ascending order, we can assume without loss of
generality that C = {Pm−t+2, . . . , Pm}. Since all the players in C share their
information, for any m− t+2 ≤ i ≤ m, after receives the message from the play-
ers not in C Pi can first compute T := y(1) + · · · + y(m) to identify whether the
current round is valid or not, then determines what to do in this stage. Note that
we have proved that, in the computational and rational setting, any player will
execute the reconstruction phase honestly up to the end of Stage 1. Therefore,
if the current iteration is valid, each S(j) obtained by Pj in the Combiner Phase
is indeed the real secret. In this case, regardless of what Pi will do, each player
will output the real secret, which will earn Ui(k) to Pi. On the other hand, if
the current round is invalid, no one has recovered the real secret yet and either
type of deviations will cause the protocol to terminate abruptly resulting in a
payoff at most U r

i (k) to Pi. Hence, Pi is never better off by this deviations.

B Proof of Theorem 2

Suppose C is any subset of {1, . . . , m} of size at most t−1. Let PC := {Pi|i ∈ C}
and P−C := {Pi|i ∈ {1, . . . , m} − C}. Since all the players in PC acts in unison,
we can regard PC as a whole. By Theorem 1, it is sufficient to prove that for
any PPT strategy ρC �≈ σ, there is a positive polynomial p(·) such that for any
i ∈ C, Ui(k, σ) ≥ Ui(k, ρC , σ−C) + 1

p(k) for infinitely many values of k, that is,
Ui(k, σ) − Ui(k, ρC , σ−C) is positive and non-negligible.

Let Deviate be the event that PC deviates from σC before he can compute his
output, that is, before entering the Stage 2 of the valid iteration. Since ρC �≈ σ,
Prob[Deviate] is non-negligible by definition. Now, consider the interaction of ρC

with σ−C . Let Valid be the event that PC deviates from σC before entering Stage
2 during the valid iteration and let Invalid be the event that PC deviates from σC

during an invalid iteration. Let Caught be the event that PC is caught cheating.
Then, for each i ∈ C, we have:

Ui(k, ρC , σ−C)

≤ U
+
i (k) · Prob[Valid] + U

+
i (k) · Prob[Invalid ∧ Caught]

+U
r
i (k) · Prob[Invalid ∧ Caught] + Ui(k) · Prob[Deviate]

= U
+
i (k) · (Prob[Valid|Deviate] + Prob[Caught|Invalid] · Prob[Invalid|Deviate]) · Prob[Deviate]

+U
r
i (k) · Prob[Caught|Invalid] · Prob[Invalid|Deviate] · Prob[Deviate] + (1− Prob[Deviate])Ui(k)

= U
+
i (k) ·

[
1

m0
+ ε(k)(1−

1

m0
)

]
· Prob[Deviate]

+U
r
i (k) · (1− ε(k)) · (1−

1

m0
) · Prob[Deviate] + Ui(k)− Ui(k) · Prob[Deviate]

= Ui(k) + (U∗
i (k)− Ui(k)) · Prob[Deviate] + η(k)

where η(k) = ε(k) · (1 − 1
m0

) · (U+
i (k) − U r

i (k)) · Prob[Deviate] is negligible. It
follows

Ui(k, σ) = Ui(k) ≥ Ui(k, ρC , σ−C) + (Ui(k) − U∗
i (k)) · Prob[Deviate] − η(k).

274 Y. Zhang et al.

Since both Ui(k) − U∗
i (k) and Prob[Deviate] are positive and non-negligible,

Ui(k, σ) − Ui(k, ρC , σ−C) is positive and non-negligible, which completes this
proof.

Remark 7. In this proof, we actually show that, for any PPT strategy ρC , we
have:

Ui(k, σ) = Ui(k) ≥ Ui(k, ρC , σ−C) + (Ui(k) − U∗
i (k)) · Prob[Deviate] − η(k)

where η(·) is a negligible function.

C Proof of Theorem 3

This proof is based on [7]. Let δ be a parameter which we will specify at the end
of the proof. Note that δ may depend on k. Since we assumed players execute
every step of the protocol in an index increasing order, we can assume without
loss of generality that C = {m−t+2, . . . , m}. It is sufficient to show that for any
i ∈ C, any vector of PPT strategies ρ−C that is δ-close to σ−C , and any PPT
strategy ρC , there exists a PPT strategy σ′

C ≈ σ such that Ui(k, ρC , ρ−C) ≤
Ui(k, σ′

C , ρ−C) + ε(k), where ε(·) is negligible. Let PC = {Pi|i ∈ C} and P−C =
{Pi|i ∈ ({1, . . . , m} − C)}. First, we construct a strategy σ′

C for the players in
PC as follows.

1. Set Detect:=0.
2. In each iteration:

(a) Receive the messages from P−C in each possible step. If PC detects
that some player Pj in P−C has deviated from σj , set Detect:= 1.

(b) If Detect= 1, execute the remaining steps according to ρC ; otherwise
σC .

3. If Detect= 0, determine the output according to σC , otherwise, output
whatever ρC outputs.

Observe that when σ′
C interacts with σ−C , Detect is never set to be 1. Hence

σ′
C ≈ σ and Ui(k, σ′

C , σ−C) = Ui(k, σC , σ−C) = Ui(k) for any i ∈ C. Now, we
want to show that Ui(k, ρC , ρ−C) ≤ Ui(k, σ′

C , ρ−C) + η(k) for any i ∈ C, where
η(·) is negligible. Let ρ̃−C denote the residual strategy of ρ−C . In an interaction
where PC follows strategy ρC , let Detected be the event that PC is detected
deviating from σC before entering stage 2 of the valid iteration while no player
in P−C is detected cheating so far. Also, let ProbDetected(α) be the probability of
Detected when P−C follows strategy α. Since no player in P−C will be detected
cheating when P−C execute σ−C , ProbDetected(σ−C) equals the probability of PC

being detected deviating from σC before entering Stage 2 of the valid iteration.

Claim 1. Prob[Deviate]=ProbDetected(σ−C) + ε(k) ·Prob[Deviate], for some neg-
ligible function ε.

An Efficient Rational Secret Sharing Scheme 275

Claim 2. For any i ∈ C,

Ui(k, ρC , ρ̃−C) − Ui(k, σ′
C , ρ̃−C) ≤ ProbDetected(ρ̃−C) · (U+

i (k) − Ur
i (k)) + ε(k),

where ε(·) is negligible.

Claim 3. ProbDetected(ρ̃−C) ≤ ProbDetected(σ−C) + ε(k) for some ε(·) negligible.

By Remark 7, we know that for any PPT strategy ρC ,

Ui(k, σ) = Ui(k) ≥ Ui(k, ρC , σ−C) + (Ui(k) − U∗
i (k)) · Prob[Deviate] − η(k).

where η(·) is a negligible function. Now, we get:

Ui(k, ρC , ρ−C) = (1 − δ) · Ui(k, ρC , σ−C) + δ · Ui(k, ρC , ρ̃−C)

≤ (1 − δ) · [Ui(k) + (U∗
i (k) − Ui(k)) · Prob[Deviate] + η(k)]

+δ · Ui(k, ρC , ρ̃−C)

Also

Ui(k, σ′
C , ρ−C) = (1 − δ) · Ui(k, σ′

C , σ−C) + δ · Ui(k, σ′
C , ρ̃−C)

= (1 − δ) · Ui(k) + δ · Ui(k, σ′
C , ρ̃−C)

It follows:

Ui(k, ρC , ρ−C)− Ui(k, σ
′
C , ρ−C)

≤ (1− δ) · (U∗
i (k)− Ui(k)) · Prob[Deviate] + δ · [Ui(k, ρi, ρ̃−C)− Ui(k, σ

′
C , ρ̃−C] + η(k)

by Claim 2
≤ (1− δ) · (U∗

i (k)− Ui(k)) · Prob[Deviate]

+δ · ProbDetected(ρ̃−C) · (U
+
i (k)− U

r
i (k)) + δ · ε(k) + η(k)

by Claim 1
= (1− δ) · (U∗

i (k)− Ui(k)) · (ProbDetected(σ−C) + ε
′(k) · Prob[Deviate])

+δ · (U+
i (k)− U

r
i (k)) · ProbDetected(ρ̃−C) + δ · ε(k) + η(k)

by Claim 3
≤ (1− δ) · (U∗

i (k)− Ui(k)) · ProbDetected(ρ̃−C)

+δ · (U+
i (k)− U

r
i (k)) · ProbDetected(ρ̃−C) + η

′(k)

where η′(·) is some negligible function. Hence, there exists δ > 0 (may depend
on k) such that the above expression is negligible in k for each i ∈ C.

	An Efficient Rational Secret Sharing Scheme Based on the Chinese Remainder Theorem
	Introduction
	Preliminaries
	Our Results
	Comparison to Fuchsbauer et al.'s Scheme

	Definitions and Background
	Secret Sharing
	Notions of Game-Theoretic Equilibria
	Assumptions on the Utility Functions

	Our Protocol for t-out-of-n Rational Secret Sharing
	Initial Share Phase
	Secret Reconstruction Phase
	Security of our Rational SSS

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

