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ABSTRACT

The biclustering problem has been extensively studied in many areas, including e-commerce,

data mining, machine learning, pattern recognition, statistics, and, more recently, computa-

tional biology. Given an n� m matrix A (n � m), the main goal of biclustering is to identify

a subset of rows (called objects) and a subset of columns (called properties) such that some

objective function that specifies the quality of the found bicluster (formed by the subsets of

rows and of columns of A) is optimized. The problem has been proved or conjectured to

be NP-hard for various objective functions. In this article, we study a probabilistic model

for the implanted additive bicluster problem, where each element in the n � m background

matrix is a random integer from Œ0; L � 1� for some integer L, and a k � k implanted

additive bicluster is obtained from an error-free additive bicluster by randomly changing

each element to a number in Œ0; L � 1� with probability � . We propose an O.n2m/ time

algorithm based on voting to solve the problem. We show that when k � �.
p

n log n/, the

voting algorithm can correctly find the implanted bicluster with probability at least 1 � 9

n2
.

We also implement our algorithm as a CCC program named VOTE. The implementation

incorporates several ideas for estimating the size of an implanted bicluster, adjusting the

threshold in voting, dealing with small biclusters, and dealing with overlapping implanted

biclusters. Our experimental results on both simulated and real datasets show that VOTE

can find biclusters with a high accuracy and speed.

Key words: additive bicluster, computational biology, gene expression data analysis, polynomial-

time algorithm, probability model.

1. INTRODUCTION

BICLUSTERING HAS PROVED EXTREMELY USEFUL for exploratory data analysis. It has important

applications in many fields, for example, e-commerce, data mining, machine learning, pattern recogni-

tion, statistics, and computational biology (Yang et al., 2002). Data arising from, for example, text analysis,

market-basket data analysis, web logs, and microarray experiments are usually arranged in a co-occurrence
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table or matrix, such as a word-document table, product-user table, cpu-job table, or webpage-user table.

Discovering a large bicluster in a product-user matrix indicates, for example, which users share the same

preferences. Biclustering has therefore applications in recommender systems and collaborative filtering,

identifying web communities, load balancing, discovering association rules, etc.

Recently, biclustering has become an important approach to microarray gene expression data analysis

(Cheng and Church, 2000). The underlying bases for using biclustering in the analysis of gene expression

data are as follows: (i) similar genes may exhibit similar behaviors only under a subset of conditions

instead of all conditions, and (ii) genes may participate in more than one function, resulting in a regulation

pattern in one context and a different pattern in another. Using biclustering algorithms, one may obtain

subsets of genes that are co-regulated under certain subsets of conditions.

Given an n�m matrix A, the main goal of biclustering is to identify a subset of rows (called objects) and

a subset of columns (called properties) such that a pre-determined objective function which specifies the

quality of the bicluster (consisting of the found subsets of rows and columns) is optimized. Biclustering is

also known under several different names, for example, “co-clustering,” “two-way clustering,” and “direct

clustering.” The problem was first introduced by Hartigan in the 1970s (Hartigan, 1972). Since then, it

has been extensively studied in many areas and many approaches have been introduced. Several objective

functions have also been proposed for measuring the quality of a bicluster; almost all of them have been

proved or conjectured to be NP-hard (Lonardi et al., 2004; Peeters, 2003).

Let A.I; J / be an n � m (n � m) matrix, where I D f1; 2; : : : ; ng is the set of rows representing the

genes and J D f1; 2; : : : ; mg is the set of columns representing conditions. In practice, the number of genes

is much bigger than the number of conditions. Each element ai;j of A.I; J / is an integer in Œ0; L � 1�

indicating the weight of the relationship between object i and property j . A bicluster of A.I; J / is a

submatrix of A.I; J /. For any given subset I 0 � I and subset J 0 � J , A.I 0; J 0/ denotes the bicluster of

A.I; J / that contains only the elements ai;j satisfying i 2 I 0 and j 2 J 0. When a bicluster contains only

a single row i and a column set J 0, we simply use A.i; J 0/ to represent it. Similarly, we use A.I 0; j / to

represent the bicluster consisting of a row set I 0 and a single column j .

The following are two popular models of biclusters that assume different relationships between objectives

(or genes) (Yang et al., 2002).

Constant model: A bicluster A.I 0; J 0/ is an error-free constant bicluster if for each column j 2 J 0 ,

ai;j D cj for all i 2 I 0, where cj is a constant for any column j .

Additive model: A bicluster A.I 0; J 0/ is an error-free additive bicluster if for any pair of rows i1 and

i2 in A.I 0; J 0/, ai1 ;j � ai2;j D ci1;i2 for every column j , where ci1;i2 is a constant for any pair of rows i1
and i2.

Clearly, the additive model is more general than the constant model. In microarray gene expression

analysis, the additive model can be used to capture groups of genes whose expression levels change in

the same/simlar way under the same set of conditions (Madeira and Oliveira, 2004). The additive model

also covers several other popular models in the literature as its special cases. For example, a multiplicative

bicluster B is a submatrix that looks like:
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C
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C

C

C
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A

;

where each row can be obtained from another by multiplying a number (Madeira and Oliveira, 2004).

If we replace each element b1;j (or ci b1;j ) with log b1;j (or log.ci b1;j /, respectively), we get an additive

bicluster. For a detailed discussion on various models of biclusters, see Madeira and Oliveira (2004). The

additive model has many applications and has been extensively studied in the literature (Barkow et al.,

2006; Kluger et al., 2003; Li et al., 2006; Liu and Wang, 2007; Lonardi et al., 2004; Madeira and Oliveira,

2004; Peeters, 2003; Prelić et al., 2006). It was first implicitly applied to microarray gene expression

analysis by Cheng and Church (2000), who proposed the mean squared residue score H to measure the

coherence of the rows and columns in a bicluster. It is easy to show that for an error-free additive bicluster,
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its score H is 0. Several efficient heuristic algorithms for solving the additive model were in Prelić et al.

(2006) and Yang et al. (2002). Recently, Liu and Wang (2007) proposed the maximum similarity score to

measure the quality of an additive bicluster. They designed an algorithm that runs in O.nm.nC m/2/ time

to find an optimal solution under such a score. To our best knowledge, this is the first score admitting a

polynomial time algorithm for additive biclusters.

In this article, we will focus on the additive model for biclusters. In particular, we study a proba-

bilistic model, in which the background matrix and a size k � k additive bicluster are generated based

on certain probability methods, and then we implant the additive bicluster by replacing a size k � k

submatrix of the background matrix with the k � k additive bicluster. This probabilistic model has recently

been used in the literature for evaluating biclustering algorithms (Liu and Wang, 2007; Prelić et al.,

2006).

The probabilistic additive model: More precisely, our probabilistic model for generating the implanted

bicluster and background matrix is as follows. Let A.I; J / be an n� m matrix, where each element ai;j is

a random number in Œ0; L�1� generated independently. Let B be an error-free k �k additive bicluster. The

additive bicluster B 0 with noise is generated from B by changing each element bi;j , with probability � ,

into a random number in Œ0; L � 1�. We then implant B 0 into the background matrix A.I; J / and randomly

shuffle its rows and columns to obtain a new matrix A0.I; J /. For convenience, we will still denote the

elements of A0.I; J / as ai;j ’s.

From now on, we will consider the matrix A0.I; J / as the input matrix. Let IB � I and JB � J

be the row and column sets of the implanted bicluster in A0. The implanted bicluster is denoted as

A0.IB ; JB/.

The implanted additive bicluster problem: Given the n�m matrix A0.I; J / with an additive bicluster

implanted as described above, find the implanted additive bicluster B 0.

Our results: We propose an O.n2m/ time algorithm for finding an implanted bicluster based on a

simple voting technique. We show that when k � �.
p

n log n/, the voting algorithm can correctly find

the implanted bicluster with probability at least 1 � 9n�2. We also implement our algorithm as a CCC
program named VOTE. In order to make the program applicable in a real setting, the implementation has

to incorporate several ideas for estimating the size of an implanted bicluster, adjusting the threshold in

voting, dealing with small biclusters, and dealing with overlapping biclusters. Our experiments on both

simulated and real datasets show that VOTE can find implanted additive biclusters with high accuracy

and efficiency. More specifically, VOTE has a performance/accuracy comparable to the best programs that

were recently compared in the literature (Prelić et al., 2006; Liu and Wang, 2007), but with a much faster

speed.

To our knowledge, the work in bioinformatics that is the most related to our above result is the work

of Ben-Dor et al. (1999) concerning the clustering of gene expression patterns. In the article, they studied

a probabilistic graph model, where each gene is a vertex in a clique graph H and each group of related

genes form a clique in H . The (error-free) clique graph consists of d disjoint cliques, and the input graph

is obtained from the clique graph H by (1) removing each edge in H with probability ˛ < 0:5 and

(2) adding each edge not in H with probability ˛ < 0:5. They designed an algorithm that can successfully

recover the original clique graph H with a high probability. Due to the difference in the models, our voting

algorithm is totally different from their algorithm.

We note in passing that the problem of finding an implanted clique/distribution in a random graph has

also been studied in the graph theory community (Alon et al., 1998; Feige and Krauthgamer, 2000; Kucera,

1995). Kucera Kucera (1995) claimed that when the size of the implanted clique is at least �.
p

n log n/,

where n is the number of vertices in the input random graph, a simple approach based on counting the

degrees of vertices can find the clique with a high probability. Alon et al. (1998) gave an improved

algorithm that can find an implanted clique of size at least �.
p

n/ with a high probability. Feige and

Krauthgamer (2000) gave an algorithm that can find implanted cliques of similar sizes in semi-random

graphs. It is easy to see that this problem of finding implanted cliques is a special case of our implanted

bicluster problem, where the input matrix is binary and all the elements in the bicluster matrix are 1’s. We

observe that while it may be easy to modify Kucera’s simple degree-based method to work for implanted

constant biclusters under our probabilistic model, it is not obvious that the above results would directly

imply our results on implanted additive biclusters. Moreover, these methods cannot easily be extended to

discover multiple cliques/biclusters as often required in practice.
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In the rest of the article, we first present the voting algorithm and analyze its theoretical performance

on the above probabilistic model. We then describe the implementation of the CCC program VOTE, and

present the experimental results. Some concluding remarks are given at the end. For the convenience of

the reader, the proofs of some of the technical lemmas in the theoretical analysis will be deferred to the

Appendix.

2. THE THREE-PHASE VOTING ALGORITHM

We start the construction of the algorithm with some interesting observations. Recall that B is an

error-free k � k additive bicluster and A0 is the random input matrix with a noisy additive bicluster B 0

implanted.

Observation 1. Consider the k rows in B . There are at least k
L

rows that are identical. This implies

that there exists a row set IC � IB with jIC j � k
L

such that A0.IC ; JB/ is a constant bicluster with noise.

Consider a row i1 2 IB and a column j1 2 JB . For each row i2 2 IB , ci1;i2 D ai1 ;j1 � ai2 ;j1 is an

integer in Œai1 ;j1 � L C 1; ai1;j1 �. Based on the value ci1;i2 , we can partition IB into L different row sets

I d
B D fi2ji2 2 IB & ci1;i2 D d g, d D ai1 ;j1 � L C 1; : : : ; ai1 ;j1 . Let IC be one of the row sets with the

maximum cardinality, jIC j D maxd jI d
B j. Then, A0.IC ; JB/ is a constant bicluster (since ai;j D ai 0 ;j for

any fi; i 0g � IC and j 2 JB ) and jIC j � k
L

. Let jIC j D l .

Our algorithm has three phases. In the first phase of the algorithm, we want to find the row set IC in

A0.I; J /. In order to vote, we first convert the matrix A0.I; J / into a distance matrix D.I; J / containing

the same sets of rows and columns, and then focus on D.I; J /.

Distance matrix. Given an n � m matrix A0.I; J /, we can convert it into a distance matrix based

on a row in the matrix. Let i� 2 I be any row in the matrix A. We refer to row i� as the reference

row. Define di;j D ai;j � ai�;j . In the transformation, we subtract the reference row i� from every row

in A0.I; J /. We use D.I; J / to denote the n � m distance matrix containing the set of rows I and the

set of columns J with every element di;j . For a row i 2 I and a column set J 0 � J , the number of

occurrences of u, u 2 Œ�L C 1; L � 1�, in D.i; J 0/ is the number of elements with value u in D.i; J 0/,

denoted by f .i; J 0; u/ D jfdi;j jdi;j D u & j 2 J 0gj. The number of occurrences of the element that

appears the most in D.i; J 0/ is f �.i; J 0/ D maxu f .i; J 0; u/. Similarly, for a row set I 0 � I and a column

j 2 J , the number of occurrences of u in D.I 0; j / is the number of elements with value u in D.I 0; j /,

denoted by f .I 0; j; u/. The number of occurrences of the element that appears the most in D.I 0; j / is

f �.I 0; j / D maxu f .I 0; j; u/.

Observation 2. Suppose that we use a row i� 2 IC as the reference row. For each row i in IC , the

expected number of 0’s in row i of D.I; J / is at least m�k
L

C .1 � �/2k. For each row i in IB � IC , the

expected number of 0’s in row i of D.I; J / is at most m�k
L

C 2�k
L

. For each row i in I � IB , the expected

number of 0’s in row i of D.I; J / is at most m�k
L

C k
L

.

Proof. For each row i in IC , there are k elements from B 0 and m � k elements from A. Based on the

model, among the k elements in B 0, the expected number of 0’s in row i of D.I; J / is at least .1 � �/2k

(since in both row i and row i�, there are at least .1 � �/k of the k elements remaining unchanged) and

the expected number of 0’s among the m � k elements in A is m�k
L

. Similarly, for each row i 2 IB � IC ,

there are k elements from B 0 and m � k elements from A. Among the k elements in B 0, if the element

di;j is 0 in D.I; J /, then it must be one of the three cases: (1) ai;j is changed to ai�;j and ai�;j remains

the same, (2) ai�;j is changed to ai;j and aij remains the same, and (3) both ai;j and ai�;j are changed to

an identical number in Œ0; L � 1�. The expected numbers for the three cases are
�.1��/k

L
,

�.1��/k

L
and �2k

L
,

respectively. The total expected number of 0’s for the three cases is at most 2�k
L

. For the m� k elements in

A, the expected number of 0’s is m�k
L

. Therefore, for each row i in IB � IC , the expected number of 0’s

in row i of D.I; J / is at most m�k
L

C 2�k
L

. For each row i in I � IB , the expected number of 0’s in row i

of D.I; J / is at most m
L

since the probability that each element ai;j in row i is identical to ai�;j is 1
L

.
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Based on the observation, the expected number of 0’s in each row of IC , which is at least m�k
L

C.1��/2k,

is much more than that in the other rows. Therefore, with a high probability, the rows with the most 0’s

are in IC as long as the reference row i� is in IC . Note that, m�k
L

C .1 � �/2k D m
L

C Œ.1 � �/2 � 1
L

�k

and the voting algorithm works when k � �.
p

m log m/. Thus, we will show that m
L

C 4
p

m log m is a

good threshold on the number of 0’s to differentiate the rows in IC from the rows that are not in IC . More

specifically, we can use this threshold to find a row set I0 by applying the following voting method.

The first phase voting:

1. for i D 1 to n do

2. compute f .i; J; 0/.

3. select rows i such that f .i; J; 0/ > m
L

C 4
p

m log m to form I0.

When m and k are sufficiently large and � is sufficiently small, we can prove that, with high probability,

the row set I0 is equal to IC . The proof will be given in the next section (in Lemma 4 and the discussion

following its proof). If we cannot find any row i such that f .i; J; 0/ > m
L

C 4
p

m log m, then the whole

algorithm will not output any bicluster. However, this has never happened in our experiments.

In the second phase voting of the algorithm, we attempt to find the column set JB of the implanted

bicluster. It is based on the following observation.

Observation 3. For a column j in JB , the expected number of occurrences of the element that appears

the most in D.IC ; j / is at least .1��/jIC j. For a column j in J �JB , the expected number of occurrences

of an element u in D.IC ; j / is at most 1
L

jIC j.

Proof. In the error free matrix B , all rows in IC are identical. For a column j 2 JB , the corresponding

column in B has the same element, say u, in all rows IC . After adding noise with probability � , the expected

number of unchanged u’s is .1 � �/jIC j. Therefore, in the column D.IC ; j /, the expected number of

occurrences of u � ai�;j is at least .1 � �/jIC j.
For a column j 2 J � JB and a row i 2 IC , if ai�;j2 C u 2 1; 2; : : : ; L � 1, the probability that

ai;j2 D ai�;j2 C u is 1=L, otherwise, the probability is 0. Therefore, the expected number of occurrences

of u in D.IC ; j2/ is at most 1
L

jIC j.

With high probability (and again assuming that � is sufficiently small), the number of occurrences of

the element that appears the most in the columns of JB is greater than the number of occurrences of the

element that appears the most in the columns of J � JB . That is, for two columns j1 2 JB and j2 62 JB ,

with high probability, f �.I0; j1/ > jI0j
2

> f �.I0; j2/. Based on the property, we can use voting to find a

column set J1.

The second phase voting:

1. for j D 1 to m do

2. compute f �.I0; j /.

3. select columns j such that f �.I0; j / > jI0j
2

to form J1.

We can prove (in the next section) that, with high probability, J1 is equal to the implanted column

set JB .

Similarly, the third phase voting of the algorithm is designed to locate the row set IB of the implanted

bicluster. But, before the voting, we need to correct corrupted columns of the distance matrix D.I; J /

caused by the elements of the reference row i� that were changed during the generation of B 0. Recall

that f �.I0; j / D maxu f .I0; j; u/. Let f .I0; j; uj / D f �.I0; j /. For every j 2 J1, if uj ¤ 0, then the

element ai�;j was changed when B 0 was generated (assuming J1 D JB ), and we can thus correct each

element di;j in the j th column of the matrix D.I; J / by subtracting uj from it.

In the following, let us assume that the entries in the submatrix D.I; JB / have been adjusted according

to the correct reference row i� as described above. The following observation holds.
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FIG. 1. The three-phase voting algorithm.

Observation 4. For a row i in IB , the expected number of occurrences of the element that appears

the most in D.i; JB / is at least .1 � �/k. For a row i in I � IB , the expected number of occurrences of

the element that appears the most in D.i; jB/ is k
L

.

We can thus find a row set I1 in A0.I; J1/ as follows.

The third phase voting:

1. for i D 1 to n do

2. compute f �.i; J1/.

3. select rows i such that f �.i; J1/ > jJ1j
2

to form I1.

We can prove (in the next section) that, if jI1j � k, with high probability, I1 is equal to the implanted

row set IB . Therefore, a voting algorithm based on the above procedures, as given in Figure 1, can be used

to find the implanted bicluster with high probability. Since the time complexity of the steps 2–7 of the

algorithm is O.nm/ and these steps are repeated n times, the time complexity of the algorithm is O.n2m/.

Note that, if for any phase, we cannot find any row or column that satisfies the bounds, then the algorithm

will not output any bicluster. However, this has never happened in our experiments.

3. ANALYSIS OF THE ALGORITHM

In this section, we will prove that, with high probability, the above voting algorithm correctly outputs

the implanted bicluster.

Recall that in the submatrix A0.IB ; JB/, each element was changed with probability � to generate B 0

from B . We will show that, with high probability, there exists a row i 2 IC such that row i has at least

.1 � ı/.1 � �/k unchanged elements in A0.i; JB/ for any 0 < ı < 1.

In the analysis, we need the following two lemmas from Li et al. (2002) and Motwani and Raghavan

(1995).

Lemma 1 (Motwani and Raghavan, 1995). Let X1; X2; : : : ; Xn be n independent random binary (0

or 1) variables, where Xi takes on the value of 1 with probability pi , 0 < pi < 1. Let X D
Pn

iD1 Xi and

� D EŒX�. Then for any 0 < ı < 1,

(1) Pr.X > .1 C ı/�/ < Œ eı

.1Cı/.1Cı/ �
�,

(2) Pr.X < .1 � ı/�/ � e� 1
2 �ı2

.
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Lemma 2 (Li et al., 2002). Let Xi , 1 � i � n, X and � be defined as in Lemma 1. Then for any

0 < � < 1,

(1) Pr.X > � C �n/ � e� 1
3 n�2

,

(2) Pr.X < � � �n/ � e� 1
2 n�2

.

Lemma 3. For any 0 < ı < 1, with probability at least 1 � e� 1
2L .1��/k2ı2

, there exists a row i 2 IC

that has at least .1 � ı/.1 � �/k unchanged elements in A0.i; JB/.

Proof. Let xi;j be a 0=1 random variable, where xi;j D 0 if ai;j is changed in generating B 0, and

xi;j D 1 otherwise. Based on the probabilistic model, the expected value of
P

i2IC

P

j 2JB
xi;j is .1��/kl .

By Lemma 1 and l � k
L

,

P r

0

@

X

i2IC

X

j 2JB

xi;j < .1 � ı/.1 � �/kl

1

A � e� 1
2 .1��/klı2 � e� 1

2L .1��/k2ı2

:

Note that, if
P

j 2JB
xi;j < .1 � ı/.1 � �/k for all rows i 2 IC , then we have

P

i2IC

P

j 2JB
xi;j <

.1 � ı/.1 � �/kl . Thus,

P r

0

@8i 2 IC ;
X

j 2JB

xi;j < .1 � ı/.1 � �/k

1

A � P r

0

@

X

i2IC

X

j 2JB

xi;j < .1 � ı/.1 � �/kl

1

A

� e� 1
2L .1��/k2ı2

: (1)

The inequality (1) implies the lemma.

Suppose that there is a row i� 2 IC with .1 � ı/.1 � �/k unchanged elements in A0.i�; JB/. Now, let us

consider the distance matrix D.I; J / with the reference row i�. We now show that, with high probability,

the rows in IC have more 0’s than those in I � IC in matrix D.I; J /. That is, with high probability, our

algorithm will find the row set IC in the first phase voting.

Lemma 4. Let i� 2 IC be the reference row with .1 � ı/.1 � �/k unchanged elements in A0.i�; JB/,

and D.I; J / the distance matrix as described in Section 2. When ˛ D .1 � ı/.1 � �/2 � 1
L

> 0 and

k � 8
˛

p
m log m, with probability at least 1 � m�7 � nm�5 , f .i; J; 0/ > m

L
C ˛

2
k for all i 2 IC ,

and f .i; J; 0/ < m
L

C ˛
2
k for all i 2 I � IC ,

Proof. Let JC be a subset of JB such that jJC j D .1 � ı/.1 � �/k, and for all j 2 JC , ai�;j

is unchanged. Consider a row i 2 IC , i ¤ i�. Let X1; X2; : : : ; Xm be m random variables. For each

random variable Xj , Xj D 1 if di;j D 0, otherwise, Xj D 0. Then, f .i; J; 0/ D
Pm

j D0 Xj . We consider

two different column sets: JC and J � JB . (1) For j 2 JC , we have P r.Xj D 1/ D 1 � � and

P r.Xj D 0/ D � . The expectation of Xj is �j D 1 � � . (2) For j 2 J � JB , P r.Xj D 1/ D 1
L

and

P r.Xj D 0/ D 1 � 1
L

. The expectation of Xj is �j D 1
L

. Let JD D JC [ .J � JB/. From the above

analysis,

X

j 2J

�j �
X

j 2JD

�j D Œ.1 � ı/.1 � �/k�.1 � �/ C m � k

L
D m

L
C ˛k: (2)
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By the definition, the random variables X1; X2; : : : ; Xm in row i are independent. By Lemma 2,

P r
�

f .i; J; 0/ <
m

L
C ˛

2
k
�

D P r

0

@

X

j 2J

Xj <
�m

L
C ˛k

�

� ˛

2
k

1

A

� P r

0

@

X

j 2J

Xj <
X

j 2J

�j � 4

r

log m

m
m

1

A

� e�8 log m

� m�8: (3)

Since jIC j � k, the probability that there exists a row in IC with no more than .m
L

C ˛
2
k/ 0’s in D.I; J /

is at most km�8 � m�7.

Now, we consider a row i 2 I � IC . Let Y1; Y2; : : : ; Ym be m random variables. For each random

variable Yj , Yj D 1 if di;j D 0, otherwise, Yj D 0. We have P r.Yj D 1/ D 1
L

. The expectation of Yj

is �j D 1
L

. From the analysis, we have
P

j 2J �j D m
L

. The random variable Y1; Y2; : : : ; Ym in row i are

also independent. By Lemma 2,

P r

0

@

X

j 2J

Yj >
m

L
C m�

1

A � exp

�

�1

3
m�2

�

:

Now let � D 4

q

log m

m
, we get

P r
�

f .i; J; 0/ >
m

L
C

˛

2
k
�

� P r

0

@

X

j 2J

Yj �
m

L
C m�

1

A � m�16=3 � m�5:

Since jI � IB j � n, the probability that there exists a row in I � IB with at least .m
L

C ˛
2
k/ 0’s in

D.I; J / is at most nm�5 . Therefore, the lemma holds.

The above lemma shows that, when a row i� with .1 � ı/.1 � �/k unchanged elements in A0.i; JB/

is selected as the reference row, and m and k are large enough, I0 D IC with high probability. Next, we

prove that, with high probability, our algorithm will find the implanted column set JB .

Lemma 5. Suppose that the row set I0 found in the first phase voting of Algorithm 1 is indeed equal

to IC . With probability at least 1�ke�
.1�2�/2

8L k �L.m�k/e
�

.L�2/2

12L3 k
, the column set J1 found in the second

phase voting of Algorithm 1 is equal to JB .

Proof. The ideas of the proof is the same as those in the above lemma. For the benefit of readability,

we defer the proof to the Appendix.

Similarly, we can prove that, with high probability, our algorithm will find the implanted row set IB .

Lemma 6. Suppose that the column set J1 found in the second phase voting of Algorithm 1 is indeed

equal to JB . With probability at least 1 � ke�
.1�2�/2

8 k � 2L.n � k/e
�

.L�2/2

12L2 k
, the row set I1 found in the

third phase voting of Algorithm 1 is equal to IB .

Proof. Again, for the sake of readability, we defer the proof to the Appendix.

Finally, we can prove that, with high probability, no column or row other than those in the implanted

bicluster will be output by the voting algorithm.
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Lemma 7. With probability at least 1 � Ln.m� k/e
�

.L�2/2

12L3 k � 2Ln.n� k/e
�

.L�2/2

12L2 k
, no column or row

of A0.I; J / other than those in A0.IB ; JB/ will be output by the Algorithm 1.

Proof. See the Appendix.

Based on Lemmas 3, 4, 5, 6, and 7, we can show that, when m and k are large enough, the three-phase

voting algorithm can find the implanted bicluster with high probability. Let c be a constant such that

c < minf .1��/ı2k

2L
;

.1�2�/2

8L
;

.L�2/2

12L3 g. In most applications, we may assume that n < m3. Then, we have the

following theorem.

Theorem 8. When n < m3, ˛ D .1�ı/.1��/2 � 1
L

> 0 and k � maxf 8
˛

p
m log m;

8 log m

c
C log.2L/g,

the voting algorithm correctly outputs the implanted bicluster with probability at least 1 � 9m�2.

Proof. It follows from Lemma 3 that, when k � 2 log m

c
, we can find a row with at least .1 � ı/.1 � �/k

unchanged elements in A0.i; JB/ with probability 1 � m�2. Suppose that such a row is selected as the

reference row. Lemma 4 shows that, when n < m3, ˛ D .1 � ı/.1 � �/2 � 1
L

> 0 and k � 8
˛

p
m log m,

the row set IC will be correctly found in the first phase voting with probability 1�2m�2. If the row set IC

is found, Lemma 5 shows that, when k � 3 log m

c
C logL, the implanted column set will be correctly found

in the second phase voting with probability 1 � 2m�2. Similarly, if the implanted column set is found, in

the third phase voting, when k � 5 log m

c
C log.2L/, the implanted row set will be found with probability

1 � 2m�2. Therefore, when all the required conditions hold, all the rows and columns in the implanted

bicluster will be found by our algorithm with probability 1 � 7m�2.

It also follows from Lemma 7 that, when n < m3 and k � 8 log m

c
C log.2L/, with probability 1 � 2m�2,

no other row or column will be output by our algorithm. Therefore, our algorithm will correctly output

the implanted bicluster with probability 1 � 9m�2.

If we replace m by n in the above analysis, the same proof shows that

Corollary 9. When ˛ D .1 � ı/.1 � �/2 � 1
L

> 0 and k � maxf 8
˛

p
n log n;

8 log n

c
C log.2L/g, the

voting algorithm correctly outputs the implanted bicluster with probability at least 1 � 9n�2.

In the practice of microarray data analysis, the number of conditions m is much smaller than the number

of genes n. Thus, Theorem 8 allows the parameter k to be smaller (i.e., it works for smaller implanted

biclusters) than Corollary 9, although it assumes an upper bound on n (n < m3) and has a slightly worse

success probability.

4. THE IMPLEMENTATION OF THE VOTING ALGORITHM

The voting algorithm described in Section 2 is originally based on the probabilistic model for generating

the implanted additive bicluster. Many assumptions have been used to prove its correctness. To deal with

real data, we have to carefully resolve the following issues.

Estimation of the bicluster size. In the voting algorithm, we assume that the size k of the implanted

bicluster is part of the input. However, in practice, the size of the implanted bicluster is unknown. Here

we develop a method to estimate the size of the bicluster. We first set k to be a large number such that

k � jJB j. Let q be the maximum number of rows such that f .i; J; u/ > .m � k/P r.di;j D u/ C k among

all u 2 Œ�L C 1; L � 1�. Our key observation here is that if k is greater than jJB j, then q will be smaller

than jIB j. If k is smaller than jJB j, then q will be greater than jIB j. Thus, we can gradually decrease the

value of k while observing that the value of q increases accordingly. The process stops when q � 2k.

To set the initial value of k such that k � jJB j, we set k D 3 � maxu.P r.di;j D u// � m. This worked

very well in our experiments.



1284 XIAO ET AL.

Dealing with rectangular biclusters. Many interesting biclusters in the practice of microarray gene

expression data are non-square. Without loss of generality, assuming jIB j � jJB j. To obtain rectangular

biclusters, we estimate the size of the bicluster as a k � k square, where k D jJB j in this case. We then

use the first phase voting and the second phase voting normally. The third phase voting may automatically

generate a rectangular bicluster by selecting all the rows i such that f �.i; J1/ > jJ1j
2

.

Discretization of real data. We need to do discretization before we can apply our algorithm. After we

obtain matrix D.I; J /, we will transform D.i; J / into a discrete matrix, where each element is an integer

in Œ0; L�1�. We will do that row by row. Let min and max be the smallest number and the biggest number

in the row, respectively. We divide the range Œmin; max� into L disjoint ranges of the same size. All the

numbers in the i -th range will be mapped to integer i � 1. Note that, in our probability model, we did not

consider small deviations. Based on the discretization method, if small deviations happen in the middle of

the L ranges, we can still get the correct discrete value. However, if the small deviations happen at the

ends of the L ranges, then they may lead to wrong discrete value. This is a disadvantage of our method.

However, the voting algorithm can still find the rows and columns as long as most of the values in the

rows and columns are correctly discretized.

Adjusting the threshold used in the first phase voting for a real input matrix. In Step 3 of the

first phase voting, we use the threshold f .i; J; 0/ > m
L

C 4
p

m log m to select rows to form I0. This is

based on the assumption that in the random background matrix, di;j D 0 with probability 1
L

. In order

for the algorithm to work for any input data, we consider the distribution of numbers in the whole input

matrix. We calculate the probability P r.di;j D l/ for each l 2 Œ�L C 1; L C 1� in the discrete matrix.

Here P r.di;j D l/ D p

n�m
, where p is the number of l ’s in the input discrete matrix. In Step 3 of the

first phase voting, we choose all the rows such that f .i; J; u/ > .m � k/P r.di;j D u/ C k. In this way,

we were able to make our algorithm to work well for real microarray data where the background did not

seem to follow some simple uniform/normal distribution.

When jIcj is too small for voting. Recall that Ic is the set of the rows identical to the reference row

I � in the implanted bicluster. In other words, the set Ic contains all the rows i with di;j D 0 for j 2 JB .

The expectation of jIc j is k
L

. When k is small and L is large, jIc j (and thus I0) could be too small for the

voting in the second phase to be effective. To enhance the performance of the algorithm, we consider

the set I u
B for each u 2 Œ�L C 1; L � 1� as defined in the beginning of Section 2, and approximate it using

a set I u
0 in the algorithm just like how we approximated the set IC D I 0

B by the set I0 in the first phase

voting. Thus, the second phase voting becomes:

The second phase voting:

1. for j D 1 to m do

2. compute f .I u
0 ; j; u/ for each u 2 Œ�L C 1; L � 1�.

3. select columns j such that
PL�1

uD�LC1 f .I u
0 ; j; u/ > .

PL�1
uD�LC1 jI u

0 j/=2 to form J1.

Dealing with multiple and overlapping biclusters. In microarray gene expression analysis, a real

input matrix may contain multiple biclusters of interest, some of which could overlap. We could modify

the voting algorithm to find multiple implanted biclusters by forcing it to go through all the n rounds (i.e.,

considering each of the n rows as the reference row) and recording all the biclusters found. If the two

biclusters found in two different rounds overlap (in terms of the area) by more than 25% of the area of the

smaller biclcuster, then we consider them as the same bicluster and eliminate the smaller one. Eventually,

the biclusters found in all n rounds (that were not eliminated) would be output, in the decreasing order of

sizes.

5. EXPERIMENTAL RESULTS

We have implemented the above voting algorithm in CCC and produced a software, named VOTE. In

this section, we will compare VOTE with some well-known biclustering algorithms in the literature on

both simulated and real microarray datasets. The tests were performed on a desktop PC with P4 3.0-G

CPU and 512-M memory running Windows operating system.
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To evaluate the performance of different methods, we use a measure (called match score) similar to the

score introduced by Prelić et al. (2006). Let M1; M2 be two sets of biclusters. The match score of M1 with

respect to M2 is given by

S.M1; M2/ D 1

jM1j
X

A.I1;J1/2M1

max
A.I2;J2/2M2

jI1 \ I2j C jJ1 \ J2j
jI1 [ I2j C jJ1 [ J2j

:

Let Mopt denote the set of implanted biclusters and M the set of the output biclusters of a bicluster-

ing algorithm. S.Mopt; M/ represents how well each of the true biclusters is discovered by a biclustering

algorithm.

5.1. Simulated datasets

Following the method used by Prelić et al. (2006) and Liu and Wang (2007), we consider an n � m

background matrix A. Let L D 30. We generate the elements in the background matrix A such that the

data fits the standard normal distribution with the mean of 0 and the standard deviation of 1. To generate an

additive b �c bicluster, we first randomly generate the expression values in a reference row .a1; a2; : : : ; ac/

according to the standard normal distribution. To obtain a row .ai1; ai2; : : : ; aic/ in the additive bicluster,

we randomly generate a distance di (based on the standard normal distribution) and set ai;j D aj C di for

j D 1; 2; : : : ; c. After we obtain the b � c additive bicluster, we add some noise by randomly selecting

� � b � c elements in the bicluster and changing their values to a random number (according to the standard

normal distribution). Finally, we insert the obtained bicluster into the background matrix A and shuffle the

rows and columns. We compare our program, VOTE, with several well-known programs for biclustering

from the literature, including ISA (Ihmels et al., 2004), CC (Cheng and Church, 2000), OPSM (Ben-Dor

et al., 2002), and RMSBE (Liu and Wang, 2007). The program OPSM is originally designed for order

preserving biclusters. (A bicluster is order preserving if its columns can be permuted so that every row is

monotonically increasing.) Obviously, an error-free additive bicluster is also an order preserving bicluster.

However, when errors are added into a additive bicluster, only part of the bicluster is still order preserving

biclusters. Here we also include OPSM in our comparison in various cases though it is not fair to OPSM

in some cases. The parameter settings of different methods are listed in Table 1.

Testing the performance on small biclusters. First, we test the ability of finding small implanted

additive biclusters. Let n D m D 100 and b D c D 15 � 15, and consider implanted biclusters generated

with different noise levels � in the range of Œ0; 0:25�. For each case, we run 100 instances and calculate

the average match score. As illustrated in Table 2, the variances of the match scores of the biclusters

found by the programs RMSBE and VOTE are very small when the noise level is small, but they increase

quickly as the noise gets larger. Figure 2 shows that VOTE and RMSBE perform very well at all noise

levels.

Testing the performance on biclusters of different sizes. Since RMSBE has the best performance

among the existing programs considered here, we compare VOTE with RMSBE on different bicluster

sizes. In this test, the noise level is set as � D 0:15. The sizes of the implanted (square) biclusters vary

from 25 � 25 to 100 � 100 and the background matrix is of size 500 � 500. For each case, we run 100

instances and calculate the average match score. Table 3 shows the variances of the match scores of the

TABLE 1. PARAMETER SETTINGS FOR DIFFERENT BICLUSTERING METHODS

Method Type of bicluster Parameter setting

BiMax (Prelić et al., 2006) Constant Minimum number of genes and chips: 4

ISA (Ihmels et al., 2004) Constant/additive tg D 2:0, tc D 2:0, seeds D 500

CC (Cheng and Church, 2000) Constant ı D 0:5, ˛ D 1:2

CC (Cheng and Church, 2000) Additive ı D 0:002, ˛ D 1:2

RMSBE (Liu and Wang, 2007) Constant/additive ˛ D 0:4, ˇ D 0:5,  D e D 1:2

OPSM (Ben-Dor et al., 2002) Order preserving l D 100

SAMBA (Tanay et al., 2002) Constant D D 40, N1 D 4, N2 D 4, k D 20, L D 10
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TABLE 2. MATCH SCORE VARIANCES OF RMSBE AND VOTE IN THE TEST

OF PERFORMANCE ON SMALL BICLUSTERS AT DIFFERENT NOISE LEVELS

Noise level

0 0.05 0.10 0.15 0.20 0.25

Variance (RMSBE) 0.0 0.0002 0.0004 0.0005 0.0009 0.0008

Variance (VOTE) 0.0 0.0 0.0001 0.0005 0.008 0.03

FIG. 2. Performance on small additive biclusters.

TABLE 3. MATCH SCORE VARIANCES OF RMSBE AND VOTE IN THE TEST OF PERFORMANCE

ON SMALL BICLUSTERS OF DIFFERENT SIZES

Size

25 27 29 30 32 34 36 38 40 50 75 100

Variance (RMSBE) 0.012 0.012 0.018 0.021 0.028 0.019 0.006 0.002 0.0005 0.0003 0.00008 0.00006

Variance (VOTE) 0 0.019 0.15 0.13 0.0001 0.0 0.0 0.0 0.0 0.0 0.0 0.0

biclusters found by the two programs, which are small except when the size of the implanted bicluster

reaches below 32. As illustrated in Figure 3, VOTE outperforms RMSBE when the size of the implanted

bicluster is greater than 32, while RMSBE is better at finding small biclusters.

Testing the performance on matrices of different k=n ratios. In Figure 3, the accuracy of VOTE

drops quickly when the ratio k=n decreases below 30=500. In real applications, the ratio may be quite

small. To use VOTE in practice, it is important to find the minimum ratio k=n that can guarantee a good

performance. Here, we test VOTE and RMSBE on matrices of various sizes to find such a minimum

k=n ratio. The noise level is set as � D 0:15 and the size of the background matrix is in the range

n D m D 100; 200; : : : ; 1000. For each fixed n and k, we run 50 instances and calculate the average

match score. For each fixed n, we try to find the smallest k such that the average match score of the

obtained bicluster with respect to the implanted k � k bicluster is at least 80%. The values of k attained

by VOTE and RMSBE for each n with match score � 80% are listed in the upper half of Table 4.

As shown in the table, the variances of the match scores of the biclusters found by the two programs

are generally pretty high here since k is at its minimum value. Note that the match score of RMSBE

depends on the quality of the reference row and column. When the reference row and column contain
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FIG. 3. Performance on biclusters of different sizes.

noise, RMSBE may miss some rows and columns in the resulting bicluster. However, VOTE is able to

correct some noise in the reference row (Step 6 in Figure 1). Moreover, since VOTE does not require

a reference column, it does not suffer from the impact of a noisy reference column. In general, VOTE

outperforms RMSBE when n is large (i.e., it allows for a smaller k value). It should be pointed out that

when the implanted bicluster size is smaller than the k value listed in Table 4, the match score of VOTE

drops more quickly than that of RMSBE as illustrated in Figure 3. We also observe that (the results are

not shown in this article), when the average match score is bigger than 80%, say, for example, 99%,

VOTE is much better than RMSBE, but when the average match score is smaller than 69%, RMSBE

performs better. To illustrate the latter point, we compare the two programs for match score 60%. The

values of k attained by VOTE and RMSBE for each n with match score � 60% are listed in the lower

half of Table 4.

We observe that the above k values attained by VOTE are much smaller than the theoretical bound given

in Corollary 9. For example, using ˛ D 0:8, � D 0:09 and L D 30, when n D 1000, k would have to be

at least 831 in order for the success probability of VOTE to be close to 1. This shows that the theoretical

bound could be very conservative in practice.

Identification of overlapping biclusters. To test the ability of finding overlapping biclusters, we first

generate two b � b additive biclusters with o overlapped rows and columns. The parameter o is called

TABLE 4. MINIMUM k OF DIFFERENT MATRIX SIZES

n 100 200 300 400 500 600 700 800 900 1000

k (VOTE) 13 19 24 27 31 34 37 40 43 45

Variance (VOTE) 0.048 0.056 0.030 0.028 0.070 0.083 0.069 0.031 0.047 0.098

k (RMSBE) 13 19 24 29 35 37 41 46 49 55

Variance (RMSBE) 0.016 0.023 0.026 0.022 0.010 0.025 0.024 0.016 0.021 0.013

n 100 200 300 400 500 600 700 800 900 1000

k (VOTE) 12 19 23 27 30 34 37 39 42 44

Variance (VOTE) 0.064 0.070 0.096 0.099 0.12 0.080 0.070 0.15 0.10 0.15

k (RMSBE) 10 15 19 25 27 31 34 38 42 48

Variance (RMSBE) 0.029 0.017 0.013 0.016 0.011 0.014 0.010 0.013 0.016 0.015

The upper half of the table corresponds to the case match score �80%, and the lower half corresponds to match score �60%.
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FIG. 4. Performance on overlapping biclusters.

the overlap degree. The background matrix size is fixed as 100 � 100. Both the background matrix and

the biclusters are generated as before. To find multiple biclusters in a given matrix, some methods, for

example, CC, need to mask the previously discovered biclusters with random values. One of the advantages

of the approaches based on a reference row, for example, VOTE and RMSBE, is that it is unnecessary

to mask previously discovered biclusters. We test the performance of VOTE, RMSBE, CC and OPSM on

overlapping biclusters by using 20 � 20 additive biclusters with noise level � D 0:1 and overlap degree o

ranging from 0 to 10. The results are shown in Figure 4. We can see that both VOTE and RMSBE are

only marginally affected by the overlap degree of the implanted biclusters. VOTE is slightly better than

RMSBE, especially when o increases.

Finding rectangular biclusters. We generate rectangular additive biclusters with different sizes and

noise levels. The row and column sizes of the implanted biclusters range from 20 to 50. The noise level �

is from the range Œ0; 0:25�. The background matrix is of size 100 � 100. The results are shown in Figure 5.

We can see that the performance of VOTE is not affected by the shapes of the rectangular biclusters.

On the other hand, RMSBE can only find near square biclusters (Liu and Wang, 2007), and it has to

FIG. 5. Performance on rectangular biclusters.
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FIG. 6. Speeds of the programs.

be extended to work for general rectangular biclusters. By comparing Figure 5 with the test results in

Liu and Wang (2007), we can see that VOTE is better in finding rectangular biclusters than the extended

RMSBE.

Running time. To compare the speeds of VOTE and RMSBE, we consider background matrices of 200

columns. The number of rows ranges from 1000 to 6000. The size of the implanted bicluster is 50 � 50.

The running time of VOTE and RMSBE is shown in Figure 6. In the test, we let RMSBE randomly select

10% rows as the reference row and 50 columns as the reference column. We can see that VOTE is much

faster than RMSBE. Moreover, for the real gene expression data of S. cerevisiae provided by Gasch et al.

(2000), our algorithm runs in 66 seconds and RMSBE (randomly selecting 300 genes as the reference row

and 40 conditions as the reference column) runs in 1230 seconds.

5.2. Real dataset

Gene ontology. Similar to the method used by Tanay et al. (2002) and Prelić et al. (2006), we

investigate whether the set of genes discovered by a biclustering method shows significant enrichment

with respect to a specific GO annotation provided by the Gene Ontology Consortium (Gasch et al.,

2000). We use the web tool funcAssociate of Berriz et al. (2003) to evaluate the discovered biclusters.

FuncAssociate first uses Fisher’s exact test to compute the hypergeometric functional score of a gene

set. Then, it uses the Westfall and Young (1993) procedure to compute the adjusted significance score

of the gene set. The analysis is performed on the gene expression data of S. cerevisiae provided by

Gasch et al. (2000). The dataset contains 2993 genes and 173 conditions. We set L D 30 to discretize

the data for VOTE. (Here, the value of L is chosen empirically.) For all the programs, we output the

best 100 biclusters according to their own criteria. For VOTE, we output the largest 100 biclusters

since our algorithm is based on counting. The running time of VOTE on this dataset is 66 seconds.

The adjusted significance scores (adjusted p-values) of the 100 best biclusters are computed by using

FuncAssociate. Here, we compare the significance scores for RMSBE (Liu and Wang, 2007), OPSM (Ben-

Dor et al., 2002), BiMax (Prelić et al., 2006), ISA (Ihmels et al., 2004), Samba (Tanay et al., 2002),

and CC (Cheng and Church, 2000). The result is summarized in Figure 7. We can see that 92% of

discovered biclusters by VOTE are statistically significant, i.e., with ˛ � 5%. Moreover, the performance

of VOTE in this regard is comparable to (although slightly worse than) that of RMSBE and is better

than those of the other programs compared by Liu and Wang (2007). However, VOTE is much faster

than RMSBE since VOTE runs in O.n2m/ time, while RMSBE runs in O.nm.n C m/2/ time in the

worse case.
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FIG. 7. Proportion of biclusters significantly enriched in a GO category. Here, ˛ is the adjusted significance score

of a bicluster.

Colon cancer dataset. Murali and Kasif (2003) used a colon cancer dataset introduced by Alon et al.

(1999) to test their biclustering algorithm XMOTIF. The matrix contains 40 colon tumor samples and

22 normal colon samples over about 6500 genes. The dataset is available at www.weizmann.ac.il/physics/

complex/compphys (Getz et al., 2000). The two best biclusters found by Murali and Kasif (2003) using

XMOTIF are B1 and B2 as shown in Table 5. B1 contains 11 genes and 15 samples. Among the 15 samples,

14 of them are tumor samples and 1 is a normal sample. B2 contains 13 genes and 18 samples. Among

the 18 samples, 16 of them are normal and 2 are tumor. We use L D 472 to run our program VOTE. The

two best biclusters that we find are B3 and B4 in Table 2. B3 contains 35 genes and 27 samples, where

all of the 27 samples are tumor samples. B4 contains 91 genes and 11 samples. Among the 11 samples,

10 of them are normal and 1 is tumor. Clearly, the bicluster B3 characterizes tumor samples and B4 normal

samples. To evaluate the chance of observing such phenotype (tumor or normal) enrichments at random,

we compare the output sample subsets to those obtained by randomized selection. Since the number of

phenotypes in a random sample subset fits the hypergeometric distribution, the p value can be computed

based on the hypergeometric distribution., All the four biclusters found by both XMOTIF and VOTE are

statistically significant as shown by their hypergeometric p-values in Table 5. This result shows that VOTE

is able to find high quality biclusters on the dataset.

Carcinoma dataset. The dataset is available at http://microarray.princeton.edu/oncology/. The matrix

contains 18 tumor samples and 18 normal samples over about 7464 genes. We use L D 400 to run VOTE.

The most tumor-related bicluster contains 152 genes and 14 samples, where all of the 14 samples are tumor

samples. The largest normal bicluster contains 1266 genes and 12 samples, where all of the 12 samples

are normal samples. This result shows that VOTE can classify the tumor and normal samples well.

TABLE 5. BICLUSTERS FOUND IN THE COLON CANCER DATASET

Bi-cluster Method No. of. genes No. of samples No. of tumors No. of normal p-value

B1 XMOTIF 11 15 14 1 3.6e�2

B2 XMOTIF 13 18 2 16 1.0e�5

B3 VOTE 35 27 27 0 7.3e�6

B4 VOTE 91 11 1 10 3.7e�4
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6. CONCLUSION

Based on a simple probabilistic model, we have designed a three-phase voting algorithm to find implanted

additive biclusters. We proved that when the size of the implanted bicluster is �.
p

m log m/, the voting

algorithm can correctly find the implanted bicluster with high probability. We have also implemented the

voting algorithm as a software tool, VOTE, for finding novel biclsuters in real microarray gene expression

data. Our extensive experiments on simulated datasets demonstrate that VOTE performs very well in terms

of both accuracy and speed. Future work includes testing VOTE on more real datasets, which could be a

bit challenging since true biclusters for most gene expression datasets are unknown. Another direction is

to extend the probability model to include small deviations of the values in the input matrix. Perhaps, this

will lead to algorithms that work much better in practice. Finally, we note that the automatic selection of

parameters in our algorithm is a nontrivial issue and requires further research.

7. APPENDIX: THE MISSING PROOFS

Proof of Lemma 5. Let xi;j be a 0=1 random variable, where xi;j D 1 if ai;j is unchanged in

generating B 0, and xi;j D 0, otherwise. Consider a column j 2 JB . Let jI0j D l . The expectation for
P

i2I0
xi;j is .1 � �/l . By Lemma 2 and the fact that l � k

L
,

P r

0

@

X

i2I0

xi;j �
l

2

1

A D P r

0

@

X

i2I0

xi;j � .1 � �/l �
�

1

2
� �

�

l

1

A

� exp

 

�1

2
l

�

1

2
� �

�2
!

� e�
.1�2�/2

8L k : (4)

Note that for all i 2 I0, ci;i� D 0. Therefore, the probability that f �.I0; j / � l
2

D jI0j
2

is also at most

e�
.1�2�/2

8L k . The probability that column j 2 JB is added into J1 is at least 1 � e�
.1�2�/2

8L k . The probability

that all columns in JB are added into J1 is at least 1 � ke�
.1�2�/2

8L k .

For a column j 2 J � JB and an integer u 2 Œai�;j � L C 1; ai�;j �, the expectation for f .I0; j; u/ is l
L

.

By Lemma 2 and l � k
L

,

P r

0

@

X

i2I0

xi;j � l

2

1

A D P r

0

@

X

i2I0

xi;j � l

L
C
�

1

2
� 1

L

�

l

1

A

� exp

 

�1

3
l

�

1

2
� 1

L

�2
!

� e
�

.L�2/2

12L3 k
: (5)

For j 2 J � JB , the probability that there exists an integer u 2 Œai�;j � L C 1; ai�;j � such that

f .I0; j; u/ � l
2

D jI0j
2

is at most Le
�

.L�2/2

12L3 k
. The probability that column j is not added into J1 is at least

1�Le
�

.L�2/2

12L3 k
. The probability that no column in J �JB is added into J1 is at least 1�L.m�k/e

�
.L�2/2

12L3 k
:

Therefore, the probability that J1 D JB is at least 1 � ke�
.1�2�/2

8L k � L.m � k/e
�

.L�2/2

12L3 k
:

Proof of Lemma 6. Let xi;j be a 0=1 random variable, where xi;j D 1 if ai;j is unchanged in

generating B 0, and xi;j D 0 otherwise. Consider a row i 2 IB . The expectation for
P

j 2J1
xi;j is .1 � �/k.
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By Lemma 2,

P r

0

@

X

j 2J1

xi;j � k

2

1

A D P r

0

@

X

j 2J1

xi;j � .1 � �/k �
�

1

2
� �

�

k

1

A

� exp

 

�1

2
k

�

1

2
� �

�2
!

D e�
.1�2�/2

8 k : (6)

Note that, the distance between row i and i� in A.IB ; JB/ is a constant ci;i� . Since the submatrix D.I; J1/

has been corrected, f �.i; J1/ �
P

j 2J1
xi;j . Thus, the probability that f �.i; J1/ � k

2
D jJ1j

2
is also at most

e�
.1�2�/2

8 k . That is, the probability that row i is added into I1 is at least 1 � e�
.1�2�/2

8 k : By considering all

the k rows in IB , the probability that all the rows in IB are added into I1 is at least 1 � ke�
.1�2�/2

8 k .

For a row i 2 I � IB and an integer u 2 Œ�L C 1; L � 1�, the expectation for f .i; J1; u/ is no more

than k
L

.

By Lemma 2,

P r

�

f .i; J1; u/ � k

2

�

D P r

�

f .i; J1; u/ � k

L
C
�

1

2
� 1

L

�

k

�

� exp

 

�1

3
k

�

1

2
� 1

L

�2
!

D e
�

.L�2/2

12L2 k
: (7)

In the algorithm, the probability that there exists an integer u 2 Œ�L C 1; L � 1� such that f .i; JB ; u/ �
k
2

D jJ1j
2

is at most 2Le
�

.L�2/2

12L2 k
.

Therefore, the probability that row i 2 I � IB is not added into I1 is at least 1 � 2Le
�

.L�2/2

12L2 k
. The

probability that no row in I � IB is added into I1 is at least 1 � 2L.n � k/e
�

.L�2/2

12L2 k
. With the above

analysis, with probability at least 1 � ke�
.1�2�/2

8 k � 2L.n � k/e
�

.L�2/2

12L2 k
, we have I1 D IB .

Proof of Lemma 7. For any column j 2 J � JB , similar to Lemma 5, we can prove that with

probability 1 � Lne
�

.L�2/2

12L3 k
, the column j is not added into J1 in any of the n rounds of Algorithm 1.

Since jJ � JB j D m� k, with probability at least 1 � Ln.m� k/e
�

.L�2/2

12L3 k
, no column in J � JB are added

into J1. In other words, no column other than those of JB are output by the algorithm.

For any row i 2 I � IB , similar to Lemma 6, we can prove that with probability 1 � 2Lne
�

.L�2/2

12L2 k
, the

row i is not added into I1 in any of the n rounds of Algorithm 1. Since jI � IB j D n � k, with probability

at least 1 � 2Ln.n � k/e
�

.L�2/2

12L2 k
, no row in I � IB are added into I1. In other words, no row other than

those of IB are output by the algorithm.

The above analysis shows that, with probability at least 1 � Ln.m � k/e
�

.L�2/2

12L3 k � 2Ln.n � k/e
�

.L�2/2

12L2 k
,

no row or column other than those in A0.IB ; JB/ will be output by Algorithm 1.
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