
Information Processing Letters 110 (2009) 13–19
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Implementing uniform reliable broadcast with binary consensus in
systems with fair-lossy links

Jialin Zhang a,∗,1, Wei Chen b

a Tsinghua University, China
b Microsoft Research Asia, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 October 2008
Received in revised form 5 June 2009
Accepted 29 September 2009
Available online 1 October 2009
Communicated by A.A. Bertossi

Keywords:
Distributed computing
Fault tolerance
Binary consensus
Uniform reliable broadcast

When implementing multivalued consensus using binary consensus, previous algorithms
assume the availability of uniform reliable broadcast, which is not implementable in sys-
tems with fair-lossy links. In this paper, we show that with binary consensus we can
implement uniform reliable broadcast directly in systems with fair-lossy links, and thus
the separate assumption of the availability of uniform reliable broadcast is not necessary.
We further prove that, when binary consensus instances are available only as black boxes,
any implementation of uniform reliable broadcast in the fair-lossy link model requires the
invocation of an infinite number of binary consensus instances even if no process ever
broadcasts any messages, and this is true even when multivalued consensus is used.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Consensus is a fundamental problem to solve in building
fault-tolerant distributed systems. In the consensus prob-
lem, each process in the distributed system proposes one
value and eventually all processes decide on one of the
proposed values, and the decision is irrevocable. The con-
sensus problem characterizes the distributed agreement
that is seen in many distributed coordinating tasks such
as atomic broadcast, data replication, mutual exclusion,
atomic commit, and thus it serves as the basic building
block in achieving these tasks.

One basic form of consensus is binary consensus, in
which the proposed values are either 0 or 1. Binary con-
sensus is used in studying both impossibility and lower
bound results (e.g., [2,8]) and consensus algorithms (e.g.,
[1,4]). However, solving the general multivalued consensus

* Corresponding author.
E-mail addresses: zhanggl02@mails.tsinghua.edu.cn (J. Zhang),

weic@microsoft.com (W. Chen).
1 This work was supported in part by the National Natural Science

Foundation of China Grant 60553001, and the National Basic Research Pro-
gram of China Grant 2007CB807900, 2007CB807901.
0020-0190/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2009.09.013
using binary consensus is not trivial. In [12], Turpin and
Coan provide an algorithm reducing multivalued consensus
to binary consensus in synchronous systems with Byzan-
tine failures. In [11], Mostefaoui et al. provide a reduction
algorithm in asynchronous systems with crash failures, and
in [15] we provide new reduction algorithms that bound
the number of binary consensus invocations.

In this paper we resolve one important issue left in [11,
15]. The algorithms in both papers rely on the availabil-
ity of uniform reliable broadcast (URB) primitives in the
system. While URB is implementable in shared-memory
systems, or in message-passing systems with reliable links,
or in message-passing systems with fair-lossy links and a
majority of non-faulty processes, it is not implementable
in message-passing systems with fair-lossy links and an ar-
bitrary number of faulty processes. Informally, a fair-lossy
link is one that may drop messages but if a message is
sent infinitely often through the link, then the receiver
eventually receives it. Fair-lossy link model is more real-
istic, especially in wide-area networks in which messages
do get lost from time to time. In [3], Aguilera et al. show
that the weakest failure detector solving URB in systems
with fair-lossy links is Θ (which means that URB is not im-
plementable). Thus, the question is whether URB is imple-

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:zhanggl02@mails.tsinghua.edu.cn
mailto:weic@microsoft.com
http://dx.doi.org/10.1016/j.ipl.2009.09.013

14 J. Zhang, W. Chen / Information Processing Letters 110 (2009) 13–19
mentable in systems with fair-lossy links and an arbitrary
number of faulty processes, when binary consensus is also
available. In [11,15], the authors simply assume that in the
fair-lossy link model URB is available or equivalently failure
detector Θ is available when solving multivalued consen-
sus using binary consensus.

In this paper, we show that the assumption on the
availability of URB or failure detector Θ is not necessary.
Instead, we show that binary consensus can implement
URB directly in the fair-lossy link model with an arbi-
trary number of crash failures. People familiar with failure
detector researches may notice that solving consensus im-
plies the availability of a quorum failure detector Σ [7],
which is stronger than Θ [6]. However, we cannot use
the above reasoning directly, because when showing that
consensus implies failure detector Σ , the first step is to
show that consensus can implement shared registers, but
such implementations require multivalued consensus (to
the best of our knowledge). Therefore, in this paper, we
provide a direct implementation of URB from binary con-
sensus in the fair-lossy link model. Moreover, we prove a
necessity result on any such implementations, when binary
consensus instances are available only as black boxes: any
such implementation requires the invocation of an infinite
number of binary consensus instances on all correct pro-
cesses even if no process actually broadcasts any messages,
and this result still holds even if we use multivalued con-
sensus instead of binary consensus. In our full technical
report [14], we further provide a more efficient algorithm
that solves URB using multivalued consensus, and show
that both algorithms actually implements a stronger form
of broadcast called strong uniform atomic broadcast.

2. The model and the problem

We consider a message-passing system consisting of
n processes Π = {p1, p2, . . . , pn}. We assume that global
time takes non-negative integer values, but it is not acces-
sible to processes. Processes may fail by crashing, i.e., stop
taking any actions. A failure pattern F is a function from a
global time t to a subset of processes that have crashed by
time t . A crashed process does not recover, i.e., F (t) ⊆ F (t′)
for all t � t′ . We say that a process p is faulty (in a failure
pattern F) if it crashes in F (i.e., there exists a time t such
that p ∈ F (t)), and p is correct if it is not faulty. In this
paper, we only consider the failure patterns that contain
at least one correct process. There is a fair-lossy link be-
tween each pair of the processes so that processes can use
the links to communicate with each other. We say a link is
fair-lossy if it satisfies the following properties [3]:

• Fairness: If a correct process p sends a message m to a
correct process q an infinite number of times, then q
eventually receives m from p.

• Uniform Integrity: If q receives a message m from p,
then p previously sent m to q; and if q receives m
infinitely often from p, then p sends m infinitely often
to q.

A distributed algorithm A consists of n deterministic au-
tomata, one for each process. Processes run the algorithm
step by step. In one step, one process p may receive a mes-
sage m (or not receiving a message), make a local state
transition according to its automaton, its current state, and
the message received, and it may send a message to one
process. A step is taken at one time point (not accessible
to processes), and one process can take at most one step
at any time point. A partial run of algorithm A is a finite
sequence of steps that is well-formed, i.e., if p receives m
from q in a step, q must have sent m to p in an earlier
step. A partial run ρ is compatible with a failure pattern F
if for each step t , the process that does the operation in
this step is not contained in F (t). A run of the algorithm
is a sequence of an infinite number of steps together with
a failure pattern such that (a) all correct processes take an
infinite number of steps; (b) a crashed process does not
take any more step after it crashes (according to the fail-
ure pattern); and (c) the send and receive primitives on all
links satisfy the fair-lossy link properties.

The problem to solve is uniform reliable broadcast (URB)
in which a process can broadcasts a value v , which is
associated with an attribute sender(v) to denote the initia-
tor of the broadcast of v , and eventually correct processes
should deliver v . We assume that all values broadcast by
all processes are different (e.g., they can be differentiated
by process identifiers and local sequence numbers). More
precisely, uniform reliable broadcast should satisfy the fol-
lowing properties [9]:

• Uniform Integrity: For any value v , any process (correct
or faulty) delivers v at most once, and only if v was
previously broadcast by sender(v).

• Validity: If a correct process broadcasts v , then it even-
tually delivers v .

• Uniform Agreement: If a process (correct or faulty) de-
livers a value v , then all correct processes eventually
deliver value v .

In this paper, we show how to solve uniform reliable
broadcast using fair-lossy link and binary consensus. The bi-
nary consensus is a special form of general consensus in
which processes can only propose 0 or 1, and make an
irrevocable decision on one value. It needs to satisfy the
following three properties:

• Validity: If a process decides v , then v has been pro-
posed by some process.

• Uniform Agreement: No two processes (correct or not)
decide differently.

• Termination: If a correct process proposes, it will de-
cide eventually.

In our algorithms, we use FL-Send() and FL-Receive()
to represent the send and receive primitives on fair-lossy
links, UR-Broadcast() and UR-Deliver() to represent uniform
reliable broadcast and delivery primitives, and B-Con() to
represent a binary consensus instance such that the pa-
rameter of B-Con() is the proposal while the return value
is the decision value. We use array notation B-Con[] to dif-
ferentiate different binary consensus instances.

J. Zhang, W. Chen / Information Processing Letters 110 (2009) 13–19 15
Local variables on process p:
1 M , set of known broadcast values, initially empty
2 D , set of delivered values, initially empty
3 �, non-negative integer, initially 0
4 r, 0 or 1, representing the result of current binary consensus instance

Code for process p:
5 Task 1: To execute UR-Broadcast(v):
6 M ← M ∪ v
7 Task 2: Upon FL-Receive(v):
8 M ← M ∪ v
9 Task 3: Repeat periodically:
10 for any value v ∈ M \ D , FL-Send(v) to all processes
11 Task 4: Repeat periodically:
12 for i ← 0 to � do
13 if i /∈ D then
14 if i ∈ M \ D then r ← B-Con[�][i](1)

15 else r ← B-Con[�][i](0)

16 if r = 1 then
17 D ← D ∪ {i}
18 UR-Deliver(i)
19 endfor
20 � ← � + 1

Fig. 1. Implementation of uniform reliable broadcast using binary consen-
sus.

3. Implementation of URB using binary consensus

We present an algorithm in Fig. 1 that solves uniform
reliable broadcast using binary consensus instances and
fair-lossy links. In the algorithm, the values broadcast by
processes are non-negative integers. Any finite-length val-
ues (including metadata fields such as sender identifiers)
can be encoded by a non-negative integer, so using non-
negative integers does not lose the generality of the solu-
tion.

Each process p maintains two sets M and D , where M
contains all values submitted for uniform reliable broad-
cast that p is aware of, and D contains all values that p
has UR-Delivered. When a process p wants to uniform re-
liable broadcast a value v , it puts v into a set of values
M (Task 1). If process p FL-Receives a value v from other
processes, p also puts this value v into M (Task 2). Pro-
cess p periodically FL-Sends all of the values in the set
M \ D to other processes (Task 3). Process p also period-
ically runs Task 4 with a counter � that is incremented
every time the task runs. In Task 4, for every i = 0,1, . . . , �

such that i has not been UR-Delivered by p yet (i /∈ D),
p does the following. Process p invokes a binary consen-
sus instance B-Con[�][i] either with proposal 1 if i ∈ M \ D ,
which means that some process has broadcast i but p has
not delivered it yet (line 14), or with proposal 0 (line 15).
If the result of instance B-Con[�][i] is 1, p UR-Delivers i
and add i into set D (lines 17–18). The following theorem
shows that the implementation in Fig. 1 satisfies all the
properties of uniform reliable broadcast.

Theorem 1. The algorithm in Fig. 1 implements uniform reliable
broadcast using binary consensus instances in a system with
fair-lossy links.

Proof. We first notice that no process will be blocked for-
ever in the algorithm. The only place where a process p
may be blocked is an invocation of a binary consensus in-
stance B-Con[�][i] for some � and i. By the Termination
property of consensus, if p is correct, then eventually the
consensus instance will return the decision value.2 Next
we show that the algorithm satisfies the Uniform Agree-
ment, Uniform Integrity, and Validity properties of uniform
reliable broadcast.

Uniform Agreement: If a process p UR-Delivers value v ,
it must have a binary consensus instance B-Con[�][v] that
returns 1 for some �. For any correct process q, when it
runs procedure from line 12–19 with �, if q has not deliv-
ered v , then q must invoke consensus instance B-Con[�][v],
and the return value must be 1 according to the Uni-
form Agreement property of binary consensus. Thus, q will
UR-Deliver it in line 18. So Uniform Agreement property
holds.

Uniform Integrity: When process p UR-Delivers value v ,
we have v ∈ D by line 17. Then, by the condition in line 13,
process p will never deliver it again. So any process can
UR-Deliver any value at most once. If process p UR-Delivers
value v in line 18, then the binary consensus instance
B-Con[�][v] returns 1 for some �. So some process q pro-
poses 1 to this instance. The only case to propose 1 is
in line 14 which means v ∈ M \ D in process q at that
time. By the Uniform Integrity property of fair-lossy links,
we know that all values in M are previously broadcast by
some process. This proves the Uniform Integrity property.

Validity: We prove it by contradiction. Suppose value
v is UR-Broadcast by some correct process p but never
UR-Delivered by p. Since we have proven the Uniform
Agreement property of the uniform reliable broadcast al-
gorithm, we know that no process ever UR-Deliver v in
the run. Since v is never UR-Delivered by process p, v is
permanently in M \ D on process p after p UR-Broadcasts
it. Thus, process p will FL-Send v to all other processes
infinitely often in Task 3. By the Fairness property of
fair-lossy links, every correct process q will eventually
FL-Receive value v and add v into its set M . Since no pro-
cess will ever UR-Delivered v , v will never be in set D
on any process. So there exists a time point after which
all correct processes have v ∈ M \ D and all faulty pro-
cesses have crashed. At that time point, suppose l � v is
the smallest integer that binary consensus B-Con[�][v] has
never been called by any process. Then, for any correct
process p, it will invoke consensus instance B-Con[�][v]
because v ∈ M \ D and no process is blocked anywhere
in the algorithm. When a correct process p invokes the bi-
nary consensus instances B-Con[�][v], it will propose 1 by
line 14. Thus, B-Con[�][v] must return 1 by the Validity
property of binary consensus. Therefore, p will UR-Deliver
v by line 16 and 18. This contradicts that v is never
UR-Delivered by any process. So Validity holds. �

Theorem 1 shows that the algorithm in Fig. 1 imple-
ments uniform reliable broadcast. This result together with
the results in [11,15] is enough to show that using binary

2 Even if we use a weaker termination property that only requires de-
cision when all correct processes propose, it is still true that no process
will be blocked at any binary consensus instance. This can be proven by
an induction on the sequence of consensus instances invoked.

16 J. Zhang, W. Chen / Information Processing Letters 110 (2009) 13–19
consensus instances alone can solve multivalued consensus
in systems with fair-lossy links.

4. Necessity of infinite number of invocations of
consensus instances

In the previous section, we give an algorithm that uses
binary consensus instances to implement uniform reliable
broadcast. One issue of the algorithm is that each process
needs to call an infinite number of binary consensus in-
stances, even if the number of the values broadcast by
all processes is finite (or even zero). In this section, we
show that this is necessary, provided that binary consen-
sus instances are black boxes to the algorithm that uses
them. This is still true even if we use multivalued consen-
sus instead of binary consensus. The intuition is that if a
faulty process delivers a value, uniform reliable broadcast
requires that all correct processes deliver the same value,
but the fair-lossy links may drop all messages sent by the
faulty process. Therefore, the only “reliable way” for the
algorithm to transfer information from faulty processes to
correct processes is through (uniform) consensus instances,
and correct processes have to continuously invoking con-
sensus instances even though they do not broadcast any
values themselves.

Formalizing the above intuition into a proof is nontriv-
ial, however, because we need to model carefully what a
consensus black box can or cannot do. We now provide ad-
ditional model details needed in the proof of the necessary
condition. We use shared memory objects to model con-
sensus instances as black boxes. In a step of the algorithm,
a process does one of the following actions: (a) receives a
message (possibly a null message) and sends a message, or
(b) invokes a one-shot multivalued consensus object (MC-
object for short), i.e. proposes a value to the MC-object,
or (c) receives the decision value from an MC-object. After
the invocation, the MC-object will return a decision value,
which is handled by a process in a later step. Processes are
allowed to execute other steps (i.e. parallel tasks) between
the invocation and the return of an MC-object. Every MC-
object is one-shot, meaning that each process can invoke
an MC-object at most once. MC-objects satisfy the specifi-
cation of multivalued consensus.

Each step of the algorithm is thus fully determined by
parameters (p,Σp,m,d, O), where p denotes which pro-
cess to take the step, Σp denotes the current local state of
p, m denotes the message received in the step, and d de-
notes the decision value received, and O is the MC-object
from which d is received. Parameter m could be ⊥, mean-
ing that no message is received in the step, and (d, O)

could also be (⊥,⊥), meaning that no consensus decision
is received in the step. If (m,d, O) = (⊥,⊥,⊥), it denotes
a local step. A process only invokes an MC-object O with
some proposed value v in a local step, in which case O
and v are specified in the local state Σp and thus no need
to be specified separately. Parameters m and d cannot be
non-⊥ in the same step, meaning that receiving a message
and receiving a decision do not occur in the same step.

In this model, MC-objects are black boxes, which means
that uniform reliable broadcast algorithms can only access
these instances through their interfaces (proposing a value
and receiving a decision), and algorithms cannot access
or modify the implementations of consensus (e.g., reading
the internal states of the implementation or piggybacking
messages onto messages in the implementation). For our
proof, we need to determine whether the system environ-
ment (also referred to as the adversary or the scheduler
in the literature) can select the decision value of an MC-
object among its proposals and whether the environment
can entirely determine the real time at which the deci-
sion is returned. It would make our proof easier if the
environment can do both freely in all runs. However, real
implementations of consensus may result in different be-
haviors in different runs. For example, an implementation
may use a failure detector, which generates different out-
put in different failure patterns, resulting in different deci-
sion values and computation time in different runs. To con-
sider such realistic situations and make our result stronger,
we do not assume that the environment can control the
decision value or the computation time of an MC-object.
However, the environment can further delay the delivery
of the decision value of an MC-object to a process, which
is consistent to the asynchrony assumption that allows the
environment to delay message delivery to a process or de-
lay a step of a process.

We only consider MC-objects whose behaviors are not
affected by potential failures in the future. More precisely,
we say that MC-objects are realistic if in any run R of these
objects with failure pattern F , for any time t and any fail-
ure pattern F ′ satisfying F (t′) = F ′(t′) for all t′ � t , there
exists a run R ′ with F ′ such that all steps of R ′ by time t′
are the same as the steps in R and they occur at the same
real time points as the steps in R . All MC-objects consid-
ered in the following theorem and its proof are realistic.

In a partial run ρ , an MC-object O is pending in ρ if
some process p invokes O in ρ but no process receives
decision value from O in ρ . A partial run ρ is said to be
unambiguous if no MC-object is pending in ρ . Let p be the
process that executes the last step in partial run ρ . Let
ρ = ρ ′ ·ρp , where ρp is the sequence of steps all executed
by p and ρ ′ is either empty or its last step is executed
by some process q 	= p. We call it last-step decomposition of
partial run ρ . The partial run ρ is said to be strongly un-
ambiguous if both ρ and ρ ′ are unambiguous. The empty
partial run is both unambiguous and strongly unambigu-
ous. In a failure pattern F , if there exists only one correct
process p in F , let t be the time such that for any t′ � t ,
Π \ F (t′) contains at least two processes and for t′ > t ,
F (t′) = Π \ {p}. We call t the last crash time and any pro-
cess q in Π \ F (t) different from p the last crash process.

The following theorem proves that infinite MC-objects
are necessary to implement uniform reliable broadcast.

Theorem 2. In the fair-lossy model, for any algorithm A that
implements uniform reliable broadcast using MC-objects, for
any failure pattern F , for any strongly unambiguous partial run
ρ compatible with F of A, there exists a run R with failure pat-
tern F such that

(1) ρ is the initial sequence of R;
(2) no process broadcasts any value after ρ; and

J. Zhang, W. Chen / Information Processing Letters 110 (2009) 13–19 17
(3) every correct process invokes an infinite number of MC-
objects. Moreover, if there are at least two correct processes
in F , we only require ρ to be unambiguous instead of being
strongly unambiguous.

In the special case when ρ is the empty sequence, the
theorem shows that for any failure pattern F , there ex-
ists a run with F in which no process ever broadcasts
any value but every correct process invokes infinitely many
MC-objects. In order to prove this theorem, we first prove
the following two lemmata. We say that a partial run ρ ′
is an extension of a partial run ρ if ρ (as a sequence of
steps) is a prefix of ρ ′ , and we write ρ ′ = ρ · ρ ′′ where ρ ′′
is the sequence of additional steps after ρ .

Lemma 1. In the fair-lossy model, consider the failure pattern
F that has only one correct process p. Let q be any last crash
process. For any algorithm A that implements uniform reliable
broadcast using MC-objects, consider a strongly unambiguous
partial run ρ of A compatible with F . Consider another failure
pattern F ′ which is the same as F except that q is correct in F ′ .
We prove that there exists a run R with failure pattern F ′ where
the partial run ρ is a prefix of R.3

Proof. Let run R1 be a run beginning with partial run ρ
and the failure pattern is F . Let t be the last crash time.
We construct run R with failure pattern F ′ as follows.

First, since the failure patterns F and F ′ before time t
are exactly the same and all consensus objects are realis-
tic, we can schedule the steps in R by time t to be exactly
the same as those in R1. If the last step of ρ is executed
by time t , we have already finished the proof. Otherwise,
the last step of ρ is executed by process p since only p is
alive after time t . Let the last-step decomposition of ρ to
be ρ = ρ ′ · ρp . We know that ρ ′ is unambiguous because
ρ is strongly unambiguous. Since the last step of ρ ′ is ex-
ecuted before time t , it can be scheduled in R exactly the
same as in R1. Then, after time t , we want process p in R
to take the same sequence of steps in ρp as in R1. We can-
not simply schedule all steps in ρp in R exactly as those
in R1, since the environment does not control the deci-
sion values or the computation times of the MC-objects.
We now provide detailed explanation on how to schedule
ρp in R .

Let ρp = s1 · s2 · · · sk , where si is the i-th step in ρp for
i = 1,2, . . . ,k. Suppose that s1, . . . , si−1 have been sched-
uled in R and we now need to schedule si . Thus we know
that after si−1 process p is in the same state as in R1. Let
si = (p,Σp,i,mi,di, O i). We consider the following cases.

• Case 1: (mi,di, O i) = (⊥,⊥,⊥). Step si is a local step.
Since p has the same state Σp,i as in R1, we can
schedule the same step si in R .

• Case 2: mi 	= ⊥. In si , p receives a message mi from
some process q′ . Since q′ must have sent mi to p in an
earlier step in R1, and all steps in R prior to si are the

3 Note that in R the exact real time to execute each step in ρ may be
different from the real time in the original run that generates ρ .
same as in R1, p may also receive the same message
mi and execute the same step si in R .

• Case 3: (di, O i) 	= (⊥,⊥). In si , p receives consensus
decision di from MC-object O i . This implies that p
must have proposed to O i in an earlier step. By the
Termination property of consensus, p should eventu-
ally receive a decision from O i . We first argue that
p will receive the same decision di in R . There are
two cases to consider. If O i has been invoked by some
process in ρ ′ , then since ρ ′ is unambiguous, some pro-
cess q′ must have received decision d′

i from O i in ρ ′
of R1. By the Uniform Agreement property of consen-
sus, d′

i = di . Then since ρ ′ is also the partial run of R ,
the decision value of O i must also be d′

i = di , and thus
p will receive di as the decision from O i . If O i is not
invoked by any process in ρ ′ , then p must have pro-
posed some value vi to O i in some step s j of R1 with
1 � j < i. Since only p takes steps in ρp , by the Va-
lidity property of consensus, di = vi . Therefore, in R ,
p also proposes vi in s j and p must receive vi = di
as the decision from O i . We now argue that we can
schedule si before scheduling any other later steps of
p in ρp . Even though O i may take longer real time to
compute in R than in R1, we can still schedule step
si by delaying all later steps in ρ ′′ , according to the
asynchrony assumption of the system. Hence, si can
be scheduled next in R when si = (p,Σp,i,⊥,di, O i).

Therefore, we know that in R we can schedule steps in
ρp in the same order as in R1. Suppose ρp ends at time
t′ in R . After time t′ , we schedule the steps of p and q
to run in a round-robin way and let them receive all mes-
sages and all consensus decisions (in particular, q receives
all messages p sent in ρp).

Thus, we construct a run R compatible with failure pat-
tern F ′ and the partial run ρ is a prefix of R . �

The above lemma proves an important property of the
model: any strongly unambiguous partial run obtained in
a run with a single correct process can also be obtained
in another run with an additional correct process, despite
that the two runs have different failure patterns and thus
the MC-objects may not behave exactly the same in two
runs. The condition of partial run being strongly unam-
biguous is crucial for this property, because it enforces the
MC-objects to have the same decision values in the two
runs.

Lemma 2. In the fair-lossy model, for any algorithm A that im-
plements uniform reliable broadcast using MC-objects, for any
failure pattern F , for any strongly unambiguous partial run ρ
compatible with F , and for any correct process p in F , there ex-
ists a partial run ρ ′ such that

(1) ρ ′ = ρ · ρ ′′ is an extension of ρ (compatible with F);
(2) only process p takes steps in ρ ′′;
(3) p does not broadcast any value in ρ ′′; and
(4) p invokes at least one MC-object in ρ ′′ .

Proof. Suppose, for a contradiction, that there exists a fail-
ure pattern F , a strongly unambiguous partial run ρ com-

18 J. Zhang, W. Chen / Information Processing Letters 110 (2009) 13–19
patible with F , a correct process p in F , such that for all
the partial run extensions ρ ′ = ρ · ρ ′′ of ρ in which only
p takes steps in ρ ′′ and p does not broadcast any value
in ρ ′′ , p does not invoke any MC-object in ρ ′′ . We first
extend ρ to obtain ρ0 = ρ · ρ ′

0, such that (a) in ρ0 p re-
ceives all decision values from all objects that p proposes
to in ρ , and (b) all steps in ρ ′

0 are decision-receiving steps
of p. Item (a) above can be achieved due to the Termina-
tion property of consensus, while item (b) can be achieved
since by asynchrony assumption we can delay all other
steps in the system. Let t1 be the real time at which the
last step of ρ0 is executed.

Consider a full run R1 constructed as follows. First, the
failure pattern F1 of run R1 is such that (a) F1(t) = F (t) for
all t � t1, (b) p is correct in F1, and (c) all other processes
not crashed yet by time t1 crash at time t1 + 1. Second,
the sequence of steps by time t1 is exactly ρ0, which is
possible because all MC-objects are realistic. Third, after
time t1, p does not broadcast any values. Let R1 = ρ0 · ρp ,
where ρp is the sequence of steps of p after time t1. By the
selection of ρ , it is easy to check that p does not invoke
any MC-object in ρp . Moreover, by the construction of ρ0
p does not receive any decision from any MC-object in ρp
either.

Let q 	= p be any last crash process in F1. By Lemma 1,
we can construct a run R2 such that the failure pattern F2
of run R2 is the same as F1 except that q is correct in F2
and ρ0 is a prefix of R2. Suppose that the last step of ρ0 in
R2 is executed at time t2, which may be different from t1.

We then construct a run R3 with failure pattern F3.
(1) The failure pattern F3 is the same as F2 except that
p crashes at time t2 + 1. (2) The sequence of steps by time
t2 is exactly ρ0, which can be done since the failure pat-
tern by time t2 is exactly the same in both run R2 and R3.
(3) At time t2 + 1, process q broadcasts a value v (by our
definition v is different from any values broadcast in par-
tial run ρ0). Since q is a correct process, by the Validity
property of uniform reliable broadcast, q eventually deliv-
ers v in R3. Let the partial run until q delivers v be ρ0 ·ρ ′

q ,
where all steps in ρ ′

q are executed by process q. Sequence
ρ ′

q may include invocations and returns of a finite number
of MC-objects. We extend the partial run ρ0 · ρ ′

q so that q
receives the decision values from all objects invoked in ρ ′

q ,
but we delay all other steps so that all steps in the exten-
sion after ρ0 · ρ ′

q are decision-receiving steps. Let ρ0 · ρq
be this extension. Then since ρ0 is unambiguous and in ρq
q receives all decision values from objects that q proposes
to, we know that ρ0 ·ρq is strongly unambiguous. Suppose
that the last step in ρq is executed at time t3 > t2.

In failure pattern F3, the only correct process is pro-
cess q, and p is a last crash process. Thus by Lemma 1, we
can construct a run R4 such that the failure pattern F4 of
run R4 is the same as F3 except that p is correct in F4
and ρ0 · ρq is a prefix of R4. Suppose that the last step of
ρ0 ·ρq in R4 is executed at time t4, which may be different
from t3.

Finally, we construct a run R5 as follows. The failure
pattern F5 of R5 is the same as F4 except that q crashes
at time t4 + 1. The sequence of steps in R5 by time t4
is ρ0 · ρq , exactly as in R4, which is possible because all
MC-objects are realistic. After time t4 + 1, we schedule all
steps in ρp in the same order as in run R1 (but perhaps
at different real time points). We can do so because (a) all
messages sent by q in ρq can be dropped since q is faulty
in R5, (b) the state of p in R5 at time t4 + 1 is the same as
the state of p in R1 at time t1 +1, and (c) ρp contains only
message-receiving steps (or local steps when the message
is null).

However, in R5 = ρ0 · ρq · ρp , p does not deliver value
v since v is a new value only broadcast in ρq by q, but
q delivers v in ρq . This violates the Uniform Agreement
property of uniform reliable broadcast — a contradiction.
Therefore, the lemma holds. �

We now prove Theorem 2 by repeatedly applying
Lemma 2.

Proof of Theorem 2. We first consider a strongly unam-
biguous partial run ρ compatible with an arbitrary fail-
ure pattern F . Let p1, p2, . . . , pk be the correct processes
in F . We construct the run R as follows starting from
partial run ρ0 = ρ . First, we schedule p1 to take enough
message-receiving steps to receive all messages sent to p1
in ρ0. Let ρ ′

0 be the resulting extension of ρ0. Since ρ0 is
strongly unambiguous and p1 does not invoke MC-objects
in message-receiving steps, ρ ′

0 is still strongly unambigu-
ous. Then by Lemma 2, there exists a partial run extension
ρ ′′

0 = ρ ′
0 · ρ ′′′

0 such that only p1 takes steps in ρ ′′′
0 , p1 does

not broadcast any value in ρ ′′′
0 , and p1 invokes at least one

MC-object in ρ ′′′
0 . By the Termination property of consen-

sus, all MC-objects invoked by p1 in ρ ′′′
0 eventually return

decision values to p1. We delay all other steps of any pro-
cess except the steps in which p1 receives the decision
values from all objects invoked in ρ ′′′ . Let ρ1 be the ex-
tension of ρ ′′

0 when p has received the decision values
from all objects invoked in ρ ′′′ . Since ρ0 is strongly un-
ambiguous and p1 does not invoke MC-objects in decision
receiving steps, we know that ρ1 is also strongly unam-
biguous.

We now repeat the same procedure as above on ρ1
and process p2. Namely, we first let p2 receive all mes-
sages sent to it in ρ1, and then apply Lemma 2 to find an
extension in which p2 does not broadcast any value but
invokes at least one MC-object, and finally schedule deci-
sion receiving steps of p2 to find an extension ρ2 that is
still strongly unambiguous.

In general, we repeat the above procedure in a round-
robin way among all correct processes p1, p2, . . . , pk to
construct the infinite run R . In this run, all correct pro-
cesses execute an infinite number of steps and receive all
messages sent to them. After ρ , only correct process take
steps, they do not broadcast any more values, but every
one of them invokes an infinite number of MC-objects.
Therefore, the theorem holds for the arbitrary failure pat-
tern case.

Finally we consider the case where failure pattern F
includes at least two correct processes. Let ρ be the un-
ambiguous partial run compatible with F . Let p be the
process executing the last step of ρ . Since F includes at
least two correct processes, there must be a correct pro-
cess q 	= p. We extend ρ by scheduling q to take the next
step and q does not broadcast a value in this step. If q

J. Zhang, W. Chen / Information Processing Letters 110 (2009) 13–19 19
invokes an MC-object in the next step, we also need to
schedule one more step for q to receive the decision value
from this MC-object. In other cases, we only need one step
from q. Let ρ ′ = ρ · ρ ′′ be the extension. Then we know
that ρ · ρ ′′ is the last-step decomposition of ρ ′ , and ρ ′ is
unambiguous. Since ρ is unambiguous, ρ ′ is strongly un-
ambiguous. The rest of the proof is the same as above. �

Several remarks are now in order on the subtlety of the
theorem. First, the assumption that MC-objects are real-
istic is necessary. If an MC-object is not realistic, e.g. its
implementation uses a failure detector that predicts future
failures, then the implementation can guarantee that only
correct processes return from consensus and all faulty pro-
cesses will not receive decision values. We only need one
such object to implement uniform reliable broadcast as fol-
lows. Each process p invokes the consensus object with an
arbitrary proposal. Whenever p broadcasts a value v , it re-
peatedly sends v to all processes. Only after p receives a
decision value from the object (indicating that p is cor-
rect in this run), p delivers all values it receives from any
process (including itself). Note that agreement in decision
values is not needed here.

Second, the theorem relies on the Termination property
of consensus that requires a proposed correct process to
decide no matter if other correct processes have proposed
or not. This requirement is reasonable and is satisfied by
many existing consensus algorithms in both the message-
passing model and the share-memory model (e.g. [10,13]).
If we consider a different Termination property as given
below, then the implementation of uniform reliable broad-
cast does not need repeated invocations of consensus.

• Termination’: If all correct processes propose, then
eventually they all decide. Conversely, if some process
decides, all correct processes must have already pro-
posed.

It is possible to implement consensus with the above prop-
erty using a perfect failure detector [5], such that every
process waits for every other process to either propose or
to be deemed as having crashed by the failure detector
(which must be true) before proceeding to select the de-
cision value. With objects satisfying Termination’, we can
implement uniform reliable broadcast as follows. When-
ever a process wants to broadcast a value v , it repeatedly
sends v to all other processes and invokes an object with
an arbitrary proposal and waits for the decision. When
other processes receive v , they also invoke the same object
with an arbitrary proposal. If a process obtains a decision
value from the object, it guarantees that all correct pro-
cesses receives value v and will eventually obtain the de-
cision value from the object. So it can deliver v safely. The
implementation only needs one object for every broadcast
value, and agreement among decision values is not needed.

5. Conclusion

In this paper, we show that uniform reliable broadcast
can be implemented in systems with fair-lossy links when
binary consensus is available, and thus the separate as-
sumption on the availability of uniform reliable broadcast
or an equivalent failure detector Θ is unnecessary when
implementing multivalued consensus from binary consen-
sus. In our algorithm, every process needs to invoke binary
consensus periodically even if there is no message being
broadcast, and we prove that this behavior is inevitable.

With this work, we can finally claim that binary con-
sensus indeed has the same power in terms of solvability
as multivalued consensus in systems with fair-lossy links.
We can then apply results obtained with multivalued con-
sensus case to binary consensus. For example, the weakest
failure detector for binary consensus is the same as the
weakest failure detector for multivalued consensus in this
model.

Acknowledgements

We thank the anonymous reviewers whose insightful
comments help improving the paper.

References

[1] M.K. Aguilera, S. Toueg, Failure detection and randomization: A hy-
brid approach to solve consensus, SIAM Journal on Computing 28 (3)
(1998) 890–903.

[2] M.K. Aguilera, S. Toueg, A simple bivalency proof that t-resilient con-
sensus requires t + 1 rounds, Information Processing Letters 71 (3–4)
(1999) 155–158.

[3] M.K. Aguilera, S. Toueg, B. Deianov, Revisiting the weakest failure de-
tector for uniform reliable broadcast, in: Proceedings of the 13th In-
ternational Symposium on Distributed Computing, September 1999,
pp. 19–33.

[4] M. Ben-Or, Another advantage of free choice: Completely asyn-
chronous agreement protocols, in: Proceedings of the 2nd ACM
Symposium on Principles of Distributed Computing, August 1983,
pp. 27–30.

[5] T.D. Chandra, V. Hadzilacos, S. Toueg, The weakest failure detector for
solving consensus, Journal of the ACM 43 (4) (1996) 685–722.

[6] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, Shared memory vs.
message passing, Technical Report IC/2003/77, EPFL, December 2003.

[7] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P.
Kouznetsov, S. Toueg, The weakest failure detectors to solve certain
fundamental problems in distributed computing, in: Proceedings of
the 23rd ACM Symposium on Principles of Distributed Computing,
July 2004, pp. 338–346.

[8] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of distributed
consensus with one faulty process, Journal of the ACM 32 (2) (1985)
374–382.

[9] V. Hadzilacos, S. Toueg, A modular approach to fault-tolerant broad-
casts and related problems, Technical Report 94-1425, Department of
Computer Science, Cornell University, Ithaca, New York, May 1994.

[10] L. Lamport, The part-time parliament, ACM Transactions on Com-
puter Systems 16 (2) (1998) 133–169.

[11] A. Mostefaoui, M. Raynal, F. Tronel, From binary consensus to mul-
tivalued consensus in asynchronous message-passing systems, Infor-
mation Processing Letters 73 (5–6) (2000) 207–212.

[12] R. Turpin, B.A. Coan, Extending binary byzantine agreement to mul-
tivalued byzantine agreement, Information Processing Letters 18 (2)
(1984) 73–76.

[13] J. Yang, G. Neiger, E. Gafni, Structured derivations of consensus algo-
rithms for failure detectors, in: Proceedings of the 17th ACM Sym-
posium on Principles of Distributed Computing, June 1998, pp. 297–
306.

[14] J. Zhang, W. Chen, Implementing uniform reliable broadcast with
binary consensus in systems with fair-lossy links, Technical Report
MSR-TR-2008-162, Microsoft Research, October 2008.

[15] J. Zhang, W. Chen, Bounded cost algorithms for multivalued con-
sensus using binary consensus instances, Information Processing Let-
ters 109 (17) (2009) 1005–1009.

	Implementing uniform reliable broadcast with binary consensus in systems with fair-lossy links
	Introduction
	The model and the problem
	Implementation of URB using binary consensus
	Necessity of infinite number of invocations of consensus instances
	Conclusion
	Acknowledgements
	References

