doi: 10.3969/j.issn.1007-2861.2012.01.018

大圆筒结构-土-波浪相互作用的动力响应分析

汪德江, 叶志明

(上海大学土木工程系,上海 200072)

摘要:针对新型的大圆筒薄壳结构的复杂动力特性,建立大圆筒结构-土-波浪相互作用的三维非线性有限元模型. 通过设定无厚度的接触面单元,来模拟薄壳圆筒-土之间的非线性接触特性;采用土体的非线性本构模型,并同时计 入波浪等动荷载的作用对结构进行动力响应分析,得到大圆筒上的 x 方向及 y 方向应力分布规律,以及应力随波浪 力和埋深的变化规律;最终给出了圆筒结构的应力分布函数式及合理的壁厚尺度.

关键词:大圆筒结构;动力响应;应力函数

中图分类号: U 656 文献标志码: A 文章编号: 1007-2861(2012)01-0087-05

Dynamic Response Analysis of Interaction between Large Cylinder Structure, Soil and Wave

WANG De-jiang, YE Zhi-ming

(Department of Civil Engineering, Shanghai University, Shanghai 200072, China)

Abstract: Based on the complex dynamic characteristics of new shell structure, a 3-D nonlinear finite element model of interaction between large cylinder structure, soil and wave is established. The non-linear contact characteristics between shell structure and soil are simulated by setting contact element of zero thickness. The non-linear constitutive model of soil is used to simulate dynamic response analysis of the structure under the dynamic loads on waves. The distribution of stress in x- and y-directions, the changing law of stress with wave and buried depth are obtained. Finally the stress distribution function and reasonable size of cylinder structure are given.

Key words: large cylinder structure; dynamic response; stress function

目前,随着人类对近海及外海资源的不断开发, 我国的近海港口工程建设发展迅速,已涌现出了一 批适应深海港口工程的新型结构形式,其中包括沉 入式大直径薄壳圆筒结构.该结构不仅能适应水深 浪大的恶劣环境,而且可以在不需对软土地基进行 处理的情况下直接插入地基土.尤其对于淤泥质软 土的深海地基,该结构有不可替代的优势.然而,由 于沉入式大直径薄壳圆筒结构的受力机理比较复杂,需要考虑结构与周围土体的共同作用,同时该结构又长期受到波浪力的作用,因此,到目前为止,对于定量分析模型及物理力学计算模式,还没有相关的能够得到工程界认可的工作机理,对此结构的计算也没有相应的国家规范.因此,合理地计算分析新型的大直径薄壳圆筒结构,已成为港口及水运工程

收稿日期:2010-09-29

基金项目:国家自然科学基金资助项目(11072143)

研究领域的热点与难点.

国内外诸多学者已对沉入式大直径薄壳圆筒结 构进行了研究[1-11].范庆来等[3]提出一种准三维上 限分析方法,证实了大圆筒的破坏与经典水工结构 的破坏是不同的;王乐芹等^[4]建立了横向荷载作用 下的大圆筒结构的上限法极限分析模型,以求解大 直径薄壳圆筒结构上的横向极限荷载;王刚等^[5]通 过有限元分析,得到大圆筒结构在指定波浪条件下 的荷载-位移关系曲线,由此确定结构抗倾覆稳定的 安全系数;钱荣等^[6]应用多元线性回归方法分析多 个变量之间的线性相关关系,得到施工状态下波浪 荷载的计算公式; Bai 等^[7] 基于线性波理论, 应用边 界单元法建立了连续式大圆筒结构的一种反射波数 值模型;潘厚志等^[8]分别采用壳单元和沿深度分层 施加的三维空间弹簧单元模拟大直径圆柱壳结构及 其十体,这种壳单元和弹簧单元的耦合数值处理可 有效地模拟出圆柱壳结构与土体之间的非线性相互 作用机制;Baranyi^[1]采用数值方法模拟了大圆筒结 构的椭圆率对波浪能量传递到大圆筒结构上的影 响;Dong 等^[2]通过理论分析方法研究了船行经大圆 筒结构时,所激起的波浪对圆筒结构的影响.但是到 目前为止,同时考虑大圆筒结构-土-波浪的相互作 用,并分析其动力特性的研究还鲜有报道.因此,本 研究建立了大圆筒结构-十-波浪相互作用的三维非 线性有限元模型,并对大圆筒结构的动力特性进行 了深入探讨.

1 非线性接触面模型与土的本构模型

由于圆筒薄壳结构与土的变形及强度特性相差 较大,因此,在外力作用下,2种材料的接触面之间 将产生相对错动、滑移或开裂.为数值计算的准确 性,本研究在2种材料之间增设接触面单元,并假设 各土层面之间始终保持粘结接触,能够协调变形.

为了说明圆筒薄壳结构与土之间的相对滑动, 本研究采用有限元的罚函数法来模拟桩-土之间的 接触问题.通过在桩-土界面处设置主-从接触,采用 扩展的 Mohr-Coulomb 摩擦模型进行接触分析,桩-土 之间的摩擦力由下式确定:

 $\tau_{crit} = \min(\mu p, \tau_{max}),$ (1) 式中, $\mu = \tan \delta$ 为摩擦系数,p为接触面上的压力, τ_{max} 为用户指定土层的极限摩擦阻力. δ 为桩-土之间 的摩擦角,它是影响摩擦桩承载性能的关键因素,具 体采用 Randolph 等^[12]建议的如下计算式来估算: $\delta = \cot(\sin\varphi \times \cos\varphi/(1 + \sin^2\varphi)). \quad (2)$

由于土体的摩擦角范围为 15°~30°,因此取 δ 的范围为 13.2°~19.1°,则摩擦系数 μ = 0.234~0.346.由于圆筒薄壳结构与土的模量相差较大,因此,模拟过程中假设结构为理想弹性材料,土体为符合 Mohr-Coulomb 屈服准则的弹塑性材料.

Mohr-Coulomb 屈服准则假定如下:当作用在某 一点的剪应力等于该点的抗剪强度时,该点发生破 坏,剪切强度与作用在该面的正应力呈线性关系.图 1 为 Mohr-Coulomb 破坏模型,其强度准则如下:

$$= c - \sigma \tan \phi$$
. (3)

式中, τ 为剪切强度, σ 为正应力(σ_1 为大主应力, σ_2 为中主应力, σ_3 为小主应力),c为材料的粘聚力, ϕ 为材料的内摩擦角.

Fig. 1 Mohr-Coulomb failure model

从 Mohr 圆可以得到以下关系:

 $\tau = s \cos \phi$, $\sigma = \sigma_m + s \sin \phi$. (4) 把 τ 和 σ 代入式(4),则 Mohr-Coulomb 准则可写成

 $s + \sigma_{m} \sin \phi + c \cos \phi = 0,$ (5) 式中, $s = (\sigma_1 - \sigma_3)/2$ 为大、小主应力差的一半(即 为最大剪应力), $\sigma_{m} = (\sigma_1 + \sigma_3)/2$ 为大、小主应力 的平均值. Mohr-Coulomb 准则假定材料的破坏和中 主应力无关.

2 数值模型的建立

2.1 结构方案

大圆筒结构直径 12 m,筒体为钢筋混凝土结构 (砼强度等级 C60),基础筒高 22 m,基础壁厚 25 cm,露出土体以上部分 7 m,大圆筒质量470 t.筒 顶高程 ▽ 1.5 m,筒底高程 ▽ - 23.5 m,即初始筒高 22 m,埋入部分 15 m.

2.2 荷载要素

大圆筒在实际工作时可能会遇到不同大小的荷载,其中波浪荷载合力可根据实际工况的波浪要素 计算得到,具体计算公式为

$$f_{\rm sum} = \iint f(p_z, \theta) \, \mathrm{d}h \, \mathrm{d}\theta, \qquad (6)$$

式中, $f(p_z, \theta) = p_z \sin \theta$,其中 p_z 为直立平面墙上、静水面以下深度 $z(\mathbf{m})$ 处的波浪压力强度(kPa).

按照实际工况中波浪荷载取值范围(1000~8000 kN)对波浪荷载合力进行取值,变化增量为1000 kN.

2.3 有限元模型

为模拟实际工程中大直径圆筒结构在动力作用 下的受力工作状态,在有限元模型中建立5个间距 为0.8 m的连续筒结构,以模拟筒与筒之间的相互 影响.考虑模型土体的真实性,计算区域为长方体, 土体深度设为5倍大圆筒结构高度,宽度设为5倍 大圆筒结构直径.应用大型的通用有限元软件 ANSYS进行分析,大圆筒和土都采用 solid45单元, 单元数为216356,土体和大圆筒接触面上均设接触 面单元,接触面摩擦系数取0.3.

2.4 材料参数

土体的密度为1800 kg/m³,弹性模量为 96.3 MPa,泊松比为0.3,粘聚力为26 kPa,内摩擦 角为15°.钢筋混凝土密度为2500 kg/m³,弹性模量 为36 MPa,泊松比为0.167.

2.5 边界条件

地基土边界四周约束为 $u_x = u_y = 0$,底部对三向 自由度全部约束,即 $u_x = u_y = u_z = 0$.对大圆筒采用 动力分析中的瞬态分析,波浪荷载设为随时间变化 的正弦函数,周期为 1.57 s,采用面荷载的形式施 加.动力分析中的阻尼采用比例阻尼,由质量和刚度 阻尼组合而成.大圆筒有限元计算模型如图 2 所示.

3 计算和分析

3.1 数值模拟

大直径圆筒的埋深和筒壁厚度是影响筒壁应力 的关键因素,为了研究嵌固深度对结构强度的影响, 对埋深段及筒高以 2 m 为步长分别建模计算,埋深 依次为 15,17,19,21,23 m,相应筒高为 22,24,26, 28,30 m,厚度分别为 0.20,0.25,0.30,0.35, 0.40 m.动力计算取 2 个周期,周期内筒壁上应力的 坐标如图 3 所示,随时间的变化如图 4 和图 5 所示. 对不同波浪力、埋深、筒壁厚度下最大应力变化进行 数值模拟,计算结果如表 1 ~ 表 4(表中仅列出部分 计算结果)及图 6~图 8 所示.

图 4 z = 22 m, $\theta = 180^{\circ}$ 处的应力时程

Fig. 4 Diagram of the stress-time history (z = 22 m, $\theta = 180^{\circ}$)

图 5 z = 22 m, $\theta = 270^{\circ}$ 处的应力时程 Fig. 5 Diagram of the stress-time history (z = 22 m, $\theta = 270^{\circ}$)

表1 不同时间下z = 0 m 处的应力

	Table	1 Stress	s at $z = 0$	m for di	fferent tin	ie kPa
 时间/	$\theta = 9$	90°	$\theta =$	180°	$\theta =$	270°
s	x 方向	y方向	x 方向	y 方向	x 方向	y 方向
0.157	- 109.4	-2.681	2.776	-253.2	-333.6	-3.413
0.471	- 189.3	-43.290	82.750	-1 316.0	-2 700.0	- 122.600
0.785	-458.6	-42.390	86.520	-2 260.0	-3 779.0	- 104.200
1.099	-405.6	-43.220	- 78. 150	-2 071.0	-2 992.0	-64.240
1.413	-553.2	-26.240	72.570	-1 094.0	-1 846.0	-71.010
1.570	-1116.0	-46.250	187.100	-1 467.0	-2 038.0	-72.370

表 2 不同时间下 z = 6 m 处的应力

Table 2 Stress at z = 6 m for different timekPa

时间/ θ=90°		0°	$\theta = 180^{\circ}$		$\theta = 270^{\circ}$		
s	<i>x</i> 方向	y方向	x 方向	y 方向	x 方向	y 方向	
0.157	- 187.9	15.79	23.52	- 176.9	- 141.0	21.10	
0.471	-1 422.0	-65.26	91.50 -	1 174.0	-857.2	60.99	
0.785	-1 191.0	112.80	208.80 -	1 050.0	-452.4	20.42	
1.099	-936.6	87.20	95.94	-885.9	-608.4	93.27	
1.413	-1 383.0	32.92	81.34 -	1 437.0	-1 283.0	71.66	
1.570	-1 325.0	85.92	115.80 -	1 419.0	-1 138.0	133.60	

表 3 不同时间下 z = 15 m 处的应力

Table 3 Stress at z = 15 m for different timekPa

时间/	$\theta = 90^{\circ}$		$\theta =$	180°	$\theta = 270^{\circ}$	
s	<i>x</i> 方向	y方向	x 方向	y 方向	x 方向	y 方向
0.314	-202.1	21.41	22.950	- 198.3	-231.3	-21.21
0.628	-1 057.5	22.63	-8.663 -	-1 057.0	-495.0	105.40
0.942	-1 078.0	15.18	46.570	-793.1	-402.9	51.46
1.256	-705.7	89.39	13.640	-443.6	-251.0	13.60
1.570	-664.5	46.76	71.390	-597.0	-448.6	29.94

表4 不同时间下 z = 22 m 处的应力

Table 4	Stress at z	=22 m for	· different time	kPa
---------	-------------	-----------	------------------	-----

时间/ $\theta = 90^{\circ}$		$\theta = 180^{\circ}$			$\theta = 270^{\circ}$		
s	x 方向	y 方向	x 方向	y 方向		x 方向	y方向
0.314	19.47	3.864	-33.140	-442.800		-915.50	- 52. 670
0.628	326.40	18.410	-73.890	- 853.200	_	1 640.00	- 80. 510
0.942	254.10	15.340	-62.350	- 799. 700	_	1 640.00	- 83.070
1.256	140.50	10.840	- 39.320	- 512.500		-977.90	-48.420
1.570	-31.40	-2.941	1.228	5.765		- 18.49	-4.144

由图 3 和图 4 可知,x,y 方向应力呈周期变化,x 方向应力周期变化幅值比 y 方向小,x 方向基本上处 于 0 应力状态,而 y 方向应力周期变化巨大,最大值 达到 1 800 kPa.x 方向应力随内摩擦角度变化不敏 感,y 方向应力随内摩擦角度有 10% 左右的变化.由 图 5 可知,x,y方向应力随着波浪力的增大而增大,

图 6 不同波浪力下的最大应力

图 7 不同埋深下的最大应力

图 8 不同筒壁厚度下的最大应力 Fig. 8 Maximum stress for different thickness

接近线性变化. 由图6 可知,随着埋深增加,x,y 方向 应力总体上减小,但在一定深度处出现应力峰值,而 且 y 方向应力小于 x 方向应力. 由图 7 可知,随着壁 厚增加,x,y 方向应力减小,变化曲线的形状接近反 比例曲线. 当壁厚达到一定值时,应力趋向稳定,不 再随壁厚增加而减小.

3.2 应力分布函数的确定及筒壁最大应力分析

通过数值计算结果,利用多元回归分析,可得出 在波峰行近时筒壁上 x,y 方向的最大应力分别如下:

$$F_{x \max} = \alpha \beta [436.41 + 0.518 f_{\text{sum}} + (-1.29 \times 10^{-5}) f_{\text{sum}}^2], \qquad (7)$$

$$F_{y \max} = \lambda \gamma [137.64 + 0.333 f_{sum} + 6.225]$$

$$(1.238 \times 10^{-6}) f_{\text{sum}}^2],$$
 (8)

式中, $\alpha = -2.15 + 0.35h - 0.009 2h^2$ 为 x 方向最大应 力的埋深修正系数, $\beta = 4.89 - 23.44t + 33.49t^2$ 为 x 方向最大应力的厚度修正系数, $\lambda = 1.41 - 0.023h$ 为 y 方向最大应力的埋深修正系数, $\gamma = 3.82t - 17.54t + 25.97t^2$ 为 y 方向最大应力的厚度修正系数.

4 结 论

大圆筒薄壳结构是一个空间圆柱形壳体结构体 系,因其受力条件复杂,受到的荷载是非单一、非均 一、非静态的.同时,由于要考虑到地基土体(线性与 非线性情况)的相互作用,以及结构与土体的相互作 用、共同变形的工作机理,因此,薄壳圆筒结构的强 度计算不能沿用经典水工结构的计算模式.到目前 为止,一般的结构力学解析方法均难以得到合理的 结果.为了使结构计算模式能够更好地符合实际原 型结构及其工作状态,能较为真实地反映结构的强 度问题,本研究由数值计算结果得出了如下几个在实 际工程中多筒情况下的筒壁最大应力的变化规律.

(1)本研究通过对不同波浪力、埋深、筒壁厚度 下最大应力的数值计算结果,利用多元回归分析,得 出在波峰行近时筒壁上 x,y 方向的最大应力计算公 式,从而可以直接计算得到大圆筒的最大应力,给工 程设计带来极大方便.

(2)最大应力一般出现在自由端,x方向最大 应力一般出现在与x正方向夹角为90°处,y方向最 大应力出现在与x正方向夹角为180°处.从受力特 点分析,在嵌固泥面处,90°处变形最大,土体抗力随 着圆筒结构弧形变化而逐渐变大,导致在该处产生 最大应力;而在180°处,土体对筒壁的摩擦力较大, 使得沿y方向应力较大.

(3)最大应力随波浪力的增大基本呈线性增大 趋势.当自由端的高度不变,埋深增加时,最大应力先 增大后减小,但是 x 和 y 方向达到最大应力时的埋深 不一样.总体趋势是随着埋深的增加,最大应力减小. 这表明埋深增加对大圆筒的应力有一定消散作用.

(4) 随着壁厚的增加,大圆筒筒壁最大应力明

显减小,当壁厚达到一定值时,应力趋向稳定,不再 随壁厚增加而减小.虽然壁厚对 x 和 y 方向最大应 力的影响程度是不一样的,但都是当壁厚达到 0.35 m时,应力趋于稳定.通过对大圆筒结构的强度 分析,可得出较为合理的壁厚尺度为0.012 5 筒高.

参考文献:

- BARANYI L. Numerical simulation of flow around an orbiting cylinder at different ellipticity values [J]. Journal of Fluids and Structures, 2008, 24(6):883-906.
- [2] DONG G H, SUN L. Numerical analysis of shipgenerated waves action on a vertical cylinder [J]. Journal of Ship Research, 2009, 53(2):93-105.
- [3] 范庆来,栾茂田,杨庆.横观各向同性软基上深埋式大圆筒结构水平承载力分析[J].岩石力学与工程学报,2007,26(1):94-101.
- [4] 王乐芹,周锡礽,张伟.软粘土中插入式大直径薄壁圆筒结构的一种极限状态分析模型[J].海洋技术, 2005,24(1):95-100.
- [5] 王刚,陈杨,张建明.大圆筒结构倾覆稳定分析的有限 元法[J]. 岩土力学,2006,27(2):238-241.
- [6] 钱荣,周锡,张建辉.作用于圆柱壳结构上波浪力的多 元线性回归分析[J].港工技术,2001(3):1-3.
- BAI Z G, ZHOU X R, SUN K L, et al. Numerical model of wave forces on continuous cylinder structures [J]. Transactions of Tianjin University, 2001, 7(2):71-75.
- [8] 潘厚志,孙克俐,周锡礽,等.大直径圆柱壳结构与土体相互作用的一种耦合数值模拟方法[J].港口工程,2000(1):26-30.
- [9] ZHU G, BORTHWICK A G L, TAYLOR R E. A finite element model of interaction between viscous free surface waves and submerged cylinders [J]. Ocean Engineering, 2001, 28(8):989-1008.
- [10] SILLS G, FERGUI O, SVANOE G. Behavior of a model breakwater element on a sandy seabed [J]. International Journal of Offshore and Polar Engineering, 2001, 11 (4): 241-247.
- [11] LIU H X. Frequency domain analysis of dynamic wave pressures on deeply embedded large cylinder structures due to random waves [J]. Transactions of Tianjin University, 2003, 9(1):21-28.
- [12] RANDOLPH M F, WORTH C P. Application of the failure state in undrained simple shear to the shaft capacity of driven piles [J]. Geotechnique, 1981, 31(1):143-157.