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Abstract: It is devoted to designing a kind of optimal sliding mode control method based on State Dependent Riccati Equation (SDRE) con-
trol for a class of cascade uncertain nonlinear system in this paper. This designed control method has two— loop control structure. T he outer
loop controller is designed by using a SDRE optimal control to generate an optimal sliding mode surface. The inner loop controller decreases
sensiivity to parameter change by using sliding model control. Synchronously i can minish the influence coursed by model error and external
disturbance of contwl system. Two methods are given to solve the state dependent riccati equation. The designed control method can make the
system stable and wbust. Finally, an example is given to demonstrate the availability of the proposed control method.
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1 Introduction

There are many control problems about cascade uncertain nonlinear system, so control of them is an active subject
in the modern control area. The main control method is backstepping design method which first designs virtual control
law then obtains the ultimate control law by successively deduced' " ¥ . The controller designed by backstepping design
method can make the nonlinear system have global robust performance. But it is only valid to a class of especial cascade
uncertain nonlinear system and must choose an appropriate lyapunov function in each step for analyzing the stability of
the system. So the application field of backstepping design method is small. The control method based on SDRE is one
of the recently proposed nonlinear control methods. It is wide used in nonlinear system control problem due to its good
real time performance and the flexible deﬁi‘gn|4~ * The sliding mode control is an ordinary control method to control
nonlinear system[7~ 7 lts response velocity is quick and it is insensitive to parameter change. Moreover the sliding mod-
el control has good adaptability to unmodeled dynamic and external disturbance. So the sliding model control is widely
used to control uncertain nonlinear system. But it is difficult to select the sliding mode surface in design sliding mode
controller.

Ref. [ 4] has studied the design of filter for a rapid thermal processing system based on SDRE. Ref. | 6] has stud-
ied nonlinear regulation design and nonlinear H  Control design with SDRE. But the studied systems are not cascade
nonlinear system with uncertainty. Ref. [ 9] has studied optimal sliding mode flight control based on SDRE wntroller
and sliding mode controller. But it does not consider uncertain external disturbance.

A kind of optimal sliding mode control method based on SDRE controller is proposed for a class of cascade uncer
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tain nonlinear system in this paper. This designed control method has two— loop control structure. The outer loop cor-
troller is designed uwsing a SDRE optimal control to generate an optimal sliding mode surface. The imer loop cntroller
can minish sensitivity to parameter change. Simultaneously it can minish model error and external disturbance of control
system by using sliding mode control. Two new methods of solving state dependent riccati equation are proposed. For
improving the control precision, the neural network is introduced to approximate the solution of state dependent riccati
equation. The designed control method can make the system stable and robust. Finally, an example is given to demor-
strate the availability of the proposed control method.

2 Problem Formulation
Corsidering the uncertain nonlinear cascade system
x=fi(x)+ gi(x)z, "
z=f2A2)+ f(z.p.0)+[g(2)+ g2z,p,1)]a+ di(z) u+ d(x,1),

where x R',fi(x) R',gi(x) R ",z R".f2(z) R", f(z.p,t) R',g2(z) R" ", g2(z.p,t)
R" ",u R".di(z) R"",d(z) R".x,z arestatevectors,f1,g1,f2, g2, d:i are known smooth functions,
f(x,p,t), g.(x,p,t) are bounded uncertain terms, namely system certainties,p(p P, P is a compact set) is

unknown parameter, d( X, t) is external disturbance of the system, # is control input of the system.

The system (1) consists of two subsystems, and the states of them are comected by each other. The control goal is
to design controller which can make the system (1) has robust stability for the external disturbance and system unce
tainty. Supposed that (1) satisfies the following assumptions:

(1) To  x,state x is controllable and the system is stable when x= 0;

(2) To z R",p P,thereare  f(z.,p,t) ]?(Z,t), g:(z,p,t)x Ez(x,z,t);

(3) To z R",the inversion of di(z) exist;

(4 To x R',thereis d(x,t) D(x).

3 Design of Optimal Sliding Mode Controller

The two— loop controller is designed to d —_—
. . Sliding
the cascade uncertain nonlinear system ( 1) , the 7
. . > SDRE > mode u
structure block diagram of the control system is = o
Plcontroller > . .

shown in fig. 1. x |Controllex

The outer loop controller is SDRE optimal
control which is used to generate an optimal Control
sliding surface for the following sliding mode System |

controller. The inner controller is sliding mode
Fig. 1 Block Diagram of Control System
controller which is used to minish sensitivity to
parameter change and model error and external disturb of control system. Optimal control based on SDRE is a new cor-
trol method for the nonlinear system which can treat as the linear LQR of the nonlinear system control. The SDRE cor-
troller can choose right Q(x) and R(x) in order to obtain good control effect, where Q(x) and R(x) are certain
functions of states. Furthermore, the SDRE control method can easily tranform the nonlinear system to the linear sys-
tem, then design the optimal controller with linear LQR theory for the nonlinear system.
Corsidering the following nonlinear system
x=f(x)+ g(x)u (2)

and determining the under performance index



J= (x' Q(x)x+ u R(x)u)dt, (3)

1
2 0
where x R, u R".f(x) R',g(x) R"",Q(x) 0 R"",R(x)>0 R"".
Imitating the formulation of LQR optimal cnirol of linear system, the equation (2) can be written as
x= A(x)x+ B(x) u, (4)
where A(x) satisfies f(x)= A(x)x. When the f( x) can not contain the independent state variable, we can divide

2
X1+ x
the corresponding state variable in order to obtan A (x) . For example, when f ( x) = |: 11 5| , we can choose A (x)
+ X2
X1+ %
1x 2 )
= ll It is easily known that f(x)= A(x) x.Apparertly, the choice of A(x) is not single which can
— x2
X1

choose different expression according to different requirement. There is B(x)= g(x). According to the LQR optimal
control of linear system, we can construct the following state feedback control law
u(x)=- K(x)x= - R '(x)B'(x)P(x)x, (5)
where P(x)> 0,which satigfies the following state dependent Riccati equation
A'(x)P(x)+ P(x) A(x)+ Q(x) - P(x) B(x) R '(x)B'(x) P(x)= 0. (6)
So the SDRE wntroller can make the close— loop system mairix of (4) has expression
A= A(x)- B(x)K(x). (7)
From the foregoing description, we can see that A (x), B(x) change along with the change of state vector. So the
system (4) can approximatively denote the system (2) and can choose different Q( x) and R( x) acording to the dif
ferent requirement.
According to the foregoing method, the system (1) can be written as
x= A.x+ Bz,
z=f2(z)+ f(z.p, 1)+ [82(2) + &z, p, 1) ] x+ (8)
[di(z)+ g(z.p,t)|u+ d(x,1),
where A,x=f(x),B.= g:(x).
By the LQR theory based on SDRE, the optimal control law of the first subsystem in the system (8) is
z= - R 'B.Px. (9)
When the system is low dimension system, we can solve eq. (6) using analytical method. But it is too difficult to
solve the eq. (6) when the system is a high dimension system. We can use an ordinary computat ional method in eng+
neering. First suppose an initialization state x(0) and solve the P(x,). We can obtain the control law z( 0) according
to (9), then the control law keeps invariable till the next computational time ( the time interval is 7). Before the next
computation, we compute the state xo+ r and make it as initialization state at the time. Under the xo+ 7, according to
(6) compute P( xo. 7). By eq. (9), we can obtain control law zo. 7 and keep invariable in 7. Making circular
computation, we can obtain the corresponding control law z at different time. For keeping the real time ability and i
proving the control precision we can choose a small T
In the modern control area the neural network is widely used due to its self— study ability, so it can be used to
approximate the solution P(x) of the equation eq. (6) . If the system has required high control precision, the neural
network can be introduced to approximate P( x) . Choose the different state vector x as the input of neural networks,
the corresponding P ( x) which obtains from the eq. (6) is output of neural networks. By training, the output of neural
network can approximate P(x) with a small error.

Under the foregoing optimal control law design the sliding mode controller. At a time, R(x), B(x), P(x) are
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constant due to the real time ability of SDRE. Choose the follow sliding surface
= z+ R 'B.Px. (10)
From the above equation yields
= z+ R 'B.Px. (11)
Substituting the eq. (8) into eq. ( 11), there yields
=f22)+ f(z.p.0)+ [g2(2)+ ga(z.p.1)]x+ di(z) u+ d(x,1)+ R 'B.P(A.x+ Bz). (12)
The sliding mode controller goal is to achieve = 0, under no uncertainty and external disturbance, there can ob-
tain the equivalent control law
uq= —di ' (2)[f2(z)+ g2(z)x+ R 'BxPAx+ R 'B.PB.z)]. (13)
Design the control law u as
U= Uq+ Uc, (14)
u=- sgn( ), (15)
where sgn( )= [sgn( 1), ,sgn( =) ]T, u. is sliding mode controller. Substituting eq. ( 14) and eq. (15) into eq.
(12), there is
C= 1@+ g()x+d(x)]- di(z) sl ). (16
If there is
=d, (D) [f(z.0)+ ga(x.2. )+ D(x, 1)+ k], (17)
where k is an arbitrary positive parameter. Substituting eq. (17) into eq. (16) and considering the assumption (2),
(3),(4) can yield
R < 0. (18)
So the system satisfies the condition of existing sliding mode.
So the control law of the system can be chosen as
u= uq— sgn( ), (19)
where U is defined in eq. (13), is defined in eq.(17), is defined in eq. ( 10).
Theorem 1 For the cascade uncertain nonlinear system ( 1), under the assumption (1), (2), (3),(4), the cor
trol law (19) can make the system (1) globally stable.
Proof Choosing Lyapunov function for the system ( 1)
I

V=m+ 5 ", (20)

where m> 0, is defined in eq. (10).

Calculating the time derivative of V can yield
=" . (21)
From the eq. (18) we can know V< 0, so under the assumption (1), (2), (3),(4), the control law (19) can make
the systam (1) globally stable.

Note that the sliding mode control term can introduce a high frequency signal to the system which may excite ur-

modeled dynamics causing unforeseen instability. To avoid this,we use a smoothed sliding mode control term, so the

control law can written as

u= uq— sa( /), (22)
where > 0 and
1 w1,
sat( ui) = w lwl < 1, (23)

—1 u; —1.
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4  Simulation Example

The system (1) is widely used in the field of aeronautics and astronautics. Specially, in fighter control system and
missile control sys[em[gl , the states of fighter or missile are divided into quick change loop and slow change loop ae-
cording to the time scale separation principle. The output of slow loop is the input of quick loop, and that the quick
change state variable conirol the slow change loop. But the simulation about them is very complicated, so we use a sim
ple example to demonstrate the availability of the proposed control method.

Corsidering a simple uncertain cascade nonlinear system
X1 - X1+ x1x2 X1
= + z,
x xX1x2— % x
5 X1
z=z + sinzi+ [z 1+z][ 7:|+zu+sinx1(t).
x

-1 =« x
According to the foregoing SDRE wntrol theory, we can choose A, = [ 1‘:| , B, = [ i| , Q(x) =
x

X2 -

2

X1 1

[ o 12 R(x)= 1+ x1+ x. Apparently when x= 0, A, is a stable system matrix. Because the system is a
+ x2

low dimension system,we can solve the equation (6) by using analytical method to obtain P(x) . By eq. (10) and eq.
(14), the control law can obtain. The simulation results are shown in fig. 2 to fig. 5.
The simulation results demonstrate the availability of the proposed control method.
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5 Conclusion

The optimal sliding mode control method is proposed for the cascade uncertain nonlinear system which is widely
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used in aeronautics and astronautics field. The controller wnsists of optimal controller and sliding mode controller. The
outer loop is designed using a SDRE optimal controller to produce an optimal sliding mode surface. The inner loop de-
crease sersitivity to parameter change and model error and external disturb of control system using sliding mode con-

trol. Finally, an example is given to demonstrate the availability of the proposed cntrol method.
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