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Abstract—We consider the problem of communicating infor-
mation over a network secretly and reliably in the presence of a
hidden adversary who can eavesdrop and inject malicious errors.
We provide polynomial-time, rate-optimal distributed network
codes for this scenario, improving on the rates achievable in [1].
Our main contribution shows that as long as the sum of the
adversary’s jamming rate ZO and his eavesdropping rate ZI

is less than the network capacity C, (i.e., ZO + ZI < C), our
codes can communicate (with vanishingly small error probability)
a single bit correctly and without leaking any information to
the adversary. We then use this to design codes that allow
communication at the optimal source rate of C−ZO−ZI , while
keeping the communicated message secret from the adversary.
Interior nodes are oblivious to the presence of adversaries and
perform random linear network coding; only the source and
destination need to be tweaked. In proving our results we correct
an error in prior work [2] by a subset of the authors in this work.

I. INTRODUCTION

A source Alice wishes to transmit information to a receiver

Bob over a network containing a malicious adversary Calvin.

Such scenarios face at least two challenges – Calvin might

eavesdrop on private communications, or he might disrupt

communications by injecting fake information into the net-

work. In the network coding model this second danger may

be even more pronounced since all nodes, including honest

ones, mix information. In this case, even a small number of

fake packets injected by Calvin may end up corrupting all the

information flowing in the network, causing decoding errors.

In this work we consider the secrecy and error control

issues together. Namely, we design schemes that allow reliable

network communications in the presence of an adversary that

can both jam and eavesdrop, without leaking information to

him. In particular, suppose the network’s min-cut from Alice

to Bob is C, and Calvin eavesdrops on ZI links and corrupts

ZO links1. We demonstrate schemes that are distributed,
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1We consider a model where network links rather than nodes are eaves-
dropped and corrupted; eavesdropping on a node is equivalent to eavesdrop-
ping on links incoming to it, and corrupting a node is equivalent to corrupting
the links outgoing from it.

computationally efficient to design and implement, and can be

used to communicate a single bit secretly and without error.

We then use this scheme as a tool to improve on prior work [3],

and achieve a provably optimal rate of C − ZO − ZI .

Related problems have been considered in the past. Prior

results may be classified in the following three categories.

For networks containing adversaries that only eavesdrop

on some links (without jamming transmissions), the work

of [4] provided a tight information-theoretic characterization of

the secrecy capacity, i.e., the optimal rate achievable without

leaking any of Alice’s information to Calvin. Efficient schemes

achieving this performance were proposed by [5]–[7]. Crypto-

graphically (but not information-theoretically) secret schemes

for this scenario were also considered in [8].

For networks containing adversaries with unlimited eaves-

dropping capabilities and limited jamming capabilities, prior

related work has focused primarily on the detection of Byzan-

tine errors [9], non-constructive bounds on the achievable zero-

error rates [10], [11], and network error-correcting codes [12]

(which have high design complexity) and [2], [3], [13], [14]

(which have low design complexity). Results for this setting

are also available under cryptographic assumptions [15], [16].

The scenario closest to the one considered in this work,

with limitations on both Calvin’s eavesdropping power ZI

and his jamming power ZO, have been considered in [1]–[3],

[17], [18]. Under the requirement of zero error probability,

the maximum rate of secret and reliable communication is

given by C − 2ZO − ZI . Schemes achieving this rate have

been proposed in [1], [18] (high design complexity schemes)

and [17], [19], [20] (low design complexity schemes). The

optimality of such a rate has been shown in [1] for single-

letter coding and in [20] for block coding.

If the requirement of zero error probability is relaxed to

vanishingly small error probability, as considered here, then

higher rates may be achieved. In particular, the work in [3]

provided computationally efficient communication schemes

(but with no guarantees on secrecy) at rate C − ZO as long

as the technical requirement C > 2ZO + ZI was satisfied.

Work by a subset of the authors of this paper claimed in [2]

to improve this technical requirement to C > ZO + ZI . As

we demonstrate in Section VIII, prior proof of the claim was

incorrect, and Section II gives a correct proof of the claim.

Combining these results with the secrecy scheme of [7] allows

us to obtain the optimal rate of C − ZO − ZI when secrecy

constraints are incorporated.
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II. MAIN RESULTS

The main results of this work are Theorems 1 and 2.

Theorem 1: If C > ZO − ZI then Alice can commu-

nicate a single bit correctly to Bob (while keeping it se-

cret from Calvin) using codes of computational complexity

O(poly(C, log2 q)) and error probability O(q−C).

Combining the codes in Theorem 1 with the “shared-secret”

codes in [3] then gives us the following theorem.

Theorem 2: No rate higher than C − ZO − ZI is achiev-

able. A rate of C − ZO − ZI is achievable with codes of

computational complexity O(npoly(C, log2 q)).

Note: In [1], Ngai et al show that C − 2ZO −ZI is an upper

bound on the rate, assuming no error events, and single-letter

coding (respectively equations (87) and (65) in their proof).

Our work achieves higher rates by instead assuming asymp-

totically negligible probability of error, and block coding.

A. High-level overview of proofs and techniques

We first show in Section IV that C −ZO −ZI is an upper

bound on the rate at which a secret message can be correctly

transmitted from Alice to Bob, by demonstrating an attack that

Calvin can use to successfully disrupt communication if Alice

tries to communicate at any higher rate. We then construct

efficient codes that essentially achieve rate C − ZO − ZI .

Our codes consist of the three layers described below. All the

three layers are embedded along with Alice’s message into

her packets and then transmitted through the network using

random linear network codes.

Secret-sharing layer: In Section VI we first prove Theorem 1

by showing how to communicate a single bit secretly and

correctly over a network containing adversaries that can jam

and eavesdrop, as long as C > ZI + ZO. This layer is

important for the error-control layer described later, and can be

implemented via a “small” header appended to each network

coded packet. When k secret bits are to be shared, the scheme

is repeated k times in each transmitted packet header, for a

secret-sharing header of total length C + kC(C − ZI). The

secret-sharing layer consisting of the following components:

1. Identity matrix: As standard in random linear network

coding [21], [13], the identity matrix IC is appended to convey

to the receiver information about the linear transform induced

by the random linear network code.

2. Bit matrices: For each secret bit, i ∈ {1, . . . , k}, if the ith
secret bit equals 0, the (C − ZI) × C(C − ZI) matrix Si

(over Fq) is chosen as a zero matrix; otherwise, Si is chosen

independently and uniformly at random from all (C − ZI)×
C(C − ZI) matrices. We refer to Si as a bit matrix. The

idea is that the rank of the matrices corresponding to bit 0 is

much smaller than the rank of the matrices corresponding to

bit 1—due to the limitation on the numbers of packets Calvin

can observe or inject, with high probability he cannot change

the rank of the corresponding received matrix by too much.

Details are given in Lemma 3.

3.Random matrix: Alice adapts the scheme of [7] to keep the

bit matrices secret from Calvin. That is, for each secret bit i
that Alice wishes to communicate to Bob, she combines the

bit matrix Si with a random noise matrix N i (at rate ZI ).

It can be shown that it is impossible for Calvin to glean any

useful information (since it can only eavesdrop at rate ZI).

Section VII combines the secrecy layer with the two other

layers described below to complete our code construction.

Secrecy layer: As done with the random matrices N i in

the secret-sharing layer above, a random matrix N is used

to preserve the secrecy of the source message S (of rate

C−ZO−ZI ), yielding a encoded matrix M (of rate C−ZO).

Error control layer: In this layer Alice uses the “shared-

secret” scheme outlined in Theorem 1 of [3]. That is, Alice

first takes a secret linear hash to her secrecy-encoded message

M to generate a small hash value. Both the linear hash and

the resulting hash value (say k bits in all) are transmitted to

Bob using the secret-sharing layer. Alice then combines her

data with a zero-value matrix (of rate ZO), such that Bob can

use the secret hash to distill Alice’s codeword M from the

corrupted information reaching the destination.

Vis-a-vis our secret-sharing scheme of Section VI, the work

of [2] (by a subset of the authors of this work) claimed to have

the same result. However, we show in Section VIII that the

scheme proposed in [2] is incorrect by giving an attack that

Calvin can use to ensure that Bob has a significant probability

of decoding error.

III. NETWORK MODEL AND PROBLEM STATEMENT

We use the general model proposed in [3]. To simplify

notation we consider only the problem of communicating from

a single source to a single destination2.

A. Network Model

Alice communicates to Bob over a network with an attacker

(adversary) Calvin hidden somewhere in it. Calvin aims to

disrupt the transfer of information from Alice to Bob and in

the meantime eavesdrop the information Alice sends. He can

observe some of the transmissions, and can inject his own fake

transmissions.

Calvin is computationally unbounded, knows the encoding

and decoding schemes of Alice and Bob, and the network

code implemented by the interior nodes. He also knows the

network topology, and he gets to choose which network links

to eavesdrop on and which ones to corrupt.

The network is modeled as a directed and delay-free graph

whose edges each have capacity equal to one symbol of a

finite field of size q, Fq , per unit time3. All computations are

over Fq. The network capacity, denoted by C, is the min-cut

from source to destination4.

2Similarly to many network coding algorithms, our techniques generalize
to multicast problems.

3For ease of presentation edges with non-unit capacities are not considered
here (as in [3], they may be modeled via block coding and parallel edges).

4For the corresponding multicast case, C is defined as the minimum of
the min-cuts over all destinations. It is well-known that C also equals the
time-average of the maximum number of packets that can be delivered from
Alice to Bob, assuming no adversarial interference, i.e., the max flow.



Each packet contains n symbols from Fq. Alice’s message

is denoted S ∈ S. To send this to Bob over the network, Alice

encodes it into a matrix X ∈ F
C×n
q , possibly using a stochastic

encoder5. The ith row in X is Alice’s ith packet. As in [21],

Alice and internal nodes in take random linear combinations

of their observed packets to generate their transmitted packets.

Analogously to how Alice generates X , Bob organizes

received packets into a matrix Y . The ith received packet

corresponds to the ith row of Y . The random linear network

code used by Alice and all internal nodes induces a linear

transform A from X to Y , such that Y = AX when no

error is induced by the adversary6. Thus Y is a matrix in

F
C×n
q , and A ∈ F

C×C
q . Hereafter we assume that the matrix

A is invertible, which happens with high probability if q is

sufficiently large [21].

Calvin can eavesdrop on ZI edges, and can inject (possibly

fake) information at ZO locations7, in the network. The

matrix received by Bob is then Y = AX + Z , where Z
corresponds to the information injected by Calvin as seen by

Bob. Note that the limitation of Calvin’s jamming capacity

implies that rank(Z) ≤ ZO. Similarly, Calvin’s observation

can be described as a matrix W = BX , where B ∈ F
ZI×C
q

is the linear transform undertaken by X as seen by Calvin.

B. Problem Statement

Alice wishes to communicate with Bob with perfect secrecy

and vanishingly small error probability. That is, Alice’s scheme

is perfectly secret if

I(S;W ) = 0 ∀B ∈ F
ZI×C
q (1)

i.e., Calvin obtains no information about Alice’s message. The

error probability is the probability that Bob’s reconstruction

Ŝ of Alice’s information S is inaccurate, i.e., P [Ŝ 6= S].
We consider the error probability of the worst-case scenario8.

Namely, a scheme has error probability less than ǫ if P [Ŝ 6=
S] < ǫ ∀A,Z , where A is assumed to be nonsingular, and

rank(Z) ≤ ZO. The rate R of a scheme is the number

of information bits of information Alice transmits to Bob,

amortized by the size of a packet in bits, i.e., R = 1
n
logq |S|.

The rate R is said to be achievable if for any ǫ > 0, any

δ > 0, and sufficiently large n, there exists a perfectly secret

block-length-n network code with rate at least R − δ and a

probability of error less than ǫ.

IV. CONVERSE FOR THEOREM 2

We start by presenting an attack that Calvin may use to

force the achievable rate to at most C − ZO − ZI , thereby

5The random coin tosses made by Alice as part of her encoding scheme
are not known to either Calvin or Bob.

6For the ease of notation we assume Bob removes redundant incoming
edges so that the number of edges reaching Bob equals the min-cut capacity
C from Alice to Bob.

7We assume throughout that the information injected into the network by
Calvin is added to the original information transmitted (here we consider
addition over our field Fq).

8Our interest is to design communication schemes that do not rely on the
specific network topology or network code used.

TABLE I
SUMMARY OF COMMONLY USED NOTATION

Notation Meaning

C Capacity

ZI Eavesdropping rate

ZO Jamming rate

n Packet length

q Field size

Q = qC Extension field size

demonstrating that this is indeed an upper bound on the

achievable rate. Let {e1, e2, ..., eC} be a set of edges that

form a cut from Alice to Bob. Calvin jams the edges in

{e1, e2, ..., eZO
} by adding random errors on them. Further,

Calvin eavesdrops on edges in {eZO+1, eZO+2, ..., eZO+ZI
}.

Let X be the random variable denoting Alice’s information.

Let Yj , Ye, and Yu be the random variables denoting the

packets carried by the jammed edges {e1, e2, ..., eZO
}, eaves-

dropped edges {eZO+1, eZO+2, ..., eZO+ZI
}, and untouched

edges {eZO+ZI+1, eZO+ZI+2, ..., eC} respectively. Let Y be

the random variable denoting the packets received by Bob.

Then

nR = H(X) = H(X|Y) + I(X;Y) (2)

≤ 1 + ǫnR+ I(X;Y) (3)

≤ 1 + ǫnR+ I(X;Yj ,Ye,Yu) (4)

= 1+ ǫnR+ I(X;Ye,Yu) (5)

= 1+ ǫnR+ I(X;Ye) + I(X;Yu|Ye) (6)

= 1+ ǫnR+ I(X;Yu|Ye) (7)

≤ 1 + ǫnR+H(Yu) (8)

≤ n

[

(C − ZI − ZO) + ǫR+
1

n

]

. (9)

Here (2) follows from the fact that Alice’s message is uni-

formly distributed over X, (3) from Fano’s inequality, (4) from

the data processing inequality, (5) since Calvin adds random

noise on the edges he jams and so Yj is independent of

(X,Ye,Yu), (6) by the chain rule for mutual information,

(7) from the fact that information-theoretic secrecy is required

and so I(X;Ye) = 0, (8) by the fact that conditioning reduces

entropy and the definition of mutual information, and finally

(9) by the fact that there are at most C − ZI − ZO links

corresponding to the random variable Yu and the alphabet-

size upper bound on entropy. Requiring ǫ → 0 as n → ∞
gives the required result.

V. AUXILIARY TOOLS

A. Secrecy Coding

Consider a special case of the problem where Calvin can

eavesdrop ZI < C packets but cannot jam any packets

(ZO = 0). Below, we review a construction of a perfectly

secret scheme that asymptotically achieves the maximum

possible rate (i.e., the secrecy capacity) R = C − ZI . The

scheme, proposed in [7], is based on MRD codes. (For more

details on MRD codes, see [7].)



Let Q = qC and let FQ be an extension field of Fq.

Let φ : FQ → F
1×C
q be a vector space isomorphism. In

addition, let φm,n : F
m×n
Q → F

m×Cn
q be a vector space

isomorphism such that the ith row of φm,n(X) is given by
[

φ(Xi,1) · · · φ(Xi,n)
]

. In other words, we expand each

element of X ∈ F
m×n
Q as a length-C row vector over Fq (with

the number of columns in matrix increasing accordingly). We

will omit the subscript from φm,n when the dimensions of the

argument are clear from the context.

Let H ∈ F
(C−ZI)×C

Q be the parity-check matrix of a [C,ZI ]

linear MRD code over FQ. Let T ∈ F
C×C
Q be an invertible

matrix chosen such that the first C−ZI rows of T−1 are equal

to H . Assume that n is divisible by C and let n′ = n/C − 1.

In order to encode a given message S ∈ F
(C−ZI)×n′

Q , Alice

first generates a random matrix N ∈ F
ZI×n′

Q uniformly and

independently from any other variables. Then, she computes

X =
[

IC φ(x)
]

, where x = T

[

S
N

]

.

After receiving Y = AX =
[

A Aφ(x)
]

, Bob computes

X = A−1Y to recover x = φ−1(φ(x)). Then, Bob can easily

obtain S since, by construction, S = Hx.

Recall that Calvin’s observation is given by W = BX ,

where B ∈ F
ZI×C
q . According to Theorem 4 of [7], we have

that I(S;W ) = 0 for all B, and therefore (1) is satisfied.

Thus, the scheme is indeed perfectly secret.

The decoding complexity is given by O(nC2) operations in

FQ, which can be done in O(nC4) operations in Fq.

B. Error Control under a Shared Secret Model

Consider now the case where Calvin can jam ZO < C
packets and eavesdrop any number of packets he choose.

However, we drop the requirement of secret communication,

i.e., all we require is that Bob can decode correctly. In addition,

suppose the existence of a low rate side channel, which Calvin

cannot access, that enables Alice to transmit to Bob a small

secret S. Below, we review a coding scheme presented in [3]

that can asymptotically achieve the maximum possible rate

R = C − ZO.

Let b = C −ZO. We first describe how Alice produces the

secret bit string S based on a given message M ∈ F
b×(n−b)
q . To

begin with, she generates α = bC+1 symbols ρ1, ρ2, ..., ρα ∈
Fq independently and uniformly at random. Let P ∈ F

n×α
q

be the matrix given by P(i,j) = (ρj)
i. Then, she computes

a matrix H = X̄P ∈ F
b×α
q , where X̄ =

[

Ib M
]

. The

tuple (ρ1, ρ2, ..., ρα,H), consisting in total of α(b+1) symbols

in Fq, comprises the message “hash” that should be secretly

transmitted to Bob. The bit representation of this tuple yields

the string S ∈ {0, 1}k, consisting of k = α(b + 1) log2 q
bits. Over the main channel, Alice transmits the C×n matrix

X =

[

X̄
0

]

=

[

Ib M
0 0

]

.

Assuming that (ρ1, ρ2, . . . , ρα,H) is secretly and correctly

received by Bob, let us proceed to the description of Bob’s

decoder. First, Bob reconstructs the matrix P . Bob obtains

Y = AX + Z , where Z ∈ F
C×n
q has rank at most ZO. This

can also be written as Y = ÃX̄ +Z , where Ã consists of the

first b columns of A. Let Ȳ be the reduced row echelon form of

Y . It is shown in [3] that, with probability at least 1−O(1/q)
for any fixed network, X̄ can be written as X̄ = UȲ for

some U ∈ F
b×C
q . It is also shown in [3] that, with probability

at least 1−nα/q, the system UȲ P = H has a unique solution

in U . Bob solves this system to find U , computes X̄ = UȲ
and finally recovers M .

Overall, the probability of error of the scheme is at most

nα/q +O(1/q) = O(nC2

/q), while the decoding complexity

is O(nC3) operations in Fq .

VI. SENDING A SINGLE BIT SECRETLY AND RELIABLY

Let C′ = C − ZI . In this section, we show how Alice can

transmit a secret bit reliably to Bob when C > ZI +ZO. We

assume that n = C(1 + C′), as this is the smallest packet

length required for the scheme to work. Larger packet lengths

can be easily handled by zero-padding the transmitted packets.

Let T ∈ F
C×C
Q and H ∈ F

C′×C
Q be as given in Section V-A.

A. Alice’s encoder

Initially, Alice chooses a matrix S ∈ F
C′×C′

Q according

to her secret bit: if the bit is 1, she picks S uniformly at

random; otherwise, if the bit is 0, she sets S = 0. Then,

she sends S to Bob using the secrecy scheme described in

Section V-A. More precisely, she transmits X =
[

IC φ(x)
]

,

where x = T

[

S
N

]

and N ∈ F
ZI×C′

Q is a uniformly random

matrix chosen independently from S.

B. Bob’s decoder

Recall that Bob receives a matrix Y = AX + Z , where

A ∈ F
C×C
q is nonsingular and Z ∈ F

C×C(1+C′)
q has rank

at most ZO. Let Ȳ denote the reduced row echelon form of

Y . Consider first the case where Ȳ =
[

I φ(r)
]

, for some

r ∈ F
C×C′

Q . It is possible to show that Hr = S + E, where

E ∈ F
C′×C′

Q is a matrix of rank at most ZO. As will be

shown later, with high probability, Hr is full-rank if and only

if Alice’s secret bit is 1. Thus, Bob can decode by computing

the rank of Hr.

In general, however, Ȳ may not have the form described

above. Nevertheless, as shown in [13], [17], it is possible to

extract from Ȳ some matrices r ∈ F
C×C′

Q , L̂ ∈ F
C×µ
q and

V̂ ∈ F
δ×C′

Q such that

r = x+ L̂V 1 + L2V̂ + L3V 3

for some V 1 ∈ F
µ×C′

Q , L2 ∈ F
C×δ
q , L3 ∈ F

C×ǫ
q and V 3 ∈

F
ǫ×C′

Q . Moreover, it is shown in [17] that µ, δ ≤ ZO and

ǫ ≤ ZO −max{µ, δ}.

Note that ǫ < C′ −max{µ, δ}, since ZO < C′.
In possession of r, L̂ and V̂ , Bob is now ready to decode

the secrecy layer that has been applied to x.

We have

Hr = Hx+HL̂V 1 +HL2V̂ +HL3V 3

= S + Λ̂V 1 + Λ2V̂ + Λ3V 3 (10)



where Λ̂ = HL̂, Λ2 = HL2 and Λ3 = HL3. Note that Λ̂ ∈
F
C′×µ
Q and V̂ ∈ F

δ×C′

Q are known.

Now, let J ∈ F
(C′−µ)×C′

Q and K ∈ F
C′×(C′−δ)
Q be full-

rank matrices such that JΛ̂ = 0 and V̂ K = 0. Then Bob can

further simplify (10) by computing

JHrK = JSK + JΛ3V 3K.

Note that rank(JΛ3V 3K) ≤ ǫ < C′ −max{µ, δ}.

Thus, Bob performs the following test. If JHrK is full-

rank, then Bob concludes that bit 1 was sent; otherwise, Bob

concludes that bit 0 was sent.

With respect to complexity, computing Ȳ takes O(C2n) =
O(C4) operations in Fq . Computing J , K , JHrK and the

rank of JHrK each take O(C3) operations in FQ, which

amounts to O(C5) in Fq. Thus, the overall decoding com-

plexity is O(C5) operations in Fq .

C. Probability of error analysis

When bit 0 is sent, Bob never makes an error; he makes

an error if and only if bit 1 is sent and JHrK is not

full-rank. Recall that, when bit 1 is sent, S is uniformly

distributed over FC′×C′

Q . Due to the secrecy encoding, Calvin

has no information about S, and therefore S is statistically

independent from Λ3V 3. It follows that S′ = S + Λ3V 3 is

also uniformly distributed over FC′×C′

Q . Thus, the probability

of error when bit 1 is sent is equal to the probability that

JS′K ∈ F
(C′−µ)×(C′−δ)
Q is not full-rank for a uniform S′.

Lemma 3: If S′ ∈ F
C′×C′

Q is uniformly distributed then,

for any J ∈ F
(C′−µ)×C′

Q and any K ∈ F
C′×(C′−δ)
Q , the matrix

JS′K is full-rank with probability at least 1− C′/Q.

Proof: Without loss of generality, assume µ ≥ δ. It

suffices to prove the statement for µ = δ; if µ > δ, then

removing µ− δ columns from K cannot possibly increase the

rank of JS′K .

For any fixed J and K , consider the entries of S′ as

variables taking values in FQ. Then each entry of JS′K is

a multivariate polynomial over FQ with degree at most 1. It

follows that det(JS′K) is a multivariate polynomial over FQ

with degree at most C′ − µ ≤ C′. Note that, if Q ≤ C′,
the statement follows trivially, so assume Q > C′. From [21,

Lemma 4], we have that P [det(JS′K) = 0] ≤ C′/Q.

Thus, the probability of error of the scheme is upper

bounded by C′/Q ≤ C/qC , which can be made arbitrarily

small by choosing q sufficiently large. This proves Theorem 1.

VII. ACHIEVABILITY FOR THEOREM 2

We now describe a coding scheme that achieves rate R =
C − ZI − ZO asymptotically in the packet length n.

As before, assume that n is divisible by C and let n′ =
n/C − (1 + kC′), where k = (bC + 1)(b+ 1) log2 q.

Let H ∈ F
C′×C
Q be the parity-check matrix of a [C,ZI ]

linear MRD code over FQ. Let T ∈ F
C×C
Q be an invertible

matrix such that the first C−ZI rows of T−1 are equal to H .

Similarly, let H0 ∈ F
R×b
Q be the parity-check matrix of a

[b, ZI ] linear MRD code over FQ, and let T0 ∈ F
b×b
Q be an

invertible matrix such that the first R rows of T−1
0 are equal

to H0.

A. Alice’s encoder

First, given a message S ∈ F
R×n′

Q , Alice computes

x = T0

[

S
N

]

, where N ∈ F
ZI×n′

Q is chosen independently

and uniformly at random. Then, she sets M = φ(x) and

generates a string S ∈ {0, 1}k of k bits according to the

scheme described in Section V-B. Next, for each ith bit of

S, Alice produces a matrix Si ∈ F
C′×C′

Q according to the

scheme described in Section VI. Then, for each i = 1, . . . , k,

she computes xi = T

[

Si

N i

]

, where each N i ∈ F
ZI×C′

Q is

chosen uniformly at random and independently from any other

variables. Finally, she produces a transmission matrix

X =

[

IC φ(x1) φ(x2) · · · φ(xk)

[

M
0

]]

.

B. Bob’s decoder

For each i = 1, . . . , k, Bob extracts a submatrix Y i from

Y corresponding to the submatrix
[

IC φ(xi)
]

from X (i.e.,

columns 1, . . . , C, C + (i − 1)C′ + 1, . . . , C + iC′). He then

applies on Y i the decoder described in Section VI to obtain

each ith bit of S.

Similarly, Bob extracts a submatrix Y 0 consisting of the first

b and the last n′C rows of Y . Note that Y 0 = AX0 + Z0,

where X0 =

[

Ib M
0 0

]

∈ F
C×(b+n′C)
q and Z0 has rank

at most ZO. Then, Bob applies the decoder described in

Section V-B to obtain M .

Finally, Bob computes x = φ−1(M) and S = H0x.

C. Overall Analysis

1) Secrecy analysis: The secrecy of the message is guar-

anteed by the scheme of Section V-A.

2) Error probability analysis: By the union bound, the

probability that Bob makes an error when decoding the k-

bit secret S is at most kC/qC ≤ C4(log2 q)/q
C = O( log2

q

qC
).

Given that the secret is decoded correctly, the probability that

Bob makes an error when decoding the message is at most

O(nC2

/q). Thus, the overall probability of error is at most

O(nC2

/q).
3) Rate analysis: The rate of the scheme is given by

Rn′C/n = R(1 − (1 + kC′)C/n) ≤ R − RC5(log2 q)/n.

Thus, the rate loss is O( log2
q

n
).

4) Complexity analysis: Decoding all the secret bits takes

O(kC5) = O(C8 log2 q) operations in Fq, while decoding

the message is dominated by the secrecy decoding step with

O(C4n) operations in Fq.

Note: Both the rate loss and the error probability can be

made asymptotically small by choosing q to grow faster than

polynomially but slower than exponentially in n. For instance,

we may choose q = 2⌊
√
n⌋.



VIII. ERRATA FOR [2]

We briefly reprise the scheme of [2] before demonstrating

the flaw in the proof. In what follows, all operations are over

Fq.

In the scheme of [2] there exist two hash matrices D0 and

D1 which are chosen independently and uniformly at random

C2(C − ZO)× C2 Vandermonde matrices, i.e., each column

of D0 and D1 is of the form h(u) = [u, u2, ..., uC2(C−ZO)]T ,

where the generator u is chosen independently and uniformly

at random from Fq . Both D0 and D1 are publicly known to

all parties, including Bob and Calvin.

Alice’s Encoder: Alice first chooses a random length-

(C2(C−ZO)−C2) row vector u. Let I ∈ {0, 1} be the secret

bit that Alice wishes to send to Bob. Alice then constructs the

length-1 × C2 row vector r such that [u, r]DI = 0. Note

that such r exists since the last C2 rows of DI form an

invertible matrix. Finally the vector [u, r] is rearranged into

a (C − ZO) × C2 matrix which is sent through the network

via random linear network coding.

Bob’s Decoder: After receiving the C × C2 matrix Y ,

for each I ∈ {0, 1} Bob check whether there exists

C − ZO length-C vectors {xi, i ∈ [1, C − ZO]} such that

[x1Y,x2Y, ...,xC−ZO
Y ]DI = 0. If so, Bob decodes the

secret bit as I . The idea is that if I is Alice’s bit, such

{xi, i ∈ [1, C − ZO]} exists for DI with high probability [3].

Calvin’s successful attack: When Calvin corrupts ZO ≥
C−ZO edges, Calvin could mimic Alice’s behaviour when she

wishes to transmit a particular bit, say 1. As a result Bob would

always find length-C row vectors {xi, i ∈ [1, C − ZO]} such

that [x1Y,x2Y, ...,xC−ZO
Y ]D1 = 0. In this case Bob cannot

determine whether the bit 1 is from Alice or from Calvin.

Even if Calvin can only inject ZO < C−ZO errors, if ZO+
ZI ≥ C − ZO, there is another successful attack for Calvin.

To see that, without loss of generality let ZO+ZI = C−ZO.

Since Calvin can eavesdrop on ZI packets {yi, i ∈ [1, ZI ]},

he can carefully choose his ZO injected error packets {zi, i ∈
[1, ZO]} so that [y1, ...,yZI

, z1, ..., zZO
]D1 = 0. In this case,

Bob also always decodes its bit as 1. Thus the scheme in [2]

only works for the case where C > 2ZO + ZI , which does

not improve the result in [3].

Why our scheme works: In our scheme Section VI, instead

of distinguishing the bit by the hash matrices, Alice hides her

secret in the rank of the bit matrix she transmits. In particular,

there is a rank gap C−ZI between the bit matrix for bit 0 and

the one for bit 1. Thus as long as C−ZI > ZO, Calvin cannot

mimic Alice any more, since he can only inject ZO errors. As

a result Bob can determine Alice’s bit by examining the rank

of the matrix he decodes.

IX. CONCLUSION

In this work we considered the problem of communicating

information secretly and reliably over a network containing

a malicious eavesdropping and jamming adversary. Under

the assumptions that vanishingly small probabilities of error

and block coding are allowed, we substantially improve on

the best achievable rates in prior work [1], and also prove

the optimality of our achievable rates. A key component of

our code design is a scheme that allows a small amount

of information to be transmitted secretly and reliably over

the network, as long as the total number of packets that

the adversary can either eavesdrop on or jam is less than

the communication capacity of the network. In proving this

scheme we correct an error in the proof of prior work [2] by

a subset of the authors of this work.
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