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Abstract: Structural damage identification is critical to the reliability evaluation of structures. Now damage identfication method based on pa
ramelers of structural model & one of the research hotspots. Subspace Rotation Algorithm introduced in this paper belongs to the damage
identifi cation method based on parameters of structural model. Subspace Rotation Alorithm is based on finie element method of structures,
use the matrix transform method and separates the damage location and damage extent poblems and & computationally inexpensive. Subspace
Rotation Algorithm is used to detect damage of an actual bridge n this paper and practice testifies that Subspace Rotation Algorithm only
needs the first order frequency and shape mode to identify the main damage location and damage extert of the actual bridge so that it is sim-
ple in calculatbon and feasible.
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1 Subspace Rotation Algorithm
Tn 1992 Zimmerman and Kaouk presented Subspace Rotation A lgorithm in which they separated the damage lo-

cation and damage extent problems. Both of these sub— problems required very simple mathematical manipulations;
therefore, the Subspace Rotation Algorithm was computationally inexpensive. Kahl and Sirk is'” demonstrated that this
Algorithm could detect the spatial locaion and extent of a damage event or damage events in a truss structure using
perfect eigenvalue and eigenvector data. In this paper Subspace Rotation A lgorithm is used for detecting the location
and extent of damage events in a continuous beam strudure. In this paper there is an example in which Subspace Rota
tion Algorithm is used for detecting the damage of an actual bridge.
1. 1 Damage Location

The damage location Algorithm, as developed by Zimmerman and Kaouk, starts with an n— degree— of— freedom
finite element model of the undamaged structure:

Mx + Cx+ Kx = 0, (1)
where M is the n n ideal mass matrix, C is the n n ideal damping matrix, K is the n n ideal stiffness matrix,
x isthe n 1 displacement vector. By assuming that the displacement vector is a harmonic solution of the form x =
e ', an associated eigen— problem is obtained:

(- WM-j uC+ K) w= 0, (2)
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where ; is the ith natural frequency and ; is the corresponding mode shape (i= 1, , n). The subscript h ind+
cates a healthy pre— damaged structure in which the natural frequencies and mode shapes satisfy the ideal eigen—
problem.

Zimmerman and Kaouk assumed that damage to the structural system is manifested by changes of the property ma-
trices from (M, C, K) to (M- M., C- Cu, K- Ku) with associated changes of the natural frequencies and
mode shapes from (1, ) to( 4, a«),where the subsaipt d demotes a damaged structure. The damaged strue-
ture then satisfies the following equation:

[- (M- Mig-ja(C- C)+ (K- Ki)] a= 0. (3)
Because the perturbation matrices ( My, C,, K,) are assumed to be exact, eq. (3) holds for any set of measured
natural frequencies and mode shapes. This assumption is important because it may be impractical or impossible to mea-
sure every mode with complex structural components. The Algorithm must produce reliable results with only p measured
modes, where p  n. From this point forward in the discussion i denotes the measured modes (i= 1, , p). Equation

(3) can be rearranged leaving the original matrices on one side and moving the perturbation matrices to the other side:
2 2

(- @M-j 4C+ K) 4= (- & Mi—j s Co+ Ki) a4, (4)
which can be simplified to
di = di, (5)
where
di= (- aM-j «C+ K) a (6)
and
di= (- & a—ja Ci+ Ki) a (7)

In the case of no damage, the perturbation matrices are all zero so that by eq. (7), di= 0, which in tum means that
di= 0 because of eq. (5). If, on the other hand, some damage has occurred, values in certain rows of the associated
perturbation matrix will be nonzero, which in tum will cause zero nonzero values in di and d: corresponding to the rows
of the perturbation matrices. This provides an indication of the damage location because the row of the damage vedor
affected by damage corresponds to the degree of freedom of the finite element model that is affeded by damage. Notice
that even though the preceding discussion was based on the behavior of the perturbation matrices, it is not necessary to
actually know these perturbation matrices to implement the concept, instead, d’ can be found with knowledge of the
original property matrices and the damaged mode shapes and natural frequencies because, according to eq. (5) . There-
fore, only simple matrix multiplications are required to locate eamage in structural systems.
1.2 Damage Extent

In looking at the finite element model of the structure, the extent of damage, as developed by Zimmerman and
Kaouk, can be determined by the perturbation matrices ( Ma, Ci, Ka) such that eq. (3) is satisfied. It is assumed
that damping may be neglected and that damage initiation does not alter the mass of the structure. Making this assump-
tion simplifies the problem by reducing the number of required matrix permutations by one third. As a result, the extent
of damage is embodied in the change in the stiffness matrix ( K«) . With these assumptions, eq. (3) can then be re-

duced and rewritten:

(- @M+ K) w= Ki a. (8)
Zimmerman and Kaouk found the following result for the change in the stiffness matrix K, :
Ki= d[d 4 'd, (9)
where d is the matrix of damage vectors [ di  d> d,] and  is the matrix of mode shapes [ 4 e

& |. Thus, the extent of the damage can be determined.



2 Application of Subspace Rotation Algorithm on an Actual Bridge
2.1 Structural Model
The testing actual bridge is a continuous beam strue- ﬂ

ture located in Dalian city. Finite element modeling of this
. 20m , 20m , 20m 20m
| | | | |
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structure is shown in fig. 1. The structure is divided into

32 elements evenly. That is to say, each element is 2. 5
meters. Except for nodes at the support, there are 3 de-
grees of freedom at each mode, one for horizontal transla Fig 1 Finite Element Modding o Ninety— Seven Bridge

tion u and one for vertical translation v and one for rotation . There is only one degrees of freedom of the node at the
first support, viz. rotation . There are two degrees of freedom of the node at other supports, viz. horizontal translation u
and rotation . Cross sedion of the bridge is shown in fig. 2 and fig. 3, in which digits denote reference points and coo

dinates of these reference points are shown in table 1.

Fig.2 Cross Section Eastern Box Type Beam Fig 3  Cross Section Western Box Type Beam

Table | Coordinates of Reference Points

o coordinate of eastem box type beam coordinate of western box type beam
et X/ em Y/ em X/cem Y/ em
1 575 0 - 575 0
2 575 - 15 - 575 - 15
3 325 - 48.75 - 325 - 48.75
4 325 - 124 - 325 - 124
5 - 325 - 124 325 - 124
6 - 325 - 58.53 25 -58.5
7 - 575 -32.35 575 - 32.35
8 - 575 -17.25 575 - 17.25
9 20 —-53.325 -20 - 53.325
10 70 - 27.575 - 70 - 27.575
11 235 -25.1 - 235 - 251
12 285 -49.35 - 285 - 49.35
13 285 -74.35 - 285 - 74.35
14 235 - 104 - 235 - 104
15 70 - 104 - 70 - 104

16 20 - 78.325 -20 - 78.325
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To Continue
. coordinate of eastem box type beam coordinate of western box type beam
et X/ em Y/ em X/em Y/ em
17 - 20 - 53.925 20 - 53.925
18 - 70 - 29.675 70 - 29.675
19 - 235 -32.15 235 - 32.15
20 - 285 -57.6 285 - 57.6
21 - 285 -82.6 285 - 82.6
22 - 235 - 104 235 - 104
23 - 70 - 104 70 - 104
24 - 20 - 78.925 20 - 78.925

2.2 Numerical Results

Seventeen measuring points are distributed evenly along midline of the bridge. Natural frequency and mode shape
of the strudure are measured by pulse method. The natural frequency of the original strudure is 6. 13, and the natural
frequency of the damaged structure is 5. 94. The loss of the natural frequency is 3. 1% . The measured mode shape val-
ues and ideal mode shape values of the structure are shown in table 2. The measured mode shape curve and ideal mode
shape curve of the structure are shown in fig. 4 and fig. 5. Comparing natural frequency and mode shape of original
structure with natural frequency and mode shape of damaged structure, it can be decided preliminarily that the structure

may be damaged.
Table 2 Mode Shape Values of the Structure
3 mode shape of eastern box type beam mode shape of wesem box type beam
position
measured ideal measured ideal

0 0.00 0.000 00E+ 00 0. 00 0. 000 00E+ 00
5 -0.39 - 0.698 43E+ 00 - 0.57 - 0.701 52E+ 00
10 - 0.56 - 0.100 00E+ 01 - 0.81 - 0.100 00E+ 01
15 -0.42 - 0.698 43E+ 00 - 0.57 - 0.701 52E+ 00
20 0.00 0. 000 O0E+ 00 0.00 0. 000 00E+ 00
25 0.49 0. 698 43E+ 00 0. 60 0.701 52E+ 00
30 0.70 0. 100 00E+ 01 0.85 0. 100 00E+ 01
35 0.55 0.698 43E+ 00 0.65 0.701 52E+ 00
40 0.00 0.000 O0E+ 00 0.00 0. 000 00E+ 00
45 - 0.67 - 0.698 43E+ 00 - 0.68 - 0.701 52E+ 00
50 - 1.00 - 0.100 00E+ 01 - 1.00 - 0.100 00E+ 01
55 -0.73 - 0.698 43E+ 00 -0.75 - 0.701 52E+ 00
60 0.00 0.000 00E+ 00 0. 00 0. 000 00E+ 00
65 0.63 0.698 43E+ 00 0.71 0.701 52E+ 00
70 0.85 0. 100 00E+ 01 0.97 0. 100 00E+ 01
75 0.59 0. 698 43E+ 00 0.67 0.701 52E+ 00
80 0.00 0. 000 O0E+ 00 0.00 0. 000 00E+ 00
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Fig. 4 Mode Shape of Eastern Box Type Beam Fig. 5 Mode Shape of Western Box Type Beam

In practice rotation and some translation degrees of freedom of the structure camot be measured. That is to say,
damage identification will be performed in the condition of incomplete information measured. One way of overcoming
this difficulty is eliminating these degrees of freedom. One of the simplest and most common methods used for eliminat-
ing these degrees of freedom is a static condensation method known as Guyan reduction'” . This method partitions the
structural model into master m degrees of freedom, which are to be retained, and slave s degrees of freedom, which are
to be condensed out as follows:

[ K mm K msi| 2 [ M mm M rm} m O

=< (10)
KYYl KSX M\‘IYI, MYS s 0

The reduced mass and stiffness matrices are K = T KT and M = TTMT, where T = |: ] , I denotes

- K.'K,,
unit matrix.

Using subspace rotation A lgorithm the essential damages of the actual bridge are detected . The identification of es-
sential damages location is absolute. Identification of damages extent is relative. That is to say, loss percentage of ele-
ment stiffness is a relative value, which derotes relative degree of each element s damage. Concrete results of damage
identification are shown in fig. 6 and fig. 7(y— coordinate denotes loss percentage of element stiffness; x — coordinate

denotes damage location) .
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Fig. 6 Damage Identification Result of Fig. 7 Damage Identification Result of
Eastern Box Type Beam Western Box Type Beam

3 Conclusion

Subspace Rotation Algorithm separates the damage location and damage extent problems and is computationally ir-
expensive. Subspace Rotation Algorithm is used for detecting damage of an actual bridge in this paper and practice tes-
tifies that Subspace Rotation Algorithm is feasible and simple for damage identification of actual bridges.
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