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Abstract: A sufficient condition of GR— stability was given for nonlinear multi— delays differential equations and then, the author
proved that any A— stable one— leg method (P, 0) is GR— gable.
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In recent years, many papers discussed numerical methods for the solution of delay differential equations. The con-
cepts of GR— stability, GAR—- stability and weak GAR- stability were introduced. Some good conclusion about the &

1] , we extend the

bility of DDEs were offered and proved. In this paper, after modifying the condition of the system in

concepts to MDDEs and gain some similar results.

1 The Asymptotic Stability of Nonlinear MDDEs
Let €*,*) be an inner product on C" and Il Il be the corresponding norm. Consider the following initial prob-

lem of nonlinear MDDEs:
Y(1) = f(ry(t)y(i= T.y(t= ) 1 20,
y(t) = @i(1) t <O,
where Ti, T2 are positive delay terms and T1 2 Th< 0, ¢ is a continuous function, andf: [0, + ©0) " xc"xc

(D

TV isa given mapping which satisfies the following conditions:
Re {y— z.f(t.y, ut,v1) = f(tiz,uz,v2)) S<a(t) lly—z 17+ vi(e) Nui— us P+
Yo(t) lloy— va II? t 20, y,z, ui, v1, uz,v2 € €, (2)
where a(¢), ¥Yi(t) and ¥2(t) are bounded functions; furthermore, ¥i(¢) and Y(¢) is not always less than 0, and
there exists a function Il( ¢ ) satisfying the following condition:
Nt)a(t)+ vi(t)+ Ya(t)=0 0S¢ S<La(t) <O, ¢ 20, (3)
In order to discuss the stability and asymptotic stability of the system ( 1) ,we introduce another system, defined by
the same function, but with another initial condition:
Z(t)= f(t,z(t),z(t- T),z(t—- T)) t 20,
(1) = Poft) t <0, T 2> 0
Definition 1'” I y(t) and z(t) are the solutions of (1) and (4) respectively, they satigfy,

(4)
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ly(t) = z(0) | Smgc 1 @y(x) = @) Il & 20, (5)
we called the system (1) stable, asymptotic stability is defined by further satisfying ,h'rg ly(t)- z(t) Il = 0.

Theorem 1'¥  If (3) is true then (1) is stable.
Theorem 2 1If (3)is satisfied and 11 = st%)r](t) < 1then (1) is asymptotic stable.

Proof We have
d% ly(t)= z(t) 7= 2Re&y’ (1) = 2" (1), y(1) = 2(1)> = Re{f(t, y(t), y(t= T),y(t= T)) -
Fltz(t),z(t—= T),z(t— To) ), y(t)— z(1)) K2a(t) lly(t)— z(t) I*+
2¥i(t) ly(t— T)— z(t—= T) 1%+ 2vo(t) ly(t— To)— z(t- ) II*
Let Y(t): = lly(e)= z(t) I A(1) = I;Za(s)ds ombined with (3), we can obtain
Y(t) K2a(t)Y(t)+ [2Yi(t)+ 2¥a(t)] x%nglY(x) = 2a(t) Y(t)- 20(t)alt) x%l_pTlY(x).
Multiply both sides by e *("’ | we have
MY (1) L2a0)e Y1) - 2Ma(e) e M sup, V(x),
MY (1)= 20(t) e Y (1) < 2Ma(e)e M sup V()
(e *y(r)) <~ 2na(t)e _sup, Y(x).
Integral the sides from O to ¢, we can obtain
MY Sy(0)+ (- 1+ 1Y) V().

v(r) <M yo)+ ne1- & osup Yix).
: 1

According to T< 1 and &7, (t T ) , so there exists a constant b( 1 < b< 1), which satisfies Y(1) <b
sup_ Y(x) , combining with Theorem 1,we can easily obtain lim¥(#) = 0.The proof of Theorem 2 is over.
x\t—Tl t oo

2 The Stability of One— Leg Methods of Nonlinear MDDEs
Apply the one— leg k— step method (P, 0) to system (1)1
p(E)y": }f( O(E)t”’ O(E)yfbyl”’yz") n = 07 19 25 °tty (6)

where h > 0 is the stepsize, E is the translation operator: Eyn = yn+1, yn is an approximation to the exact solution
k k

y(t.) with t, = nh, P(x) = qu’ and O(x) = Z@xf are generating polynomials, which are assumed to have real
j=0 =

coefficients and 1o common divisor. We assume P(1) = 0, (1) = (1) = 1, yim(i= 1, 2) denotes an approxima-
tionto y( O( E)t,) T) that is obtained by a specific interpolation at the point t; = O( E)t,— T using {vj}j <n+# ,
process (6) is defined completely by the one— leg method ( p, 0) and the nterpolation procedure for ys,.
As we know, any A — stable one— leg method for ODEs has order at most 2. So we can use the linear interpolation
procedure foryin . Let T = (mi— &)h(i= 1,2) with integer mi >1and & € [0, 1) .We define
yin= GO(E)ynmer+ (1= &) O(E)yprm  i=12 (7)
yi= @(lh) for I <O.
Apply the same method (p, 0) to MDDEs (4) ,we have
(E)zn= W ((E)tn, O(E)zn, zin, z2n n= 012 (8)
Zin = GO(E)zn_mi+1+ (1- §) O(E)znm, i= 12 (9
2= #(lh) for | 0.
In the following discussion, we define ¥; = sup Yi(t)(i= 1,2) ,and a = sup alt) .
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Definition 2 A numerical method for MDDEs is called GR— stable, if under the condition Y1+ Y, <= a, there
exists a constant C which only depends on the method, Ty, T, ¥ and ¥ ,the numerical approximations y, and z, to
the solutions y(¢) and z () of any given systan (1) and (4), satisfy the follwing inequality: Iy, — z, I <
C(Oé?é,’; 1 Iy — z Il + rpg(;);"P](t)— ®(t) II) for every n 2k and stepsize h > 0.

Now, let” s focus on the stability analysis of A— stable one— leg methods with respect to nonlinear MDDEs.

Let yn, za €, o- [(yn— zn)T, (Yne1— Zns 1)T, oy (Ve b= 1= Zne b= 1)'[‘]T , and for a real symmetric post

tive definite matrix G = [gij]kxk ,the norm [|« || ¢ is defined by
i

10N = ( gy i) U= (ulud oo ul)” € ¢V
e

Theorem 3 Assume that the one— leg k— step method ( p, 0) is G— stable!* for a real symmetric positive def

inite matrix G, then

n 2
lawi e < oo lle*s 20 DFallo(E)(yi— z) 1P+ 2.6 1 0(E) (yimms 1= 5-me1 1174
j=0 i=1 ! !

2
Z/l— §) i 11 O(E)(yi-m— 5-m) I’T. (10)
Proof Assume that the method is G— stable for G, then for all real ag, a1, ---, a, we have AT GA1— AJGAy <
20(E ) aofo where Ai = (ai, ai+ 1, -y ai+h- 1)T, i = 0,1, we can obtain:
I aer = 1w, 1l K2Re{O(E)(yu— z0), P(E)(yn— za)) =
2ReCO(E) (yn= zn), h[f (O(E) tn, O E)yn, ¥ 1n, ¥20) =
FOO(E) tu, O(E)z0, O(E)zn, 210, 224)] ) S
2ha(t) WO(E) (yn— zn) 17+ 2h¥i(t) ly1n— z1a 117+
2h¥a(t) Wyan = 22, 112
According to (7) and (9), we have,
1yin= 2 12 S G WO(E )y msr1= zuema ) 124 (1= 8) WO(E)(yum = 20 m) II2,

hence
2
ot = o llg® <2ah 1 06(E) (yum z0) 174 20 D65 1O(E)(yuomai= zamer) 174
i= 1 ! !

(1= 8)% W O(E)(ynm— znm) II’].
By induction, we have ( 10).The proof of Theorem 3 is over.
Theorem 4 Any A- stable' ¥ one— leg method (P, 0) is GR- stable.
proof Assume that the method is A— stable. Then the method is G— stable. Applying Theorem 3 and combining

with the condition0 < Yi+ Y2 S a,we have

lomille® < lleollc®+ 200 20 0(E) (yi— ) 1P+ 20 27811 O(E)(yime1= zimay I+
j=1 j=0

2 < 2
(1= 8) Vi NO(E)(y-m — z-m) ']+ 2hj§f &2l O(E) (yi-ma1— 2 ma1) 17+

(1= &) 2 1O(E)(3j-m — z-m) II°]. (11)
(1) When m; >2, i= 1,2, we have
-1 -1
o 62 < Moy 12+ 28k D, Wo(E)(yi— z) 1P+ 2(1= 8)vih D I O(E)(y;— 5) II*+

Jj=- m+ 1 Jj=- m

26,¥sh Z WOo(E)(yi— z) II?+ 2(1- &) th‘—z N O(E)(yi- z) II* <

Jj=- rn2+l j=-m,

o Il ¢*+ (2v Ty + 20T may No(E)(y- z) 12 (12)
2\ X



(2) Whenmi= ma= 1,we have
N, e S Nogllg?+ 20T+ Y2 b)) WO(E)(y_1- z_1) I (13)
(3) Whenmi= 1andmz > 1, we have
o He? < Mog llg?+ 2v T NO(E)(y_1— z_1 17+ 2Y2T27,,f?<{}1x\<1 WOo(E)(yj— z) 1% (14)

Combining (12), (13) with (14),we have
lopi e S Hagll?+ 2T+ %) may No(E)(y- ) I7  n 20m 21 (15)
- my N N

Assume N and X are the maximum and minimum eigenvalue of the matrix G respectively, we can obtain

k1
Xt Mymr— zee 12 SN Dillyi— 2 1124 20T+ v may O(E)(y;- z) I n 20,
i=0 —mz\]\—

kN 2T+ vh)

[EEr— < oamax, llyi- = 1%+ N Cmax O(E)(yi— z) I 20,
2

This shows that the method is GR— stable. The proof of Theorem 4 is over.
Remark: A ccording to the procedure of the proofs, we know that the conclusions of the paper are true to the delay
differential equation systems with many delays.
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